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Abstract

Biological systems are characterized by a high number of interacting components. Determining the role of each component
is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of
positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the
system between the high and low activity states. Many biological oscillators include two types of negative feedback
processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that
both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative
contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the
active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling,
regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply
standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to
system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these
two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a
computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent
(low activity) phase durations to the time constant of the process. The measure shows that both processes control the
active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in
setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback
processes in a wide range of biological rhythms.
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Introduction

Biological systems involve a large number of components that

interact nonlinearly to produce complex behaviors. How can we

determine the role that a component plays in producing a given

behavior of the system? We approach this question in the relatively

simple context of relaxation oscillations, since relaxation oscillator

models and their extensions are used to describe a wide variety of

biological behaviors [1], such as the cell cycle [2], electrical activity

of cardiac and neural cells [3,4], circadian patterns of protein

synthesis [5], metabolic oscillations [6] and episodic activity in

neuronal networks [7]. Specifically, we use a model developed to

describe the rhythmic activity of developing neural networks and

whose formalism also applies to cellular pacemakers [8]. The

activity of the system can be either high or low, and slow negative

feedback processes switch the system back and forth between the

active and silent states. Hence the rhythm consists of episodes of

high activity separated by silent phases, repeated periodically.

While relaxation oscillator models usually contain one negative

feedback process to regulate the rhythmic activity, in biological

systems two or more feedback processes are often present. Thus,

we consider a model with two different types of negative feedback:

divisive and subtractive. In the context of an excitatory network,

synaptic depression (weakening of synaptic connections between

neurons) is a divisive feedback (decreasing the slope of the network

input/output function) while activation of a cellular adaptation

process (decreasing the neurons’ excitability) can be a subtractive

feedback (shifting the network input/output function) [8,9]. With

both types of negative feedback in the model, we seek to determine

the contribution that each makes to episode initiation and

termination.

We begin by using two strategies based on the two broad types

of experimental protocols. The correlative strategy seeks to detect

associations between the time course of a variable and the system’s

behavior. To use the example of episodic activity generated by an

excitatory neural network, we compare the variation of the

fraction of undepressed synapses (weighted by the synaptic

conductance) to the activation of the cellular adaptation current

(scaled by its conductance). Intuitively, the process that shows the

greatest changes would be considered to affect activity the most,

and thus contribute more to episode initiation/termination. The

faster process covers a wider range during the active and silent
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phases [8]. This predicts that the faster a process and the larger its

associated weight, the more it contributes to episode initiation and

termination. The second strategy is to block one process, with the

expectation that this will result in changes in activity that are

directly related to the contribution of that process. Perhaps

contrary to intuition, we find that blocking a slow process may

provide little information on the role of that process in the rhythm

generation, and that the correlative and blocking strategies may

even lead to contradictory conclusions.

We then develop a new strategy based on the idea that if a

negative feedback process contributes significantly to episode

termination, then increasing its time constant should significantly

increase episode duration. Similarly, if recovery of such a process

contributes to episode initiation, then increasing its time constant

should significantly delay episode initiation. We develop a measure

of the respective contribution of each process based on these ideas.

This measure reveals that if the divisive and subtractive feedback

processes have similar time scales and similar weight they

contribute similarly to episode termination. In contrast, the

subtractive process controls episode initiation, even if it is slower

or has less weight. This also means that the divisive process only

plays a minor role in episode initiation. This unexpected result was

not revealed using the standard approaches, and demonstrates the

utility of the new measure in pulling out the key dynamics involved

in rhythm generation. These results demonstrate that the

characteristics of the correlative and blocking methods limit their

usefulness in the determination of which feedback process controls

rhythmic activity. Instead, this question requires computational

tools such as the ones developed here. Finally, we point out in

Discussion that hybrid systems such as the dynamic clamp may

allow experimental use of our method.

Model

We consider a mean field type model describing the activity of

an excitatory neural network subject to both synaptic depression

and cellular adaptation as described previously (Tabak et al.,

2006). The variables of the model are a, the network activity (firing

rate averaged across population and time; a = 0 corresponds to all

cells silent, a = 1 means all cells fire at their maximal frequency); s,

the fraction of undepressed synapses (s = 0 means all synapses are

depressed, s = 1 means all synapses are operational); and h, a

cellular adaptation process that raises the neuronal firing threshold

(h = 0 means no adaptation so the cellular threshold is at its

baseline level h0, h = 1 is the maximal adaptation). The model

equations are:

ta
:da=dt~{a z a?(s:w:a { g:h { h0) ð1Þ

ts
:ds=dt~{s z s? að Þ ð2Þ

th
:dh=dt~{h z h? að Þ ð3Þ

where a‘ is an increasing sigmoidal network input/output function

(Table 1). The two parameters w and h0 set the global network

excitability [8]. Connectivity (w) represents the amount of positive

feedback due to excitatory connections, i.e., it determines the

fraction of network output (activity) fed back as input to the

network. The average cellular threshold (h0) measures the cellular

excitability, i.e., it biases the cells’ responses to synaptic inputs.

In Eq (1) we see that synaptic depression, which decreases s, acts

as a divisive factor, decreasing the amount of positive feedback,

while cellular adaptation, which increases h, is a subtractive factor.

An additional parameter, g, can be adjusted to scale the strength of

the adaptation process. Unless mentioned otherwise, g is set to 1.

The steady state functions s‘ and h‘ are decreasing and increasing

sigmoidal functions of activity, respectively. Thus, when activity is

high, s decreases and h increases, both of which contribute to

active phase termination. During the silent phase, s increases and h
decreases, eventually initiating a new active phase. The active

phase is defined as the period of activity for which a is above an

arbitrarily determined threshold (0.35). Below this threshold the

system is in the silent phase.

The network recruitment time constant, ta, is arbitrarily set to 1

and the time constant for the variations of s and h are assumed

Table 1. Parameters of the model.

Parameter Description Value

w Connectivity (synaptic strength) 1 [0.5–3.5]

h0 Input for half maximal activation 0 [20.2–0.2]

ka Spread of a? 0.05

hs Activity at half maximal depression 0.3

ks Spread of s? 0.05

ts Time constant for s 250 [25–2500]

hh Activity at half maximal adaptation 0.3

kh Spread of h? 0.05

th Time constant for h 250 [25–2500]

g Strength of cellular adaptation 1 [0–1.5]

Typical parameter values used in the simulations are shown. For parameters
that were varied, the range of values used is also indicated in brackets. The
steady state network output function is a?(i)~1=(1ze{i=ka ), the steady state
synaptic availability is s?(a)~1=(1ze(a{hs)=ks ) and the steady state activation
of cellular adaptation is h?(a)~1=(1ze(hh{a)=kh ).
doi:10.1371/journal.pcbi.1001124.t001

Author Summary

As modern experimental techniques uncover new com-
ponents in biological systems and describe their mutual
interactions, the problem of determining the contribution
of each component becomes critical. The many feedback
loops created by these interactions can lead to oscillatory
behavior. Examples of oscillations in biology include the
cell cycle, circadian rhythms, the electrical activity of
excitable cells, and predator-prey systems. While we
understand how negative feedback loops can cause
oscillations, when multiple feedback loops are present it
becomes difficult to identify the dominant mechanism(s), if
any. We address the problem of establishing the relative
contribution of a feedback process using a biological
oscillator model for which oscillations are controlled by
two types of slow negative feedback. To determine which
is the dominant process, we first use standard experimen-
tal methodologies: either passive observation to correlate
a variable’s behavior to system activity, or deletion of a
component to establish whether that component is critical
for the system. We find that these methods have limited
applicability to the determination of the dominant
process. We then develop a new quantitative measure of
the contribution of each process to the oscillations. This
computational method can be extended to a wide variety
of oscillatory systems.

Role of Feedback Processes in Oscillations
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much larger than ta. That is, s and h are slow processes. All

parameter values are given in Table 1. Equations were solved

numerically using the 4th order Runge Kutta method (dt = 0.05) in

XPPAUT [10]. The simulation code is freely available on RB’s

website http://www.math.fsu.edu/,bertram/software/neuron.

Results

To assess the contributions of slow divisive and subtractive

feedback to episode onset and termination we first test two

methods based on measurements and manipulations that can be

performed experimentally. We use a mean field model of rhythmic

activity in an excitatory neural network regulated by both synaptic

depression and cellular adaptation, defined by Eqs. 1–3, to

generate synthetic data. These data show the time courses of the

network activity, a, and the two negative feedback processes, s and

h (Figure 1AB). When we ask what is the contribution of a process

to the episodic activity, we ask two questions: what is its

contribution to episode initiation, and what is its contribution to

episode termination. To clarify the meaning of ‘‘contribution’’, we

see in Figure 1A or 1B that during an episode s decreases and h
increases. These effects decrease network excitability and eventu-

ally the activity cannot be sustained, so the high-activity episode

stops. But which effect is more important in terminating an

episode? Was it the decrease in s or the increase in h? Can we

quantify this notion? Similarly, during the silent phase both

processes recover (i.e., s increases and h decreases), until a new

episode is initiated. Again, can we quantify the effects on episode

initiation of the increase in s vs. the decrease in h?

Correlative approach: comparing the variations of the
feedback processes

The rationale for this first approach is that if a process varies

greatly during the high-activity episodes (active phases) and the

inter-episode intervals (silent phases), then it is likely that it

contributes significantly to episode termination and onset. On the

other hand, if the variations are small, it is likely that the

contribution of the process is small. This approach thus relies on

observing a relationship between the time course of a process and

the system’s behavior. Its pitfall, that correlation does not imply

causation, is well known.

Experimentally, one can record spontaneous or evoked

postsynaptic potentials or currents in target neurons [11,12,

13,14]. The variations of this postsynaptic response during the

interval of time between two episodes of activity would represent

the variations of the effective connectivity, or available synaptic

strength, w.s. Similarly, one may record the degree of adaptation

or the current responsible for this adaptation at various times

during the silent phase [11,14]. The variations of the current with

time would be equivalent to the variations of g.h. Here we assume

that there are only two slow feedback processes, represented by s

and h, which can be measured unequivocally and with sufficient

precision. This is an ideal situation that will not often be

encountered experimentally; we show that even with such ideal

conditions we may not be able to determine the contributions of

the two slow processes using the correlative approach.

If s varies by Ds and h by Dh over one phase of the oscillation,

then according to the correlative approach the ratio

R~wDs=gDh ð4Þ

measures the contribution of s relative to that of h. We have shown

previously [8] that if s and h vary exponentially with time constants

ts and th, then Ds/Dh < th/ts . Thus,

Figure 1. Illustration of the concept that the faster process
contributes more to rhythm generation. A. Time courses of
activity (a, black), the synaptic recovery variable (s, red), and the
adaptation variable (h, blue) for th/ts = 10. The range of variation of s
(Ds) is about 10 times larger than the range of variation of h (Dh). Thus,
according to the correlative measure s contributes more to the
rhythmicity. B. Similar time courses for th/ts = 0.1. The cellular
adaptation now appears to contribute more than the synaptic recovery
variable. C. Plot of the variations of C = (R21)/(R+1) with the th/ts ratio.
Closed circles obtained from simulations with h0 = 0; open circles for
h0 = 0.18. When h is much faster than s (th/ts is small), C is close to -1
indicating that h is the dominant process. When th < ts, C<0 indicating
that both processes have equal contribution to the rhythm. At large th/
ts, C approaches 1 and s is the dominant process. Points labeled A and B
refer to the cases illustrated in panels A and B. Dashed curve, variations
of c = (r21)/(r+1) with th/ts; r = (w/g)(th/ts) and w = g = 1. Results are
similar if we keep th/ts = 1 and vary w/g instead.
doi:10.1371/journal.pcbi.1001124.g001

Role of Feedback Processes in Oscillations
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R & r ~ w=gð Þ th=tsð Þ: ð5Þ

Assuming that w and g are similar – we set w and g to 1 unless

noted otherwise – the ratio of the contributions of the two

processes to the rhythmic activity is inversely proportional to the

ratio of their time constants, so the faster process contributes more

than the slower process. This is illustrated in Figure 1AB where we

plot the variations of a (network activity), s and h for the cases

r = th/ts = 0.1 (A) and r = th/ts = 10 (B). In the case shown in

Figure 1A, we expect s (red curve) to contribute more to episode

onset/termination because it is the faster process, while in the case

shown in Figure 1B h (blue curve) is faster and thus expected to

have the major contribution.

We define a quantitative measure of the contribution of the two

processes by

C ~ R{1ð Þ= Rz1ð Þ ð6Þ

(or, using the approximation given by Eq. 5, c = (r21)/(r+1)). C

varies between 21 and 1. If C is near 1 then s determines the

episode onset and termination (i.e., h has no role). If C<21 then h
controls episode onset and termination. Intermediate values of C

indicate that both processes contribute. This measure is plotted as

a function of r in Figure 1C, and clearly demonstrates the shift of

control (according to the correlative definition) from h to s as the s

dynamics are made progressively faster relative to h. The filled

circles result from simulations with the cell excitability parameter

h0 set to 0 (relatively high cell excitability). The open circles were

obtained using h0 = 0.18 (low cell excitability). The differences are

very small, showing that, according to this measure, the respective

contributions of the two processes depend very weakly on h0. The

dashed curve in Figure 1C is obtained by plotting c = (r21)/(r+1).

Since the points obtained from plotting C lie almost on this curve,

one concludes that, according to the correlative approach, the

contributions of the two slow processes depend only on the ratio r

= (w/g) (th/ts). Thus, the faster that one process is relative to the

other the greater its contribution will be to rhythm generation.

Similarly, the greater the relative weight of a process, the greater

its contribution. Finally, since each process covers the same range

during the active and silent phase, these results do not distinguish

between episode initiation and termination. That is, the correlative

approach predicts that the contribution of each process is the same

for episode initiation and termination.

Blocking approach: deleting one feedback process
The rationale for this second approach is that if a process is

important to a system’s behavior, then removing it will have a

large effect. This type of experiment is widely used in biology and

includes pharmacological block, surgical ablation, and gene

knockout. If, for example, h represents the activation of a

potassium current responsible for cellular adaptation, then one

could block this current pharmacologically or genetically and

measure the effect on network activity. We block the h process by

setting g = 0 and observe the effect on the length of both the active

and silent phases after transient effects have died down. If we see a

large increase in the active phase duration, then we conclude that

this process is important in terminating the active phase. Similarly,

if after the block we see a decrease in silent phase duration then we

conclude that recovery of this process is important for episode

initiation. The pitfall of this approach is that after blocking a

process we obtain a different system.

Figure 2 illustrates the results obtained with this approach, for

different values of the parameter h0. Figure 2A shows the time

course of network activity before and after blocking h in the case

th = ts. When cell excitability is too high (e.g., h0 = 0.06), synaptic

depression alone cannot bring the network to a low activity state

and rhythmicity is lost after the block. For lower cell excitability

(higher h0, middle and right columns), blocking h leads to changes

in the lengths of both the active and silent phases, to various

degrees. These changes in active and silent phase durations (AP

and SP), after transient effects have died out, are represented on

Figure 2B for different values of the ratio th/ts. Can we infer the

importance of h variations on rhythm generation from these

changes?

We first note that for low h0 rhythmic activity is lost after

blocking h, for all values of the ratio th/ts. Thus, variations in h
are required for rhythm generation in these cases. In the other

cases shown, blocking h has large effects on the active and silent

phase durations, but these effects are difficult to interpret. For

instance, we expect the block to increase the active phase in

proportion to h’s contribution to episode termination. Thus, it

seems that h contributes significantly to episode termination in

cases vi, viii and ix (where there is a large increase in AP after the

block), but does not contribute much to episode termination in

case iii (where there is no change in AP after the block). In cases ii

and v the active phase duration actually decreases after the block,

which is hard to interpret. Similarly, we expect the decrease in

silent phase duration following h block to be in accordance with h’s

contribution to episode initiation, since residual adaptation delays

episode onset. Thus, we would say that h contributes significantly

to episode onset in cases ii, iii, v, vi and viii. But again, we have an

unexpected case (ix) where SP increases after the block.

The blockade experiment illustrated in Figure 2 suggests that

there are more cases where h has a significant contribution on

episode initiation (ii, iii, v, vi, viii) than on episode termination (vi,

viii, ix). This is in contradiction with the correlative approach,

which suggested that h had a similar contribution to both episode

termination and initiation. There are also cases, such as vi and viii,

where the effects of the block are similar, suggesting that h’s

contribution to episodic behavior is similar in those cases. But

cases vi and viii correspond to different values of the ratio th/ts.

According to the correlative approach, the contribution of each

process should vary with th/ts (Figure 1C), so again the blockage

approach and correlative approach disagree. Finally, on each row

of Figure 2B the effect of the blockage varies with the value of the

parameter h0. This again contradicts the correlative analysis,

which showed little dependence on h0.

The strong perturbation to the system effected by the block is

responsible for the counterintuitive decrease in AP observed in

cases ii, v and increase in SP observed for case ix. These changes

reflect system compensation; after the block and after transients

have died out, the unblocked process, s, covers a different range of

values, so AP and SP are modified. This compensation could be

avoided by measuring AP and SP just after the block instead of

letting it equilibrate. This is illustrated in Figure 2Aii, where the

block initially increases AP, then decreases it as SP is decreased by

the absence of h. Interpretation of the block experiment would

therefore be facilitated by considering only transient behavior, but

this would be difficult to do experimentally in most cases. For

instance if we block a K+ channel pharmacologically then the

kinetics of drug application and binding to the channels will

interfere with the transient effects.

In summary, we find that the correlative and blockage

approaches suggest different interpretations about the contribu-

tions of the negative feedback processes to rhythm generation. In

Role of Feedback Processes in Oscillations
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the following, we show that neither approach gives a satisfactory

description of the contributions of the slow processes. This is

because each approach suffers its own pitfall. The first approach is

purely correlative, i.e., it links variations in one process to the

behavior of the system, but cannot establish causation. To obtain

causation it is necessary to determine how the system responds to a

perturbation to one of these processes, as in the blocking

approach. Unfortunately, by perturbing the system, we change

it. The loss of periodic activity after blocking h (as in cases i, iv, vii

in Figure 2) shows that this process may be necessary for

maintaining rhythmic activity, but it does not indicate what was

the contribution of h before the block.

A new measure of the relative contributions of the
negative feedback processes

The goal here is to derive a measure that allows one to draw a

causal link between each slow process and the activity pattern that

does not involve a strong perturbation to the system. Suppose that

s is the only negative feedback process regulating episodic activity,

so it contributes 100% to both episode termination and initiation.

Then doubling ts will (approximately) double both AP and SP. If s

is not the only negative feedback process and therefore has only a

partial contribution to episode termination and initiation, then

doubling ts will still increase AP and SP but by a smaller factor.

Thus, the contribution of s to the episodic activity can be

Figure 2. Illustration of the blockade approach. A. time course of network activity before (‘‘control,’’ g = 1) and after (‘‘h block,’’ g = 0) blocking
the adaptation process h. These simulations were obtained for th/ts = 1 and for the three values of h0 indicated. Vertical dashed line indicates the time
when the process was blocked. B. Effects of blocking h on the lengths of the active and silent phases (AP, SP), represented as percentage of ‘‘control’’.
No bars are shown when rhythmic activity was abolished. There are more cases where h block results in decrease of SP duration (ii, iii, v, vi, viii) than
increase in AP duration (vi, viii, ix). The interpretation is that h contributes more to delay episode onset than to provoke episode termination. The
results of the blockade experiment depend on the value of h0, the activity threshold in the absence of adaptation, unlike the predictions from the
correlative approach (Figure 1C). The blockade experiments also produces similar results in pairs of cases (iii, v) and (vi, viii) that have different th/ts

ratio; this is also in opposition to the correlative approach.
doi:10.1371/journal.pcbi.1001124.g002

Role of Feedback Processes in Oscillations
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determined by the fractional change in AP and SP durations

following a change in ts. To illustrate this idea, we plot both AP

and SP durations as either ts or th is varied in Figure 3A.

Figure 3Ai shows that AP varies more with ts than does SP. This

suggests that s has more influence on episode termination than on

episode initiation. The variations of AP and SP with th

(Figure 3Aii) show the opposite trend, suggesting that h has more

influence on episode initiation than on episode termination. These

trends are also illustrated by the variations of the duty cycle ( =

AP/(AP+SP)) with ts and th (Figure 3B). The duty cycle increases

with ts, but decreases with th. Finally, comparing Figures 3A i and

ii, we observe that the variations of AP with ts and th are similar,

suggesting that s and h have comparable contributions on episode

termination. On the other hand, SP varies more with th than with

ts, suggesting that h has a stronger influence on episode initiation

than does s. This example suggests that the contributions made by

the slow processes to the episodic activity can be determined by

varying the time constants of the processes and observing the

effects on AP and SP durations. We now use this idea to construct

a quantitative measure of these contributions.

We first construct a measure of the contribution of s to episode

termination, as illustrated in Figure 4. At the beginning of an

episode, ts is increased by dts. If s contributes to episode

termination, slowing down s increases AP by dAP. We can

quantify the contribution of s to episode termination by evaluating

the ratio of the relative change in AP, dAP/AP, divided by the

relative change in ts, dts/ts. We thus define the normalized

contribution of s to episode termination as

Cs
AP~ dAP=dtsð Þ ts=APð Þ: ð7Þ

If s has no influence on episode termination, slowing it down has

no effect and dAP = 0. If s is the only process contributing to

episode termination, then the active phase duration is the time it

takes for s to decrease from its value at the beginning of an episode

to its value at the transition between AP and SP. Since we consider

relaxation oscillations, the transition time between active and silent

states is negligible. Thus, a fractional change in ts leads to the same

fractional change in AP (dAP/AP = dts/ts) so that Cs
AP = 1.

Therefore, Cs
AP has a value between 0 (s does not contribute to

episode termination) and 1 (s is the only process contributing to

episode termination). We quantify the contribution of s to episode

initiation similarly using

Cs
SP~ dSP=dtsð Þ ts=SPð Þ: ð8Þ

We define the contributions of h to episode termination and

initiation in a similar way:

Ch
AP~ dAP=dthð Þ th=APð Þ ð9Þ

Ch
SP~ dSP=dthð Þ th=SPð Þ: ð10Þ

These measures have the same motivation as the blockage experiment,

but can be computed with small perturbations to the system. We use

dt/t= 4% so the perturbation is small but nevertheless has a

measurable effect. In addition, we look at the acute effect of the

perturbation, i.e., we do not wait until the system equilibrates.

Figure 3. Variations of the time constants ts and th have different effects on the activity pattern. A. Relative change in AP (red, diamonds)
and SP (blue, stars) as ts (i) or th (ii) is varied. For comparison, the linear change in both AP and SP when th and ts are varied together by the same
factor is shown (iii, ts & th). B. Variations of the duty cycle with ts (i), th (ii) and ts & th (iii).
doi:10.1371/journal.pcbi.1001124.g003

Role of Feedback Processes in Oscillations
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Figure 5A shows the contributions of s to episode termination

(Cs
AP) and initiation (Cs

SP) as the ratio th/ts is varied, determined

through numerical simulations as shown in Figure 4. Cs
AP increases

as this ratio is increased, that is, s contributes more to episode

termination as it becomes faster relative to h. When s is much slower

than h, Cs
AP is close to 0. For s much faster than h, Cs

AP is close to 1.

When s and h have similar speed Cs
AP is close to 0.5, suggesting that

the divisive and subtractive feedback processes contribute equally to

episode termination when their time constants are similar. This

relationship between the contribution of feedback processes to

episode termination and the ratio of their time constants is in

agreement with the prediction from the correlative approach

(Figure 1C). However, the contribution of s to the silent phase, Cs
SP,

varies differently with th/ts. Although it increases with th/ts, this

increase is so weak that Cs
SP is below 0.1 even if s is 10 times faster

than h. This consistently low Cs
SP suggests that regardless of the

relative time constants of the two negative feedback processes, s

never contributes significantly to episode onset, in sharp contrast

with the prediction from the correlative approach.

Figure 5B shows that the contributions of h to episode

termination (Ch
AP) and initiation (Ch

SP) vary in the opposite way

to Cs
AP and Cs

SP. If ts is much larger than th then s does not affect

AP while h strongly affects AP. As the ratio th/ts increases, the

contribution of s to episode termination increases while the

contribution of h decreases, in such a way that the sum of the

contributions of s and h stays around 1 (Cs
AP + Ch

AP < 1) as shown

in Figure 5C. The effect of h on SP is always strong, while the

effect of s is weak, regardless of th/ts. The sum of the contributions

of s and h to episode initiation also stays around 1 (Cs
SP +

Ch
SP<1). Thus s and h have complementary contributions to the

episodic activity and our measure is self-consistent. The relation-

ship Cs
xP + Ch

xP<1 is a consequence of the fact that s and h are

the only processes controlling AP and SP. That is, if we increase

both of their time constants by a factor k, then AP and SP both

increase by the same factor k (Figure 3Aiii). This can be written, in

the case of the active phase, as: AP(k ts, k th) = k AP(ts, th).

Application of Euler’s theorem for homogeneous functions yields:

ts
LAP

Lts

zth
LAP

Lth
~AP and, after dividing each side by AP, results

in Cs
AP + Ch

AP = 1.

Since we are dealing with only two slow processes, we can

combine the measures defined for s and h (Figures 5A and 5B) into

single measures by defining

CAP~ Cs
AP{Ch

AP

� �
= Cs

APzCh
AP

� �
ð11Þ

CSP~ Cs
SP{Ch

SP

� �
= Cs

SPzCh
SP

� �
: ð12Þ

With this definition, CAP and CSP vary between 21 to 1. A value

close to 21 signifies that h is the dominant process; a value close to

1 signifies that s is the dominant process; a value near 0 means that

s and h have similar contributions. These are plotted in Figure 5D

as a function of th/ts. We see that CAP rises from 21 to near 1 as

th/ts increases, indicating that h dominates the AP when it varies

more rapidly than s, and s dominates when it varies more rapidly

than h. This agrees with the result obtained with the correlative

approach (dashed curve, c = (r21)/(r+1)). In contrast, the SP is

controlled by h for the full range of th/ts; this was not predicted by

the correlative approach.

Conditions of applicability of the measure
The contribution measures defined above are meaningful only if

specific conditions are satisfied. The most important condition is

that each variable or process contributes to the same aspect of

system behavior. For instance we cannot compare the contribution

of a slow negative feedback process, such as our s or h, which

terminates an episode of activity, to the contribution of a fast

negative feedback variable that could be responsible for fast

cycling during the high activity phase. Second, the variables must

vary monotonically during each phase of the activity. If not, then

increasing their time constant may not increase the duration of a

phase in a predictable way and the sum of the contributions of the

variables to that phase may not equal 1.

We use a relaxation oscillator with a clear distinction between

active and silent phases. The measure can be applied to other types

of oscillations, as long as active and silent phases can be clearly

distinguished. In more complex cases, it may be necessary to divide

Figure 4. Construction of a measure of the contribution of s to episode termination. Increasing ts by dts at the beginning of an episode
slows down s slightly (thick red curve), so the active phase is lengthened by dAP (thick black curve).
doi:10.1371/journal.pcbi.1001124.g004
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a period of activity into more than two phases. More generally, the

method could be applied to non-oscillatory systems, for example to

determine the contribution that different variables make to return

the system to an equilibrium following a perturbation. Also, the

measure is not limited to two negative feedback processes. We have

chosen feedback processes of different types, subtractive and

divisive, because we find the problem of disentangling their relative

contributions to be quite challenging. This measure can be applied

with feedback processes of the same type, as long as they contribute

to the same behavior. We have used the method to compute the

respective contributions of two subtractive feedback processes to

burst generation and shown that the results can be used to predict

the occurrence of phase-independent resetting [15]. Finally, we use

a deterministic model. Noise would not qualitatively affect our

measure, as long as it does not affect the mechanisms for the

transitions between phases. If noise is part of the transition

mechanism [16] our method cannot be applied as it is, since noise

would also contribute to the transitions.

Since the measure requires a model of the system, the validity of

its results depends on the validity of the model. Models may

incorporate various degrees of realism, so it is important that the

measure be robust to model details. For instance, if we add a fast

variable to the relaxation oscillator model, so that fast oscillations

(spikes) are produced during each active phase, the two slow

negative feedback processes may still terminate episodes (bursts)

like in the relaxation case. Thus, the relative contributions of each

slow variable to burst onset and termination should not change

qualitatively. We have demonstrated such robustness with a model

of bursting in pancreatic islets [15].

The effect of network excitability on the contributions of
s and h

We now evaluate how the parameters that control network

excitability, w (network connectivity) and h0 (average cellular

threshold), affect the contributions of s and h to rhythm

generation. Variations of CAP and CSP with w are represented in

Figure 5. Variations of the contributions of s and h with th/ts. A. Contributions of s to episode termination (Cs
AP, red, diamonds) and initiation

(Cs
SP, blue, stars). B. Contributions of h to episode termination (Ch

AP, red, diamonds) and initiation (Ch
SP, blue, stars). C. Both sums Cs

AP + Ch
AP (red,

diamonds) and Cs
SP + Ch

SP (blue, stars) are close to 1, demonstrating the consistency of the measures. D. Combined measures CAP (red, diamonds) and
CSP (blue, stars), as defined in Eq 11–12, superimposed with the prediction from the correlative measure c (dashed curve, as in Figure 1C). CAP<21: h
controls the active phase; CAP<0: both h and s have equal contributions to setting the duration of the active phase; CAP<1: s controls the active
phase (and similarly for CSP and the silent phase). Variations of CAP show that the relative contribution of s to the termination of the active phase
increases with th/ts, in agreement with the correlative approach. On the other hand, CSP remains close to -1, showing that the subtractive process (h)
controls episode onset over the whole range.
doi:10.1371/journal.pcbi.1001124.g005
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Figure 6, for three different values of h0 (and for th/ts = 1). Clearly,

CAP increases with w, i.e., synaptic depression contributes more to

episode termination when network connectivity is high. However,

this is not true for episode initiation, as CSP is almost unaffected by

w. There is in fact a slight tendency for CSP to increase at the

lowest values of w, which is more visible if s is faster than h (not

shown). Changes in h0 do not affect either CAP or CSP

significantly. This is in agreement with the correlative approach,

but in contrast to the results of the blockade experiment (Figure 2).

In summary, the ratio th/ts and connectivity w – but not h0 –

strongly affect CAP, while none of these have a significant effect on

CSP. In general, both feedback processes s and h play roles in the

episode termination, but only h controls episode initiation. The

relative influence of s and h to episode termination varies with

parameter values. The correlative approach is roughly correct for

predicting the contributions of the two processes to episode

termination, but not to episode initiation. This approach makes a

direct comparison between the time scales of the two processes,

scaled by their relative strength (w and g), evaluating r = (w/g) (th/

ts). But this ratio is not the ratio of the contributions of the two

processes to episode initiation. In fact, we show below that the

weighted time scales cannot be compared directly but must be

rescaled, the correct ratio being

rrescaled~ w=gð Þ th=tsð Þak,

where the scaling factor ak is the activity level at the transitions

between active and silent phases. At episode termination, ak<1 so

the correlative approach is approximately right. However, at

episode onset ak<0, so rrescaled < 0, meaning that s does not

contribute significantly unless r .. 1. Looking back at Eq. 1, it is

evident that s generally has little effect when activity is low. Such a

simple fact was not revealed using the correlative and blockade

approaches, stressing again that these standard experimental

approaches are not always useful for determining the contributions

of different variables to rhythmic activity.

Effects of g and problems of the blockade experiment
The analysis above suggests that the correlative approach can

reasonably estimate the contribution of each process to episode

termination, but misses the fact that s contributes little to episode

onset (Figure 5D). Results from both the blockade simulations

and the analysis above suggest that h is more important for

episode initiation than episode termination. However, we have

seen that the blockade approach does not typically provide a

good indication of the contribution of h to the AP and SP

durations (Figure 2B). To further demonstrate this, we plot in

Figure 7 the variations of CAP and CSP with g (curves), the

maximal ‘‘conductance’’ of the adaptation process h, in four of

the cases illustrated in Figure 2B (v, vi, viii, ix). The values of both

CAP and CSP decrease as g is increased, indicating that the

influence of h in the control of the rhythm increases with g. As g

decreases towards 0, both CAP and CSP increase toward 1 since s

is the only slow process when g = 0. This is true for all four cases.

However, CSP only increases noticeably when g approaches 0,

illustrating again that the subtractive feedback process controls

the silent phase in most cases.

Comparing Figure 7A–B, we see that the CAP curve is similar in

both panels, as is the CSP curve. The bar plots show the effects of a

blockade simulation, where g = 1 before the blockade and g = 0

afterwards. In Figure 7A the blockade results in a 50% reduction

in the AP duration, while in Figure 7B there is a very large

increase in the AP duration following blockade. Yet, according to

the CAP curves the contribution of h to the AP duration is nearly

the same in both cases when g = 1 (green and yellow boxes).

Similarly, CSP is similar in panels C and D for g = 1, yet the

blockade results in decreased SP duration in C, but increased SP

duration in D. Thus, the effects of the blockade on AP and SD

durations do not provide much information on the respective

contributions of the two processes before the blockade.

Next, we compare cases shown in Figure 7B and 7C. We

notice that CAP differs between the two cases, showing that when

g = 1 the s variable contributes significantly to episode termina-

tion in one case (Figure 7B) but not the other (Figure 7C). Yet,

 

 

 

 

 

 

 

 

Figure 6. Variations of CAP and CSP with network connectivity
and cell excitability (for th/ts = 1, g = 1). CAP increases with
increased synaptic connectivity, as would be expected from the
correlative measure (Eq 4), with equal contributions from both
processes (CAP = 0) when (w/g) (th/ts) = 1. In contrast, CSP is always
close to -1, the subtractive feedback process sets the length of the
silent phase regardless of the value of w. Finally, both CAP and CSP are
unaffected by changes in h0, showing that cell excitability does not
influence which process controls episodic activity.
doi:10.1371/journal.pcbi.1001124.g006
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after blockade the changes in AP/SP (bar plots) are similar in

both cases. Again, results from the blockade approach do not

indicate what was the contribution of each process before the

blockade.

A geometric measure of the relative contributions of the
negative feedback processes

For the mathematically simple system used in this work, we can

use a geometrical argument to derive approximate formulas for

CSP and CAP. If the system is two-dimensional with one slow

process, s, the trajectory could be drawn in the a,s-phase plane and

would follow the a-nullcline (except for fast jumps at the transitions

between active and silent phase). For the three-dimensional system

presented here, the trajectory in the three-dimensional a,s,h-phase

space follows the surface defined by da/dt = 0 [8]. We can project

the three-dimensional trajectory and surface into the a,s-plane.

This results in a two-dimensional trajectory that follows a dynamic

a-nullcline (Figure 8A). The effect of the third variable (h) in this

two-dimensional representation is to move and deform the

dynamic a-nullcline (the thin, black S-shaped curve in Figure 8A).

Increasing h moves the nullcline rightward.

At the end of the active phase, the trajectory falls from the high-

to the low-activity state and the dynamic nullcline is at its rightmost

position (thick, discontinuous, grey S-shaped curve on the right of

the diagram). During the silent phase, s increases so the system’s

trajectory moves to the right while h decreases so the a-nullcline is

transformed leftward. When the trajectory passes the low knee (LK)

of the nullcline, the trajectory jumps to the upper branch. At this

point the nullcline has reached its leftmost position (the thick grey S-

shaped curve on the left), since h will now again begin to increase

and the a-nullcline will be transformed rightward.

To compare the contributions of s and h to the termination of

the silent phase, we can therefore compare the length traveled by

the trajectory (controlled by s) with the length traveled by the low

knee (controlled by h). Assuming that their speeds are nearly

uniform, we can compare the instantaneous variation of the

trajectory’s position ds to the instantaneous variation of the knee

dsk due to the variation of h, dh. We can show [8] that ds < dh (th/

ts) and that dsk < (g/w) (dh/ak) where ak is the activity level at the

knee (its value varies little with h). Thus, the ratio of the

contributions of s and h is

ds=dsk&(th=ts) w=gð Þak: ð13Þ

This formula applies to both active and silent phases, however the

activity level at the knee, ak, differs between the two phases. During

the silent phase, ak is close to 0 so ds/dsk is very small, i.e., s

generally contributes little to the termination of the silent phase.

On the other hand, during the active phase ak is close to 1, so ds/

dsk < (th/ts) (w/g). If (th/ts) (w/g) <1 then the two slow processes

contribute similarly to active phase termination. This shows that

the relative contributions of s and h are qualitatively different for

the different phases of activity. It also explains why the intuitive

approach illustrated in Figure 1 is correct for the active phase

(where ak<1), since from Eq. 5 and Eq. 13 r < ds/dsk. If (th/ts)

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7. The blockade experiment does not inform on the relative contributions of each process to rhythmic activity. Panels A, B, C,
D correspond to cases shown in panels v, vi, viii, ix in Figure 2. For each case, the change in AP and SP durations following h block is shown next to
the variations of CAP (red, diamonds) and CSP (blue, stars) with g (the maximum amplitude of cellular adaptation). Blocking h means changing g from
1 to 0. As g reaches 0, both CAP and CSP reach 1 since s becomes the only variable controlling episodic activity. In A and B, the contributions measures
are also the same before the block (g = 1, rectangle highlights), nevertheless the blockade leads to different changes in AP and SP durations. Thus,
these changes in durations after the block cannot be used to predict the respective contributions of each process before the block. Panels C and D
illustrate the same points, with similar contributions measures before the block (oval highlights) but different effects of the block on AP and SP
durations. Finally, panels B and C show that despite different contributions measures (oval vs. rectangle highlight) before the block, the resulting
effect of the block on AP and SP durations are the same. Again, results from the block do not provide much information about the respective
contributions of each process before the block.
doi:10.1371/journal.pcbi.1001124.g007
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(w/g) < 1, then r < 1 and the correlative approach predicts equal

contributions of the feedback variables (Figure 1C). On the other

hand, during the silent phase ak<0 so r is not a good

approximation to ds/dsk and the correlative approach is invalid.

To compute ds/dsk for both phases, we must compute ak (Eq.

13) for both knees of the dynamic a-nullcline shown Figure 8A.

For this we note that the nullcline is defined by da/dt = 0. Solving

for s, we obtain

s~
hzh0{kaln 1=a{1ð Þ

w a
: ð14Þ

For each value of h, the knees are defined by Ls=La~0 and

differentiating Eq. 14 gives:

1

1{a
zln

1

a
{1

� �
~

hzh0

ka

ð15Þ

which has two solutions ak, each corresponding to a knee, provided

the right hand side is greater than 2. The values of h at onset and

termination of the episodes, to be used in Eq 15, were obtained

from the durations of the active and silent phases obtained from

simulations [8]. Finally, when h0 is changed there is a similar but

opposite change in the range of variation of h, so h + h0 is not

Figure 8. Alternate estimation of the relative contributions of each process using phase plane analysis. A. Representation of the system
in the a,s-plane. The system trajectory is shown as a thick black curve with arrows at the transitions between activity phases. The trajectory follows
the dynamic nullcline (thin black S-shaped curve) which moves left during the silent phase and reaches the thick gray nullcline on the left at episode
onset. At onset, the trajectory reaches the low knee (s(t) = sk(t)). During the active phase, the dynamic nullcline moves to the right toward the thick
gray nullcline on the right. It reaches it at episode termination, as the trajectory reaches the high knee. Note that the lower portion of the nullcline is
much more sensitive to h than the higher portion. LK, low knee; HK, high knee of the a-nullcline. B. Variations of CAP and CSP (calculated using the
phase plane approximation illustrated in A) with w (for th/ts = 1 and h0 = 0). There is good agreement with the computational method based on small
perturbations in the time constants (compare with Figure 6B). C. For large values of h0, such that high activity episodes require that h be close to 0,
the computational calculation of the relative contributions (left panel) and the phase plane estimation (right panel) can disagree. In the case shown,
th/ts = 0.1 (w = g = 1), so the phase plane method estimates that h should control both active and silent phase (right panel). The disagreement with
the computed CAP and CSP (left panel) is a result of the geometric argument used to estimate the contributions neglecting the fact that the speed of
variation of s and h can slow down dramatically when approaching their asymptotic values (see text).
doi:10.1371/journal.pcbi.1001124.g008
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affected much by a change in h0. Thus the solutions of Eq. 15 are

not very sensitive to h0. This explains why the relative

contributions of s and h are little affected by h0, as seen in Figure 6.

Since we identify ds/dsk to the ratio of the contribution of the two

slow variables for each phase, Cs
xP/Ch

xP, the combined measures

CxP defined in Eq 11–12 correspond to the ratios (ds/dsk 2 1)/

(ds/dsk + 1). These ratios are computed for both active and silent

phases as a function of w and shown on Figure 8B. Comparison with

Figure 6 (middle panel) shows that this geometric measure of the

contributions of the slow processes is in good agreement with the

empirical measure constructed above using sensitivities to the slow

variables’ time constants.

Finally, we point out that there are rare situations when the two

measures (Eqs. 7–12 vs. Eq. 13) do not give similar results. Such a

case is shown in Figure 8C, for which the parameter h0 is large

(average cell excitability is low) and ts is 10 times greater than th.

Because h0 is large, even when h decreases to its minimum during

the silent phase, s may not be sufficiently large for an episode to

start, particularly if the connectivity is low. In that case, an episode

is not started until s reaches the value corresponding to the low

knee. Even if this is a small distance, it can take a long time since s

is so slow. Thus, changing ts can have a strong effect on the silent

phase and CSP determined from Eq. 12 becomes positive

(Figure 8C, left panel) instead of close to -1 as computed using

Eq. 13 (Figure 8C, right panel). In other words, using a measure

based on time indicates a strong contribution of s in that particular

situation, while a measure based on geometry indicates a marginal

contribution of s to episode initiation. This discrepancy between

the two measures appears because h does not vary uniformly. It

slows down considerably as it approaches its asymptotic value,

‘‘waiting’’ for s to reach the low knee. Thus the dynamics of s now

play a major role in terminating the silent phase. Note that h still

has a strong effect on the s dynamics during the silent phase (it

determines the location of the low knee of the a-nullcline in

Figure 8A), but h’s dynamics do not affect the silent phase duration

much, so the measure that relies on perturbing the time constants

finds it has little contribution.

Discussion

Biological systems are characterized by the interactions between

many components. Often, several processes contribute to regulate

the same behavior. The purpose of this work was to develop a

method for determining how two different negative feedback

processes contribute to the generation of relaxation oscillations in

biological systems such as excitatory neuronal networks. We gave a

precise meaning to the contribution of a given process to episodic

activity in an excitatory network regulated by two activity-

dependent negative feedback processes. Namely, a process

contributes significantly to the termination of a phase (active our

silent) of the activity if an acute change to its time constant at the

beginning of the phase significantly lengthens that phase. To

illustrate this concept we have used a mean field model of an

excitatory neuronal network in a relaxation oscillation regime,

regulated by two types of negative feedback, divisive (synaptic

depression) and subtractive (cellular adaptation). The measure

developed here shows that there is differential control of the two

phases by the two feedback processes. Both divisive and

subtractive feedback processes contribute similarly to episode

termination, as long as their time constants and strengths (i.e.,

associated conductance) are in the same range. In contrast, only

the subtractive feedback process contributes significantly to

episode initiation in most cases. This difference in the control of

the active and silent phases arises from the very nature of the

divisive feedback: acting as a multiplicative factor to the activity

level, its influence is much lower during the silent phase when

activity is low. Thus during the silent phase the dynamics of the

subtractive process play a larger role.

Experiments alone might not determine the relative
contributions of the slow processes

We have first attempted to use approaches inspired from

experimental methodology to determine the relative contributions

of the two feedback processes to rhythm generation. These

included comparison of the time course of each process (the

correlative approach) and blocking one of the processes.

The correlative approach simply compares the amount of

variation of each process, scaled by each process’ strength or

conductance. Since the two processes vary by the same amount

during the active and silent phase, this approach does not

distinguish between active and silent phase. According to this

approach, the relative contribution depends only on the ratio of

their time constants (th/ts) and on the ratio of their strength (w/g).

It predicts that if these two ratios are close to 1 then both feedback

processes contribute similarly to the rhythm. In the example

shown here this is a good approximation for the active phase.

However, for the silent phase, this intuitive rule fails, because an

additional scaling factor must be introduced to compare the

contributions of the two different negative feedback types. This

scaling factor is significantly different from unity for the silent

phase; it reflects the fact that the divisive feedback process, being a

multiplicative factor to the activity, has very little effect at low

activity (i.e., during the silent phase).

The blockade approach suggests that the subtractive process

might be more important in setting the silent phase duration, since

blocking this process affected the silent phase duration more often

than the active phase duration. In this way it provides a piece of

information that is missed by the correlative approach. However,

similar effects of the blockade on AP and SP durations were found

in cases where the ratio of time constants was different (and

different effects when that ratio was identical), contradicting the

correlative approach and, as shown in Figure 7, contradicting our

measure of the relative contributions of each process. Further-

more, unlike the correlative approach, the blockade experiment

suggests a strong effect of h0 (which biases the input/output

relationship of the system). In general, however, this parameter has

little effect on the contribution of each process (cf. Figure 6).

These disappointing results from the two experimental ap-

proaches are due to their well known pitfalls: passive observation

only establishes an association without proving a causal relation-

ship, while perturbations to the system, such as blockade

experiments, can qualitatively change the system being studied.

The use of total blockade may be considered extreme. A partial

block can potentially be more informative than a complete block

because a small enough perturbation may indicate a trend in a

component’s influence and preclude switching the system to a

different mode of operation (see e.g., [17,18,19]). In other words, if

the perturbation is small enough the effect on the activity may be

close to linear so the effect of the partial block can be quantified

and provide information on the role of the process that is partially

blocked. However, partial blockade cannot provide a quantitative

measure with the properties (summation to 1) of the C values

developed here.

Our approach, instead, is to use small perturbations to the time

constants of the feedback processes and look at the effect

immediately following the perturbations. This minimizes the

perturbation to the system, while quantifying the relative

contribution of the two slow processes to the rhythmic behavior.
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This method could be applied to many oscillatory systems that rely

on the interplay between positive feedback and several negative

feedback processes. However, for most known experimental

conditions, this method seems impossible to implement. To apply

the method requires 1) the ability to change the time constants of

the variables of interest one by one, 2) these changes must remain

small but have measurable effects and 3) the system’s behavior

immediately after the changes must be measured, without waiting

for transients to die out. For example, in the context of a neural

network, there is currently no technique available to change the

time constant of synaptic depression by a small amount, quickly

and without affecting other network parameters. Thus, in many

cases, the question of determining the contributions of different

negative feedback processes in rhythm generation (using our

approach) may only be addressed with computational models.

One example in which our approach could be used in an

experimental setting is the electrical oscillatory activity of single

cells. The mathematical formalism used to describe the mean

activity of an excitatory network is similar to the Hodgkin-Huxley

formalism commonly used to describe the electrical activity of

excitable cells [8,20,21,22]. In excitable cells, the sodium or

calcium channels generate voltage-dependent inward current,

providing fast positive feedback that increases membrane

potential, while the delayed activation of outward potassium

currents and inactivation of the inward currents provide negative

feedback. An outward current has an opposite influence to the

excitatory inward current and therefore provides subtractive

feedback; on the other hand the inactivation of an inward current

is a multiplicative term reducing the amount of positive feedback

and therefore is a divisive feedback process. Preliminary results

with the Hodgkin-Huxley model of nerve excitability [20] in a

repetitive spiking mode suggest that while both sodium current

inactivation and potassium (K+) current activation contribute to

terminating an action potential, it is mostly the de-activation of the

K+ current that initiates the next spike (J. Tabak, unpublished

results). This could be verified experimentally for electrically

compact cells using the dynamic clamp technique, which allows

one to introduce a model-generated ionic current into a cell

[23,24]. For example, one could pharmacologically block the Na+

current, then re-introduce it into the cell using the dynamic clamp.

Because the added current is computed from a model, it would be

possible to change its inactivation time constant by a desired

amount and measure the effect of this perturbation on the

duration of the spike or interspike interval. To our knowledge, a

similar experiment has been done only once, to show that

increasing the inactivation time constant of a low-voltage-activated

calcium current would result in longer bursts in invertebrate

neurons [25]. While both divisive and subtractive feedback can in

principle terminate bursts in neurons [26] it is usually the latter

that is considered to regulate bursting, in the form of slow,

calcium-activated K+ currents. The experiment described in [25]

provided strong support for a role of low-voltage-activated calcium

current inactivation (divisive feedback) in burst termination.

Other analysis techniques
Modeling is being established as an essential tool for

understanding complex biological systems [27], complementing

experimental approaches. But more than mere simulations of

systems of differential equations, which are akin to experiments, it

is the qualitative analysis of the models that provides new insights

into a system’s dynamics. Qualitative model analysis techniques

include phase plane and bifurcation analysis, but these techniques

become more difficult to apply as the number of variables

increases. The commonly used fast-slow analysis, which simplifies

model analysis by formally separating the equations into fast and

slow subsystems, may have limited usefulness when many variables

operate on the same time scale.

An extension of fast-slow analysis that can deal with many

variables operating on the same time scale is the Dominant Scale

Method (DMS) [28]. This method follows one variable of interest

along an oscillatory trajectory (for instance, voltage in a cellular

oscillator model) and determines the sensitivity of this variable at

each point on its trajectory to other variables that are present in its

differential equation. During different epochs of time, only a few

variables may significantly affect the primary variable, so the

model can be reduced to a few variables during each epoch. Thus,

a complex model is transformed into a sequence of simpler models

using only the dominant variables, and qualitative analysis of the

dynamics is possible for each successive epoch [29]. The DMS can

evaluate the relative contributions of variables that have different

roles, unlike the measure presented here. However, our approach

uses the sensitivity of observable features of the system behavior

(AP and SP), not the sensitivity of a variable to other variables. For

this reason, one may use our approach to identify cases where a

variable has very little effect on the primary variable but

nevertheless controls the duration of a given phase of the activity

(as discussed in last section of Results).

Our approach to measure the contribution of feedback

processes to rhythmic behavior is to compute the sensitivity of

the AP and SP to the time constants for these processes. Other

techniques that use sensitivities of observables of a system to

control parameters are Metabolic Control Analysis and Biochem-

ical Systems Theory [30,31], which have been used to analyze

metabolic and gene regulatory networks. Important features of

these approaches include summation theorems, for instance the

sum of the sensitivities of the level of a metabolite to control

coefficients is equal to 1. A similar summation theorem holds in

our analysis, where the contributions of the two slow variables to

the AP or SP duration sum to 1. These techniques are usually

applied to the control of steady states, but they have also been used

to describe how observables such as the period and amplitude of

an oscillatory system are regulated by control parameters [32,33].

The control of these observables is usually distributed across

control parameters [33]. Here, we found that the control of the

active phase is distributed across the divisive and subtractive

feedback processes, but control of the silent phase is mostly

operated by the subtractive process, h. That is, h is the ‘‘rate

limiting factor’’ in the termination of the silent phase.

Finally we mention parameter search techniques, which are

usually developed to find parameter sets that lead to a target

behavior. These techniques can also be used to determine what

parameter changes must be done to qualitatively affect a system’s

activity and provide information about the robustness of such

activity [34]. Furthermore, by finding different parameter sets that

produce similar system behavior, it is possible to determine the

relationships between parameters that allow a behavior to be

maintained [35] or to evaluate how each model parameter

influence a given characteristic of the behavior using nonlinear

regression [36]. This ‘‘database approach’’ indirectly provides

information about the role played by some variables of the system

and how a variable can take over when another variable is

eliminated. It can be used to explore the behavior of a model in

different regions of parameter space [37]. An intriguing observa-

tion is that different parameter combinations in a wide area of

parameter space may produce similar oscillatory patterns [38]. If

two distinct parameter sets produce the same system behavior,

does this mean that a variable might have different roles in

different networks that produce similar activity? This question
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could be answered with a combination of the database approach

and the analysis technique developed here.

Conclusion
We have developed a computational method to quantify the

relative contributions of feedback processes to active and silent

phases of episodic activity. We have considered a case involving

both subtractive and divisive processes. If both processes have

similar strength and time scales, they contribute equally to

terminate the active phase. This is consistent with our intuition

and predicted by the correlative approach. Interestingly, it is the

recovery from the subtractive process that sets the duration of the

silent phase. This is because the divisive feedback is a

multiplicative factor to the system’s activity and therefore plays

little role during the silent phase. Thus, different phases of the

activity are controlled differently by the negative feedback

processes. Experimental methodologies do not in general provide

this type of information, so the determination of the relative

contributions of different variables to a biological system’s activity

will usually require the development of a computational model.

The method presented here can be applied to a wide array of

oscillatory systems.
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