
Invasive Computing in HPC with X10

Hans-Joachim Bungartz, Christoph Riesinger,
Martin Schreiber

Technische Universität München
{bungartz,riesinge,schreibm}@in.tum.de

Gregor Snelting, Andreas Zwinkau
Karlsruhe Institute of Technology

{snelting,zwinkau}@kit.edu

Abstract
High performance computing with thousands of cores relies on dis-
tributed memory due to memory consistency reasons. The resource
management on such systems usually relies on static assignment of
resources at the start of each application. Such a static scheduling
is incapable of starting applications with required resources being
used by others since a reduction of resources assigned to applica-
tions without stopping them is not possible. This lack of dynamic
adaptive scheduling leads to idling resources until the remaining
amount of requested resources gets available. Additionally, appli-
cations with changing resource requirements lead to idling or less
efficiently used resources. The invasive computing paradigm sug-
gests dynamic resource scheduling and applications able to dynam-
ically adapt to changing resource requirements.

As a case study, we developed an invasive resource manager as
well as a multigrid with dynamically changing resource demands.
Such a multigrid has changing scalability behavior during its ex-
ecution and requires data migration upon reallocation due to dis-
tributed memory systems.

To counteract the additional complexity introduced by the addi-
tional interfaces, e. g. for data migration, we use the X10 program-
ming language for improved programmability. Our results show
improved application throughput and the dynamic adaptivity. In ad-
dition, we show our extension for the distributed arrays of X10 to
support data migration.

Categories and Subject Descriptors D.1.3 [Software]: Program-
ming Techniques—Concurrent Programming; D.3.3 [Software]:
Language Constructs and Features—Patterns; D.4.1 [Software]:
Process Management—Threads

Keywords Invasive Computing, Resource-aware Programming,
X10 Programming Language, Multigrid, HPC

1. Introduction
Following the current trend of parallelization, the aspect of effi-
ciency is gaining attention in high-performance computing (HPC).
Optimizing for computational efficiency was so far achieved in sev-
eral ways: Overcoming low instruction throughput due to evalua-
tion of only a single instruction with single data (SISD) was e.g.
achieved by pipelining [11]. Since many applications demand for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
X10’13, June 20, 2013, Seattle, Washington.
Copyright c© 2013 ACM 978-1-4503-2157-0/13/06. . . $10.00

linear algebra operations, single instruction multiple data (SIMD)
extensions were also introduced to personal computers [15]. Due
to limitations for increasing the core frequency, single CPUs are
nowadays built with multiple cores overcoming the limitations by
increasing the parallelism of the cores [3]. Current generations of
HPC workstations as well as accelerator cards [7] are limited to
core numbers far below one hundred, because there is no hardware
support for cache- and memory-coherency among such a high num-
ber of cores. For HPC platforms, the way out of this paralleliza-
tion issue is given by distributed memory systems and application
developers being responsible for data exchange and synchroniza-
tion among those distributed memory nodes. This demands for ap-
plications with high scalability especially on distributed memory
systems. Among others, Amdahl’s law [1] envisions that close-to-
linear scalability cannot be guaranteed in general for HPC.

We consider strong-scaling by fixing the workload to a particu-
lar size while increasing the number of cores. This automatically
leads to a decreased efficiency with a growing number of cores
since an increase of cores leads to a smaller workload assigned to
each core and thus additional time for synchronization relative to
the overall computation time.

Above all, dynamical adaptive algorithms and their changing
workload during the computation [18] have changing scalability
behavior during run-time which we further refer to as different
phases. Another one of the worst scalability issues is given by IO-
bound phases, which is e. g. necessary for the simulation setup, for
writing snapshots or output data to the file system. This leads to
situations of reduced overall efficiency due to applications running
on statically assigned resources without using them all.

1.1 Dynamic Behavior
The scalability issues presented above are related to different
phases of an application. This can be improved with a dynamic
(changing over time) approach including multiple applications and
introduction of a resource manager. For example, a numeric appli-
cation on a compute cluster could share its nodes with other ap-
plications during the initialization phase and allocate more nodes
during the actual computation phase. Such an approach requires
the other applications to be able to react to external resource re-
quests. Vice versa, the numeric application itself must also be able
to adopt to external resource requests. We call such applications
resource-aware.

We propose applications providing hard constraints and soft
hints to a resource manager, aiming for dynamic optimization of
the overall system. With applications which have changing resource
needs, like the common multigrid approach, the idle resources
can be given to another application. In a system of such altruistic
applications, the overall throughput should improve, although there
might be downside for some of the applications.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.2 Contributions
In summary, our contributions in this paper are:

• a framework for resource-aware programming in X10, which
supports adaptation at application-specific points

• a resource-aware multigrid algorithm providing the necessary
constraints and hints for invasive computing

• an evaluation how dynamic behavior is exploited to improve
throughput in a scenario with multiple applications

1.3 Outline
The remaining sections are structured in the following way. First,
we give an introduction to the invasive computing paradigm in
section 2 which we employ to handle the dynamic behavior. Then
section 3 presents our X10 invasive framework. Our application
with a dynamic behavior is a multigrid and is presented in section 4.
Finally, our results in section 5 show the observation of the different
phases of the application, necessary extensions to the X10 API for
invasive computing as well as an improved application throughput.

2. Invasive Computing Paradigm
The dynamic behavior has to be expressed in some way as well
as considered by applications. In this work, we employ the inva-
sive computing paradigm [9, 20, 22]. This paradigm suggests a
resource-aware programming model, where the program can dy-
namically adapt to the available resources, e.g., processing ele-
ments (PEs), memory and network connections. The request of
such resources is further denoted as invade. Such an invasion of
resources can be specified by constraints. This allows for exam-
ple to request a certain number of resources or to target specific
hardware. After the invasion is finished, the program infects the in-
vaded resources, e. g. by using them for a certain computation. If
the resources are not needed anymore, the program retreats from
the resources.

In this work, we aim for improved efficiency through invasive
computing. First, dynamic reallocation aims to improve the overall
resource use compared to static resource allocation. Resources are
shifted between or within applications with respect to the global
state. Second, exposing resources more directly to the applications,
instead of virtualizing them, removes overhead. For example, CPU
cores are assigned to single applications, instead of multiplexing
them which would lead to a sharing of lower cache levels and thus
a severe slowdown for applications frequently accessing memory.
Third, the invasion of the most suited hardware can improve effi-
ciency. For example, not all processing elements in a heterogeneous
system might support specific vector instructions. To exploit such
heterogeneity, the hardware must be exposed to the programmer.
Therefore, the invasive programming paradigm affects the applica-
tion, the programming language, the compiler as well as the run-
time system.

2.1 Demand on Applications
Invasive computing clearly leads to additional work for the pro-
grammer. In our case the application developers must extend their
applications in three ways.

• First, the application must state its constraints and give hints to
the resource manager.

• Second, resource adaptations must be supported by the applica-
tion. While it is possible to tell the resource manager that adap-
tations must not occur, the application also gives up its chance
to profit from other applications freeing resources.

• Third, the application must handle data migration, which re-
sults from resource adaptations. In shared memory systems as

well as distributed memory systems with remote memory ac-
cess, such resource adaptions typically lead to a changing lo-
cality of compute cores to associated memory locations. Since
data structures are application-specific, this usually cannot be
accomplished automatically.

2.2 Resource Manager
First proof-of-concept implementations of an invasive resource
manager were made. Depending on the environment, the imple-
mentation of the resource manager can be a centralized or dis-
tributed resource manager.

A centralized resource management for small SoCs and shared
memory systems can be used due to the limited numbers of re-
sources and thus limited search spaces for optimization. The iPMO
centralized resource manager presented in [2] offers decision mak-
ing for applications running on a shared memory platform. This
resource manager also accounts for particular phases of a fully-
adaptive simulation.

For larger systems a centralized resource manager structure is
expected to become a bottleneck and a distributed decision making
should be taken. The resource manager presented in [10] is one
example of such a distributed resource manager.

2.3 Data-locality and -migration
With dynamically changing assignments of cores to applications,
the data dependencies have to be considered for efficient computa-
tions. Therefore, the resource manager has to consider whether it
is worthwhile to change the resources due to data-migration over-
head. Also the application has to consider changing resources since
the application programmer has the best knowledge of expressing
the necessary data redistributions.

3. The X10 Invasive Framework
For distributed memory systems, communication among comput-
ing nodes was traditionally done using MPI. Several libraries and
language extensions were developed during the last two decades to
enhance the programmability (ease of coding) of such distributed
memory systems. Among others, Co-Array Fortran [13] extends
the Fortran language itself, Global Arrays [12] offer data access
and operations on distributed arrays and UPC [6] extends the C
language.

However, such approaches also inherit the baggage of the pro-
gramming language they build upon. In contrast, X10 [17] is a
language which brings modern features to the field of scientific
computing with parallelization considered from the very begin-
ning. This includes well-known advantages like type safety, a mod-
ule system, a partitioned global address space, generic program-
ming, and integrated concurrency. Additionally, X10 also includes
promising new features like dependent types and transactional
memory (via atomic and when). Since this feature combination
is not available with Fortran and C++, we decided to use X10 for
the development of our invasive framework and resource-aware
applications.

3.1 Hardware and Software Layers
Originally, the invasive framework is developed for a multi-
processor System on Chip, with custom hardware [16] and operat-
ing system [14]. An invasive application runs on the invasive run-
time support system (iRTSS), which includes an agent system [10]
for global resource management. Within the agent system, each
application is represented by one agent. If an application wants to
invade additional resources, its agent checks whether and how the
request can be fulfilled. In case of concurrent requests for the same
resource, the corresponding agents are responsible for finding a

Figure 1. Our invasive architecture: The X10 invasive framework
is responsible for the resource management. The applications are
responsible to consider changing resources and account for appro-
priate execution of kernels on changed claims. With the second ap-
plication requesting GPUs with appropriate constraints during the
invade, the GPUs are assigned to this application without interfer-
ing with it. The hardware layer represents invadable resources as-
signed exclusively to an application.

suitable solution. However, for our evaluation we used a prototype
version of the iRTSS, which is implemented in pure X10.

On the language level, we encapsulated the resource-aware fea-
tures in an X10 library. We chose X10 because it already provides
various features that make it suitable for programming invasive
architectures. For example, the partitioned global address space
(PGAS), which models a cluster network, fits quite naturally to a
tiled cache-incoherent many-core architecture. The employed X10
concept is a place, such that each tile maps to a place. Essentially,
activities within the same place have shared memory, whereas ac-
tivities in different places must communicate with other means.

Programming with incoherent caches is challenging. One pro-
gramming model is the partitioning of available memory, assigning
a part of it to each tile. This PGAS model is mapped to X10 by
representing each tile as a place. The exchange of information be-
tween tiles only happens on at expressions, so the runtime system
can ensure a correct sequence of cache flushing and synchroniza-
tion. Partitioning the address space inhibits sharing a memory cell
between multiple tiles, although the architecture would allow this.
However, it is possible [4] to take advantage of multiple readers to
alleviate the costs of copying data between partitions.

A prototype variant of the framework is implemented in pure
X10 which we use in this work for early evaluation as it can be ex-
ecuted on common HPC many-core and cluster systems. An exem-
plary sketch of an invasive architecture for HPC systems is given
in Figure 1. In contrast to standard X10, places of an application
can be created and destroyed conceptually depending on the re-
source allocations. This means that some features from the stan-
dard library must be removed, e. g. the list of all places. Destroying
a place means all data there is lost and migrating an activity there
would fail. The full safety implications for the programmer have
yet to be investigated. In our prototype, places are merely reserved
and no failure checks are performed.

3.2 Invade, Infect, Retreat & Claims
The simplest invasive program is shown in Figure 2. The concept
of allocating, using and freeing resources is known from memory
allocation. Invasive computing generalizes the concept to invade,
infect and retreat under specific constraints. So far the framework
supports the following reusable resources:

val ilet← (id:IncarnationID) => {
do_something(id);

};
claim← Claim.invade(constraints)
claim.infect(ilet)
claim.retreat()

Figure 2. The basic idea of invasive programming: The ilet func-
tion provides an action to perform in parallel on all allocated pro-
cessing elements; Invade allocates resources under specific con-
straints in competition with other applications; Infect uses those
resources by letting iLets (basically compute kernels) run; Retreat
frees allocated resources.

Constraint

MultipleConstraints

AND
OR

PredicateConstraints

FPUAvailable
LocalMemory

Type
LatencyToMaster

LatencyToMemory

ThisPlace
SetConstraints

PEQuantity

PartitionConstraints

PlaceCoherent
LatencyWithinTeam

TileSharing

Hint

ScalabilityCurve
AppClass

PotentiallyFewerPEs
PotentiallyMorePEs

Figure 3. Constraint-hierarchy for invasion: The boxes represent
abstract base classes. An arrow represents inheritance in classic
object-oriented fashion.

Processing element (PE) which basically maps to a core. We as-
sume exclusive rights to compute on a core, which means the
operating system must restrict the respective activities to this
core and not schedule other applications onto this core.

Place-local memory partitioning the physical memory of a shared
memory domain for all the applications running there.

Inter-place network connections Applications can invade net-
work connections to a certain extend, such that the network
guarantees bandwidth or latencies.

Constraints for invasion are structured in a tree-like structure with
constraints stored on each node. Each constraint type is imple-
mented by a different class, which form a hierachy as shown in Fig-
ure 3. The most used constraint in practice is PEQuantity, which
specifies number of PEs necessary to start and/or continue the com-
putation. The class of predicate constraints is relatively simple, as
they place a constraint on the requested PEs, like specific instruc-
tion set extensions. Partition constraints are complex in compari-
son, as they specify requirements for the whole set of the requested
resources. For example, place coherence means all PEs share a
memory domain. Effectively, they must be in the same place. The
constraint hierarchy also includes AND and OR combinators to

claim.infect(ilet)
// optimize resource allocation:
val changed1← claim.reinvade()
claim.infect(ilet)
// respecify resource needs
val changed2← claim.reinvade(otherConstraints)

Figure 4. Resource-aware programming: The reinvade method
without arguments gives the resource manager the opportunity to
adapt resource allocation to a changed situation. This should be
done, whenever an application has a global synchronization point
to yield a maximum of flexibility. The reinvade method with new
constraints arguments also allows to reallocate resources, but addi-
tionally the application provides a new specification. This should
be done whenever an application knows that resource requirements
changed.

construct complex constraints. This allows the programmer to pro-
vide multiple implementations for different types of processing el-
ements. For example, the programmer might provide special code
to exploit the vector instructions in addition to a slower fallback
variant. At last there are hint constraints to specify non-functional
aspects. For example, scalability curves contain information about
the scalability of an application.

3.3 Resource Adaptation
The reinvade method is presented in Figure 4, which is one of
the major mechanisms for resource-aware programming [2]. While
there are more, we concentrate on the mechanism required to re-
produce the results presented in this work.

Semantically, the reinvade method is equivalent to retreat fol-
lowed by invade. However for the underlying resource manager,
reinvade can be implemented more efficiently. Most of the time,
a prepared resource adaption is performed and the application can
continue without inter-application interaction.

While such a resource adaptation is not expected to speed up an
algorithm, the goal is to speed up the system as a whole. For exam-
ple, Speck et al.[19] implemented a sorting algorithm, which builds
on invasive principles. While the management overhead seems to
be negligible, the application throughput and thus efficiency im-
proves on a loaded system, where common approaches rely on the
thread switching of the operation system. An important property
of the algorithm is that it is malleable, which means the amount
of parallelism can be changed without significant overhead at arbi-
trary points in time.

The hard part of resource management is to balance applications
against each other. If we have two equal applications, we could
simply give half the cores to each application[8]. However, applica-
tions usually are not equal. For example, one application might not
benefit from more than four cores, while the other one is embarrass-
ingly parallel. A straightforward resource assignment would give
four cores to the first application and the remaining cores to the sec-
ond application. However, the performance improvement of three
compared to four cores for the first application could be smaller
than using one more core for the second application. Effectively,
we could yield better overall performance, if we transfer one core
from the first to the second application. To give the resource man-
ager a chance to handle such cases, the applications must provide
hints like a scalability curve. This scalability curve has to be de-
termined either online or offline by the application developer. Such
a curve would be linear for the embarrassingly parallel application
and logarithmic for the first application, like you can see in Fig-
ure 5.

Figure 5. Scalability graphs of two applications and global
throughput: The x-axis shows the resource partitioning between
two applications. The y-axis the respective scalability of each ap-
plication and the whole system throughput. The system throughput
is directly proportional to the scalability value within our simpli-
fied model. Obviously, the global optimum is not optimal for each
application.

3.4 Data Migration
The application itself may require data redistribution for load bal-
ancing reasons. If the number of cores per domain is changed by
the resource manager, it can be beneficial to migrate data. As this is
an algorithm-specific decision, a generic resource manager cannot
perform this data migration.

With distributed arrays, X10 provides a convenient way of run-
ning computations on distributed data. While conventional dis-
tributed arrays are allocated and computations scheduled statically
across processing elements, the invasive approach requires addi-
tional flexibility. For example, the data distribution must comply
with the resource allocation, which is currently not available with
the standard libraries of X10. When the resources are adapted while
the program is running, the data must be redistributed accordingly.

Since the semantics of distributed data arrays are usually only
known to the application developer, also the decision to redistribute
them is part of the the application developer. For our implementa-
tion, such a request for a redistribution is currently triggered in case
of a modifications of the current claim.

4. Application
To offer a realistic dynamic application, we implemented a time-
dependent simulation of a laser engraving symbols on a metal plate.
First of all, this leads to dynamic workload due to changing injected
heat over time, e. g. with no heat during the first few time-steps.
Second, we also get a dynamic behavior during computation of
the solution of a single time-step due to the requirements of the
multigrid solver which we use for this application.

We continue with a short description of the mathematical for-
mulation of our problem as well as its discretization and refer to
[5] and [21] for detailed information on multigrid solvers.

The heat distribution over time in an isotropic material is given
by the following equation:

dT (x, y, t)

dt
= α∆T (x, y, t) + E(x, y, t), (x, y) ∈ Ω.

This equation describes the temperature distribution T , an external
energy input E on our domain Ω = [0; 1]2 our material is exposed
to by the laser, and the thermal diffusivity coefficient α. We set
the boundary conditions to 0 implementing homogeneous Dirichlet
boundary conditions T (x, y) = 0, (x, y) ∈ dΩ.

Basic variables:
N problem size
x solution
b right hand side
r residual
e approximated error

Multigrid:
Nr problem size for restricted level
rr restricted residual
er restricted approximated error

Claims:
nc new claim after reinvade
nc2 updated claim after V-cycle for lower levels

1 vcycle(N, x, b):
2 r← computeResidual(N, x, b)
3 while |r| > threshold:
4 vcycleIteration(N, x, b)
5 r← computeResidual(N, x, b)
6
7
8 vcycleIteration(N, x, b):
9 smoother(N, x, b) # pre−smooth

10 r← residual(N, x, b) # residual
11
12 nc← reinvade(N, claim) # reinvade claim
13
14 Nr← N/2 # restricted level
15 rr← restrict(N, r) # restrict residual to new claim
16 er← (Nr, 0) # setup error with 0 values
17
18 nc2← vcycleIteration(Nr, er, rr) # vcycle
19
20 # redistribute
21 if (nc 6= nc2):
22 nc← nc2
23 x.redistribute(Nr, nc)
24 b.redistribute(Nr, nc)
25
26 e← prolongate(Nr, er) # prolongate error
27 x← x + e # apply correction
28
29 smoother(N, x, b) # post−smooth
30
31 return nc # possibly modified claim

Figure 6. Invasive parallel multigrid in pseudo code

For spacial discretization we store the temperature values at
N×N grid-points for each discrete grid-point (i, j) to a 2D array.
The Laplace operator is discretized by the stencil approximating
the 2nd partial derivatives

∆ ≈ 1

h2

(
0 1 0
1 −4 1
0 1 0

)
with the mesh-width h. The stencil is applied by computing the
discrete convolution using this stencil as the convolution kernel.

For discretization of the time-stepping, we approximate the
temperature distribution with 1st order forward differences and use
an implicit update scheme

T (x, y, t+ ∆t)− T (x, y, t)

∆t
= ∆T (x, y, t+ ∆t) + E(x, y, t).

This leads to the system of linear equations A~x = ~b representing
the implicitly discretized heat-equation. The external energy is
handled by appropriate updates of~b. The approximated solution for
T (x, y, t) is then given in ~x after computation of an approximated
solution of this system of equations.

Since solving such a systems of linear equations by using di-
rect solvers —e. g. Gauss-elimination— would destroy the sparsity
pattern of the matrix, we employ an iterative solver to compute an
approximate solution.

The Jacobi-Solver is one of such iterative solvers which we
employed here to solve our system of equations: The matrix A is
formally decomposed into A = L + D + R with L the lower
diagonal components,D the diagonal components andR the upper
diagonal components. One solver-iteration is executed by

~x(i+1) = D−1(~b+ (D −A)~x(i))

with ~x(i) storing the approximated solution of ~x after the i-th
iteration.

With this iterative solver, we avoid storing the matrix A explic-
itly. We use the Euclidean norm on the residual ~r(i) = A · ~x(i) −~b
for the stopping criteria at the end of each V-cycle.

4.1 Geometric Multigrid Solver
Applying the iterative Jacobi solver for the heat equation directly
would lead to elimination of high frequencies in error only while
leaving low frequencies in error almost unchanged. Multigrid
solvers were developed to account for elimination of lower frequen-
cies by applying the solver on coarser grids as well. The scheme of
a multigrid V-cycle running on different resolutions of the original
problem is given in Figure 7. We use the error-correction scheme
restricting the residual instead of the solution as it is the case for
full-approximation scheme. This reduces our 2D problem size on
each level by a factor of 4 which accounts for our dynamic behav-
ior when solving for the next time-step. E. g., if we solve a heat
equation with a size of 128× 128, this leads to 7 levels for the up-
and down-cycle. Exemplary results computed with this algorithm
are given in Figure 8.

4.2 Parallelization
Three data arrays have to be stored for each multigrid level: The
approximated solution ~x of the current level, its right side~b and the
residual ~r which is prolonged to the finer level. We used the slicing
method for the domain decomposition distributing our domain to
computation units by splitting it along the 2nd array dimension.

For our implementation in X10, all data arrays are stored in
distributed arrays with appropriate invasive extensions discussed
in subsection 5.1.

Figure 7. Schematic overview of multigrid V-cycle. Each level has different scalability behavior which results in dynamic behavior.

4.3 Invasive Parallel Multigrid
The parallel invasive multigrid program with a V-cycle is given in
pseudo-code in Figure 6. Extensions for invasion are in line 12 and
lines 21-24.

Obviously, multigrid levels with a problem size below the num-
ber of cores available in the system would not lead to any benefits
from the cores unable to run computations on the level.

Running computations on levels with lower problem size, our
multigrid also requests fewer compute resources. Once the resource
manager redistributes this resources, two crucial aspects have to be
considered for distributed memory systems present on our target
platforms: data locality as well as data migration. While the respon-
sibility of data locality is given to the resource manager which is
described in the next section, the data migration has to be handled
by the application itself. In case of a redistribution of resources,
possible data migration has to be done to decrease the latency to
access data stored at other places.

5. Results
5.1 Invasive Interfaces and Extension of X10 APIs
The finely-grained resource management within the invasive frame-
work results in a dynamic heterogeneous environment. The amount
of parallelism within a place varies from place to place and over
time. Therefore we extended the distributed arrays in X10 to re-
spect these differences for the data distribution and to work on
the granularity of processing elements. A PEDist class inheriting
from x10.array.Dist was implemented. The information from the
resource manager must be considered when computing the PEDist.

Similarly, we needed to redistribute data, which is not supported
by the usual DistArray class. Specifically, a helpful extension for
distributed arrays would be a distarray.redistribute(dist) method,
which changes to Dist of distarray to dist, such that the data is
internally redistributed. This extension might also be interesting for
non-invasive applications, so including this into the standard library
of X10 should be worthwhile.

5.2 Programmability
Compared to other languages, the language features at of X10
lead to improved programmability. Among others, the flexibility of
the data distribution and its access transparency to the application
developer with the combination of distArrays, regions and at as
well as synchronization barriers which are handled automatically
across places after triggering an execution of a binary at another
place.

For invasive computing, the invade and infect methods using
lambda functions to express kernel routines provide a clear sep-
aration between claimed resources and actions executed on these

Figure 9. Two multigrid applications exchanging resources visual-
ized using the ViTE tool. X-axis is time and each line on the Y-axis
represents one processing element. The colors blue and green rep-
resent the ownership to the respective application. The red line is a
coordinating master application occupying one core.

Figure 10. Four multigrid applications, each one drawn with a
different color, with dynamic resource demands. Over a time span
of 500 seconds they use a varying amount of up to 38 PEs. In
between only 24 PEs are used, which means 37% of the cores idle.

resources. The processing resource is given as a parameter to the
lambda function. In combination with out extension to the dis-
tributed arrays of returning the region assigned to each processing
element, the corresponding regions of distributed arrays can be ef-
ficiently determined by each lambda function.

timestep 10 timestep 50 timestep 100 timestep 150

timestep 200 timestep 150 timestep 200 timestep 250

timestep 300 timestep 350 timestep 400 timestep 450

Figure 8. Simulation data for our multigrid method. The heat distribution of a metal plate during an engraving is simulated and visualized.
The laser is moving from left to right.

5.3 Resource Adaption
In our multigrid case, the resources cannot be adapted at arbitrary
program points. Adaptation is done, whenever the granularity is
changed as illustrated in Figure 7. The programmer is responsible
to provide an appropriate granularity of (re)invade use. A lower
utilization of invade leads to lack of adaptivity and idle time;
frequent invades lead to increased management overhead. While
the resource manager tries to minimize overhead, the optimization
is deferred to a background activity. However, there is no guarantee
how long (re)invade takes as mentioned in subsection 3.3.

An example, with two applications is given in Figure 9. Like-
wise with four applications in Figure 10 These measurements were
done on a shared memory system with a single place due to re-
strictions of the implementation. Therefore, no data migration was
performed.

Since resource adaptation might require data migration, addi-
tional overhead is burdened on the programmer. While convenience
methods offered by an invasive X10 API can simplify the task, the

application developer must explicitly support knowledge of redis-
tribution through constraints and callback mechanisms.

5.4 Higher Application Throughput
We evaluated our invasive application with our X10 invasive frame-
work. The multigrid application requests only as many resources as
there are array-columns available for our sliced domain decomposi-
tion (See subsection 4.2). Our benchmark was performed on a four-
socket shared memory system, each socket equipped with an In-
tel(R) Xeon(R) CPU E7 4850 running at 2.00GHz. Since each CPU
has 10 physical cores, this leads to 40 physical cores which were
managed by the resource manager. The benchmark was started all
multigrids at the same time. Our results are given in Figure 11 with
different number of applications executing and a single applica-
tion for our base line. Despite running the benchmark on a shared
memory system, we still do a data migration required for execu-
tion on several distributed memory nodes by copying all data from
the source array to the new array with respect to the new distri-
bution of the processing elements using an owner-compute access.
The results show an overall increased application throughput while

Figure 11. To exploit the dynamic behavior of an application for
increased throughput, there must be another application available to
use free resources. This plot show the relative application through-
put when the number of parallel applications increases. Compared
to a single application running alone, a second application can only
increase the throughput by 80%. A value of 100% would indicate,
that a single application is not scalable beyond 20 cores. With ten
parallel applications the throughput is nearly four times as high.

considering the different applications phases as presented in the
previous section.

6. Conclusions and Outlook
We demonstrated how the common multigrid HPC application can
be made resource aware. This enables a resource manager to exploit
the dynamic behavior and reallocate resources to optimize global
throughput. Our current resource manager is not that clever. For
example, it does not consider the cost of data migration or locality,
yet.

The use of X10 with its modern language features improves
programmability and counteracts the increased programmer burden
of Invasive Computing.

With energy efficiency becoming more important in HPC, we
aim to extend our invasive framework with energy aware features
to reduce power consumption for cores not invaded by an applica-
tion. We also plan to examine the class of malleable applications
in more detail. When resources can be adapted at all times, They
should be able to absorb all resources, which would otherwise idle.
Also, malleable applications can shrink at the request of other ap-
plications at arbitrary points. Hence, malleability provides a maxi-
mum of flexibility for the resource manager.

7. Acknowledgments
This work was supported by the German Research Foundation
(DFG) as part of the Transregional Collaborative Research Centre
“Invasive Computing” (SFB/TR 89).

References
[1] G. M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, AFIPS ’67 (Spring), pages
483–485, New York, NY, USA, 1967. ACM.

[2] M. Bader, H.-J. Bungartz, and M. Schreiber. Invasive computing on
high performance shared memory systems. In Facing the Multicore-
Challenge III, volume 7686 of Lecture Notes in Computer Science,
Sept. 2012.

[3] S. Borkar and A. A. Chien. The future of microprocessors. Commun.
ACM, 54:67–77, 2011.

[4] M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau. An X10 compiler
for invasive architectures. Technical Report 9, Karlsruhe Institute of
Technology, 2012.

[5] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid
Tutorial. Society for Industrial Mathematics, 2000.

[6] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren.
Introduction to UPC and Language Specification. 1999.

[7] J. Dokulil, E. Bajrovic, S. Benkner, S. Pllana, M. Sandrieser, and
B. Bachmayer. Efficient Hybrid Execution of C++ Applications using
Intel(R) Xeon Phi(TM) Coprocessor. CoRR, abs/1211.5530, 2012.

[8] M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Weiden-
dorfer. Invasive computing with iomp. In Specification and Design
Languages (FDL), pages 225 –231, Sept. 2012.

[9] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau. Resource-
aware programming and simulation of MPSoC architectures through
extension of X10. In Proceedings of the 14th International Workshop
on Software and Compilers for Embedded Systems (SCOPES), pages
48–55. ACM Press, June 2011.

[10] S. Kobbe, L. Bauer, J. Henkel, D. Lohman, and W. Schröder-
Preikschat. DistRM: Distributed resource management for on-chip
many-core systems. In Proceedings of the IEEE International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 119–128, Oct. 2011.

[11] K. Murakami, N. Irie, and S. Tomita. SIMP (Single Instruction
Stream/Multiple Instruction Pipelining): A Novel High-speed Single-
processor Architecture. SIGARCH Comput. Archit. News, 17(3):78–
85, Apr. 1989.

[12] J. Nieplocha, R. Harrison, and R. Littlefield. Global arrays: A nonuni-
form memory access programming model for high-performance com-
puters. The Journal of Supercomputing, 10:169–189, 1996.

[13] R. W. Numrich and J. Reid. Co-array fortran for parallel programming.
SIGPLAN Fortran Forum, 17(2):1–31, Aug. 1998.

[14] B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel,
D. Lohmann, and W. Schröder-Preikschat. OctoPOS: A parallel oper-
ating system for invasive computing. In R. McIlroy, J. Sventek, T. Har-
ris, and T. Roscoe, editors, Proceedings of the International Work-
shop on Systems for Future Multi-CoreArchitectures (SFMA), volume
USB Proceedings of Sixth International ACM/EuroSys European Con-
ference on Computer Systems (EuroSys), pages 9–14. EuroSys, Apr.
2011.

[15] A. Peleg and U. Weiser. MMX Technology Extension to the Intel
Architecture. Micro, IEEE, 16(4):42 –50, Aug. 1996.

[16] R. K. Pujari, T. Wild, A. Herkersdorf, B. Vogel, and J. Henkel. Hard-
ware assisted thread assignment for RISC based MPSoCs in invasive
computing. In Proceedings of the 13th International Symposium on
Integrated Circuits (ISIC), Dec. 2011.

[17] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. X10
Language Specification Version 2.3, Oct 2012.

[18] M. Schreiber, H.-J. Bungartz, and M. Bader. Shared memory paral-
lelization of fully-adaptive simulations using a dynamic tree-split and
-join approach. Puna, India, Dec. 2012. IEEE International Confer-
ence on High Performance Computing (HiPC), IEEE Xplore.

[19] J. Speck, P. Sanders, and P. Flick. Malleable sorting. In International
Symposium on Parallel and Distributed Processing. IEEE Computer
Society, May 2013.

[20] J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel,
W. Schröder-Preikschat, and G. Snelting. Invasive computing: An
overview. In M. Hübner and J. Becker, editors, Multiprocessor System-
on-Chip – Hardware Design and Tool Integration, pages 241–268.
Springer, Berlin, Heidelberg, 2011.

[21] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic
Press, 2001.

[22] A. Zwinkau. Resource awareness for efficiency in high-level program-
ming languages. Technical Report 12, Karlsruhe Institute of Technol-
ogy, 2012.

	Introduction
	Dynamic Behavior
	Contributions
	Outline

	Invasive Computing Paradigm
	Demand on Applications
	Resource Manager
	Data-locality and -migration

	The X10 Invasive Framework
	Hardware and Software Layers
	Invade, Infect, Retreat & Claims
	Resource Adaptation
	Data Migration

	Application
	Geometric Multigrid Solver
	Parallelization
	Invasive Parallel Multigrid

	Results
	Invasive Interfaces and Extension of X10 APIs
	Programmability
	Resource Adaption
	Higher Application Throughput

	Conclusions and Outlook
	Acknowledgments

