

Updating Database Schemas Without Breaking the UI:
Modeling Using Cognitive Semantic Categories

Evangelos Kapros, Simon McGinnes
School of Computer Science and Statistics
The University of Dublin, Trinity College

Dublin 2, Ireland
{evangelos.kapros, simon.mcginnes}@scss.tcd.ie

ABSTRACT
Data management user interfaces are ubiquitous in
information systems and web-based applications. From the
oldest spreadsheet to the most modern database, end users
and administrators alike have interacted with tabular data.
Usually, each concept is represented by a table and
columns. Change to the structure of each concept requires
structural change to the tables and columns, which is costly.
Tailor-made database and web applications may overcome
this obstacle by designing UIs on top of the data layer,
providing some degree of data independence. However,
changes in their schemas do not automatically propagate
into the user interface, and so their maintenance is
expensive.

In this paper we present a user interface that lets the end
user alter the schema without the need for programming
skills, eliminating the need for expensive software
maintenance. To this end we propose an automatically
generated user interface to include schema and data
management functions. We built and evaluated an Adaptive
Information System user interface (AIS UI), incorporating
schema evolution functionality. In usability testing, first-
time users were able to perform various data management
tasks equally fast or faster than users using Microsoft
Access, and on average ~43% faster than users using
Microsoft Excel. Task completion rates using the AIS
significantly exceeded those using Microsoft Access and
were comparable (>95%) with those using Microsoft Excel.

Author Keywords
Adaptive information systems; databases; spreadsheets.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces–Graphical user interfaces (GUI). H.2.m.
Database Management: Miscellaneous.

INTRODUCTION
Data management applications are a main production force
in office environments. Many SMEs, NGOs, and other
small organisations depend on so-called “productivity
applications” such as Microsoft Access databases or Google
Docs spreadsheets.

These organisations often lack the luxury of the “buy or
build” choice, since their resources may be too limited to
build bespoke data management solutions or to purchase
expensive enterprise software applications. Instead they use
spreadsheet (SPR) and database (DB) software to create
their own ad hoc data management systems.

However, relying on systems of this type can be
problematic. One reason for this is that the systems need to
be maintained and enhanced over time. For example,
change can occur due to disagreement over semantics (the
so called “Tower of Babel” problem), miscommunication,
and change in business needs.

In many cases the maintenance and enhancement of a
system requires amendment to its underlying data schema
(which may be either explicit, as in a relational database, or
implicit, as in a spreadsheet). Changing the schema of a
database or spreadsheet makes it necessary to re-write
queries or formulas and to re-design the user interface, to
reflect the changes in the schema. This can be costly, since
expert IT skills are required (typically from the IT
departments of these small organisations or external
contractors). However, IT departments and external vendors
are not always best-placed to understand user needs, and are
not necessarily trained in user-centered design methods, so
the results are not necessarily ideal.

In this paper, we propose that the end users themselves
should be able to adjust the schemas of their own data
management applications. To this end, we have defined an
adaptive data model for data management, by including
concepts (tables) and attributes (columns) in extended
“soft” schemas, so that end users can manage entities and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
EICS'14, June 17 - 20 2014, Rome, Italy
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2725-1/14/06…$15.00.
http://dx.doi.org/10.1145/2607023.2607027

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

relationships without breaking the UI. Operations on the
schema are performed using the familiar desktop metaphor.

We implemented this idea in an “Adaptive Information
System” UI (AIS UI), a web application that allows the
manipulation of arbitrary databases and database structures
using a desktop-like GUI. Our AIS UI is a tool for editing
and managing a database that allows the user to work
primarily with a graphical representation of the schema; in
this sense, it is important to note that the adaptivity in our
approach lies predominantly on the Information Systems
end of the system rather than just the UI. We evaluated our
approach by conducting a laboratory-based user study with
30 participants. Each participant used either our system,
database software (Microsoft Access), or spreadsheet
software (Microsoft Excel). We recorded the performance
time and the completion rate of the participants performing
a scenario of eight tasks, and we used a System Usability
Scale (SUS) questionnaire to evaluate the relative usability
of the three types of software.

RELATED WORK

Spreadsheets
Research has shown that most organisations rely on
spreadsheets for their data management [3, 12]. There are
several reasons for this, including a lack of usable end-user
systems. End users have been reported to “shun enterprise
solutions” [12] and 70% use spreadsheets frequently or
occasionally, most commonly for “sorting and database
facilities” [3].

However, spreadsheets are notoriously error-prone; because
they lack critical database management functionality,
serious issues of data integrity can arise. There are real risks
in the widespread dependence on spreadsheets [16]. In
response, research has looked at ways of achieving
database-like functionality in spreadsheets, such as the
management of relationships [1]. However, the underlying
issue of schema evolution in the spreadsheet context has
received little attention. Work on “semantic spreadsheets”
has improved modelling capabilities in spreadsheets, but
maintains the problematic distinction between the roles of
authoring and use [15, 10].

Relational Databases
Codd proposed the relational model as a way to translate
concepts into data structures. Although his original work
provided the theoretical tools for a versioning system of
tables and relationships [17], this system has not reached
production. One can imagine that Codd’s original grasp of
relational databases successfully addressed schema
evolution issues, however there is no implementation of his
original model; even Codd himself later abandoned the
idea.

Relational databases have offered little flexibility for end
users, who had to depend on professional database
administrators to deploy any change. Research in Schema

Evolution focuses on this very problem of adapting a
database schema to changes. This research field has shown
that changes in schemas represent a significant cost to
organizations. In [4] changes in the database schema are
reported to affect up to 70% of queries, which have to be
manually reconfigured. Some theoretical models to address
this problem have been constructed, but real systems
incorporating schema evolution functionality are hard to
find [5].

NoSQL Databases
NoSQL is an umbrella term for databases that reject some
or all of the constraints of the relational model. Such
databases include document databases and graph databases.
These technologies allow fast querying of large volumes of
data, and they can accommodate schema evolution more
smoothly than relational databases. However, the data in a
NoSQL database must be communicated to the end user via
a user interface. At present it is not clear how the schema
change would be accommodated by user interfaces in a
non-discontinuous manner and without the need for expert
IT skills.

User Interfaces for Data Management
User interfaces for relational databases typically use tabular
views for data, which may or may not be programmable.
The following convention is followed: data are viewed in
tabular form; relationships are displayed in a different
screen and might use lines to illustrate how tables are
linked; database administrators and end users have separate
views; end users can have custom-designed interfaces
which have to be amended once the tables or the
relationships change. A notable novel approach of querying
databases can be found at [24] and even though querying is
beyond the scope of this paper it is an approach worth
mentioning as it brings visual interface affordances to data
management.

Applications such as HyperCard and FileMaker have
facilitated metaphors similar to the desktop for data
management. However, they also suffer from the “Tower of
Babel” problem, as each application developer has to build
their own user interface, as views are not embedded in the
authoring environment.

Automatically-Generated Interfaces
Our goal is to allow end users to change the schema of an
application without having to reprogram its user interface.
This means that the interface must be re-generated in some
way. Work has been done on automatically-generated
interfaces exists and addresses various issues. For example,
some early theoretical work on interfaces which can be
adapted to various devices is ability-based [7]. Other work
has facilitated adaptation to end users’ capabilities
(personalisation) [23] or users’ tasks [24]. The majority of
this work has provided various formalisations of user-
interface languages to facilitate adaptation (e.g. [4, 23, 24]).
Research on [23] is of particular interest with regard to

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

24

letting end-users themselves retrieve information at a
semantic web setting.

Moreover, work on ontology evolution has given useful
results on change in semantics while using an automatically
generated interface [13, 14]. These results use annotated
ontologies and, in many case, the interfaces are generated
semi-automatically [5]. Similarly, work on dynamic data
management has given useful results [15,16,17] but has not,
in general, addressed user-interface or usability issues.

Other relevant research has used cognitive semantics to
create non-domain-specific top-level ontologies that can be
used as a basis for arbitrary schemas [9]. This idea is
explored in the next section.

THE ADAPTIVE INFORMATION SYSTEM
We approach the problem of schema evolution by turning
conceptual models (schemas) into data rather than, for
example, hard-coded table structures, and by allowing
“lazy” transformation of existing data following schema
change. To test these ideas, we built and evaluated a
prototype Adaptive Information System (AIS) (see Figure 1
and Figure 4). Current application design practice requires
conceptual models to be hardcoded into software structures
(classes, windows, tables, etc.) Our AIS avoids this
practice. Instead, the AIS is constructed from generic,
domain-independent structures and reusable functionality.
The model-as-data is termed a soft schema; in our prototype
it is stored as XML, although any logically-equivalent way
of storing data would suffice. The soft schema is read and
interpreted by the AIS at run-time (see Figure 2 and Figure
3). The soft schema is a properly normalised relational data
model, with some additions, but it is stored as data rather
than being hardcoded in application structure.

To provide domain-specific functionality, yet also exhibit
conceptual data independence, the AIS meets several
conditions. First, it reacts at run-time to a soft schema,
providing a user interface which looks and behaves
similarly to those of conventional domain-specific
applications. To date we do not provide specialised
behaviour for different types of data by responding to
semantic categories embedded in the soft schema, but this is
planned. Currently we present all data in tabular form
(Figure 1).

The AIS can store and retrieve data corresponding to
multiple soft schemas with guaranteed data integrity. The
AIS has no advance knowledge of the schemas it will be
used with, and how they may change. The data
corresponding to each soft schema must be able to co-exist
and be used with data stored for other soft schemas,
regardless of their structures. Therefore we store data in a
domain-independent way, but retain intact the conceptual
structure for each instance of data. Our prototype meets that
requirement by storing the data using XML and using XML
tags to denote structure. But, again, any logically-equivalent
storage mechanism would suffice. For example, another

prototype uses a graph database to represent the same
information in a natural way but with the potential for
improved runtime performance.

Archetypal categories
The AIS provides domain-specific behaviour by responding
to the currently active soft schema. Each concept (entity
type) in the soft schema represents something that data can
be stored about. Therefore, the AIS provides CRUD (create,
read, update, delete) functionality in respect of every
concept in the schema. Design heuristics are applied
automatically to produce a “reasonably usable” interface
directly from the conceptual model. The principle has been
applied and tested in a number of web and client-server
application environments [18]. Dialog design takes into
account general rules of interaction and layout, as well as
responding specifically to the data types used for attributes
in the soft schema, the relationships between concepts, and
so on.

Figure 1. The Data Manager tab of the AIS UI.

Figure 2. The concepts of the soft schema form the columns of
the data grid, while the attributes its cell contents.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

25

Figure 3. Architecture of the AIS UI.

We therefore sought to embed data and attributes into soft
schemas, so that it could be used automatically by an AIS to
render more domain-specific behaviour. It is achieved by
linking each concept in the soft schema with a particular
archetypal category (major cognitive semantic category
[19,20,21]). The prototype AIS uses nine archetypal
categories: people, organisations, places, documents,
activities, physical objects, conceptual objects, systems and
categories [18]. Using archetypal categories presents
advantages during modelling; for example, it allows aspects
of models to be predicted, helping to speed up modelling
and reduce error. This makes end-user modelling easier,
opening up the prospect that end users could use a suitable
AIS to provide application functionality they want without
recourse to IT specialists [22]. That is, these categories
serve as a “top-level ontology” thus facilitating the
flexibility, interoperability, and integrity of software
applications.

End users can manipulate the model using the icons at the
desktop-like representation of the soft schema (see Figure
4) and manipulate data and attributes using the tabular view
of Figure 1. Using the archetypal categories to generate the
UI means that the latter does not break when the end users
make changes to the schema.

Relationships between concepts are accommodated
implicitly. The end user can simply add a concept as an
attribute of another concept, thus creating an implicit
relationship. For example, a user might use the concepts tab
of Figure 4 to locate the concept purchase. Then, they
might go to the Attributes panel on the right hand side and
click “New…” to add a new attribute, so as to define what
is a purchase. There, they could add an attribute
purchaseDate of the predefined date, or they could add a
location which, as can be seen at the Concepts tab, is of
category places. Thus, the end user has implicitly made the
relationship “a purchase has-a location”.

An Example: The “Bookplace” Database
As an illustration of the AIS in use, let us consider a simple
example. A bookstore called “Bookplace” has stores in five
locations, and each customer purchases one or more books.

The Bookplace manager can use the AIS UI to create icons
in the model manager for this schema: they can make a new
icon for the store location, which they can label as a place,
an icon for the purchases, which they can label as activities,
another for customers (people), etc.

Once the end user has made a customer concept, which falls
under the category people, they can click on the icon to
bring up the customer tab in the attributes panel on the
right-hand side of the screen. There, they can make new
attributes by clicking “New”, choosing from a menu what
type of attribute they want (e.g., text), and naming their
attribute (e.g., first name).

Thus, the attributes panel represents a “has-a” relationship
(i.e., the customer has a first name). The same mechanism
is used to create joins; we can add an icon of another
concept to the window to represent the fact that the two
concepts are related (e.g., a purchase has a location). This is
similar to the desktop metaphor in the sense that the
desktop is (often) agnostic about the meaning of each icon:
a folder might include an icon of a document or an icon of a
folder or of a software application.

Double clicking the customer icon will bring up the data
manager tab. There, the user will be able to click on “new”
to add new customers, or open a file with existing
customers. Moreover, the user can delete, edit, or search for
a customer on this tab.

Adding and opening the contents of a concept follows usual
desktop conventions: clicking on an icon operates on the
icon itself; double clicking opens the content related to this
icon.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

26

Figure 4. The Model Manager tab of the AIS UI.

Managing schema changes is as easy as managing desktop
icons. Assuming that the manager of the “Bookplace” want
to add a new payment method, they would only have to
select the icon for purchase and add a new attribute icon,
then go to the data tab and change the data accordingly.
Note that this change will require no middleware/UI
reprogramming. Data migration is optional; it can be done
immediately or at a later time, or not at all.

Now, let us assume that the solution of modelling the
relationship “purchase has-a purchase method” by
representing purchase method as an attribute proves to be
insufficient, so the Bookplace manager makes a decision to
represent purchase methods as a new concept. Then, the
end user can make a new concept purchase method, and the
existing functionality will not break. Then, they can relate
the new concept to the concept purchase, and (if they want
to) migrate their data to this new structure.

In addition, users can right click an item to edit its
properties; that is, they can set the cardinality of a
relationship to allow-one or allow-many, or make an
attribute mandatory. So far, relationships are modelled
implicitly: allowing-many book items in a purchase will
model a 1:N relationship. If a user would want to model an
N:M relationship they would have to allow-many purchase
at the book window. In the future we plan to provide a
different menu in a drop-down fashion to accommodate this
functionality.

USER EVALUATION
The evaluation of the AIS UI included a usability study in a
laboratory environment where users conducted a set of
tasks. The users consisted of thirty individuals in the 25-35
age range. All were students in the information
systems/computer science area. Most had at least two years’
work experience.

The experimental procedure was as follows. Each user was
given a simple model of a bookstore, implemented in either
AIS UI, Microsoft Access (DB), or Microsoft Excel (SPR).
The allocation of software to user was made at random.
Each user carried out a scenario of eight tasks, as follows.

1. Add new data of various types.

2. Add new attributes, e.g., a new payment method.

3. Make changes to the model, e.g., each purchase
will change so as to have many product types.

4. Search for a particular piece of data.

5. Add and rename a concept.

6. Edit and delete a piece of data.

7. Handle missing relationships, e.g., enter a
purchase where a location is missing.

8. Handle missing attributes, e.g., enter a payment
where the payment method is missing.

The starting schema was constructed by the authors in
Excel, then exported to XML, and finally imported to
Access and the AIS UI in order to create the three instances
of the database to be evaluated.

The users loaded the schema and then followed instructions
on a website given to them which had a detailed description
of the tasks. Beside each task were two fields for the users
to fill in: the time it took them to perform a task, and a
checkbox to report if they actually finished the task
successfully. No explicit talk-aloud protocol was enforced,
although some participants voluntarily made comments.

After completing the tasks, the users were asked to fill in a
System Usability Scale (SUS) questionnaire [26].

Addressing Bias
The experiment was designed to address potential sources
of bias in the following ways.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

27

a) b)

Figure 5. a) Completion rate for the eight tasks per system, b) reported usability score using SUS.

Ideally, the experiment would have taken place in a real
working environment. However, a laboratory setting was
used due to limitations in resources, and thus attention was
paid to recruiting subjects who would represent the target
users as much as possible. The users were professionals
who were attending an evening information systems course,
and came from a non-expert, non-computer-science
background. While they might have occasionally had some
computer related topics while studying, e.g., economics or
mathematics, they were not programmers but typical users
of productivity software at their workplace. Thus, we
approached our target user, who is the non-expert office
professional.

The experimenters supervised the procedure to make sure
that the users were filling in the actual time employed.
Moreover, the experimenters collected the final .xls, .mdb,
and .xml files (from MS Excel, MS Access, and the AIS UI
respectively) after the users had finished the experiment to
make sure that the tasks, which have been reported as
completed successfully, were indeed correct. However, the
users were briefed that all tasks were voluntary and could
leave the experiment at any time, so 11 of them either chose
not to finish the scenario, or finished the scenario but didn’t
complete the SUS questionnaire.

Concerning the selection of the tasks, these were based on
previous work [3] so as to form a realistic scenario
according to what has been reported to be a common set of
tasks among spreadsheet users. The intention for this choice
was to fit the experiment to the common tasks and not vice
versa.

Undoubtedly, one source of bias which was unavoidable
was that all users were completely new to the AIS UI but
had used Excel and Access before. The users were given a
short brief concerning the experiment, but the results might
still be potentially biased in favour of Access and Excel.

RESULTS

Analysis
Out of the 30 recruited users, 19 finished the scenario and
filled in SUS questionnaires. We analysed the 19 entries
that had both a finished scenario and a SUS questionnaire
submitted.

The completion rate was 97.3% for the AIS UI, 100% for
Excel, and 88% for Access.

Estimate
(minutes)

Std.
Error

t-
value

P-value

AIS 18.500 3.652 5.066 0.000115***

DB 24.714 4.977 1.249 0.229741

SPR 31.333 5.165 2.485 0.024403*

Table 1: Linear regression results for the user completion time
per system.

Estimate

(minutes)
Std.
Error

t-
value

P-value

AIS 17.833 4.257 4.189 0.000413***

DB 23.333 6.020 0.914 0.371323

SPR 31.333 6.020 2.242 0.035862*

Table 2: Linear regression results for the total task time per
user.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

28

To accommodate statistical significance analysis, given the
fact that there were missing data due to varying completion
rates, we considered two cases: one where we interpolated
performance time values for uncompleted tasks, and a more
conservative case, where we set the time of each completed
task to zero. In both cases normality (Q-Q) and
homoscedasticity (Bartlett) tests showed the following.

Uncompleted task time interpolated.
The results passed the homoscedasticity and independence
of error tests, so a linear regression analysis of the results
was performed (Table 1). For the homoscedasticity
hypothesis we have Bartlett’s K-squared=1.0988, df=2, and
p-value=0.5773, so the hypothesis holds (p-value>0.05).

Uncompleted task time set to zero.
These results also passed the homoscedasticity and
independence of error tests, so a linear regression analysis
of the results was performed (see Table 2). For the
homoscedasticity hypothesis we have Bartlett’s K-
squared=3.3443, df=3, and p-value=0.3415, so the
hypothesis holds (p-value>0.05). Also, we have lag=1,
autocorrelation=-0.0605187, D-W statistic=2.04625, and
p=value=0.612. The alternative hypothesis is: rho!=0. Since
p-value>0 we do not reject the null hypothesis of rho=0.
There is no autocorrelation and independence of the error
hypothesis holds.

The SUS score for AIS UI was 81.6, for SPR it was 42.5,
and for DB it was 36.

Discussion
The results show a statistically significant performance
improvement when using the AIS UI instead of
spreadsheets, up to 43% (Δ=13.500 minutes, p<0.05). In
addition, the AIS UI users performed equally or better than
database users (Δ=6.214 minutes, p=0.23) (see Figure 4).

In addition, completion rates for the AIS UI were similar to
the ones of popular spreadsheet and database production
software (88<97.3<100) (see Figure 5.a). More specifically,
the completion rate of 97.3 for the given scenario means
that only one user did not accomplish one task using the
AIS UI.

These performance metrics are important and demonstrate
some advantages of our system. However, it is the usability
metrics that fully demonstrate the potential impact of this
approach. Our system scored 81.6 points at the Systems
Usability Scale, that is more than double than the database
which scored 35 points, and almost double points than the
42.5 points of the spreadsheet (see Figure 5.b).

Where does this difference in usability lie? A qualitative
observation might give us a hint. As noted before, a talk-
aloud protocol was not enforced; however, two users who
were using the AIS UI made useful comments, having been
rather surprised by the interface they were using:

a)
b)

Figure 4: User performance per system. Each white circle
represents one user; each gray circle represents two users. The
mean is drawn as a vertical line, the standard error from the
mean drawn as a horizontal bar. a) Scenario completion time
per system, regardless of the completion rate for each system.
b) Total task time per system (Uncompleted task duration = 0

min).

“It makes perfect sense to use icons instead of columns, it’s
so more usable this way.” (User 28)

“I cannot believe that we’ve not been using this all this
time—what were we thinking?” (User 30)

This supports the view that there is merit in extending the
desktop metaphor to data management. Looking closely to
the performance time of each task, we see that spreadsheet
users performed well at direct data manipulation, i.e., tasks
1 and 5 (add, search average time=2.7 minutes) but not at
managing relationships, i.e., tasks 3, 7, and 8 (average
time=13.7 minutes). In contrast, database users performed
better than spreadsheet users at managing relationships,
especially at task 3 (avg.=5.2 min), but not better than AIS
UI users (avg.=4.3 min). The average time to change the
cardinality of a relationship was just 1.3 minutes for
database users, 3 minutes for AIS UI users and 3.3 minutes
for spreadsheet users (to find a working solution).

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

29

These results suggest that, in edge cases such as pure data
manipulation and intensive schema change, the spreadsheet
and the database respectively are fit for purpose (ignoring
other potential concerns such as security, data integrity,
system integration, etc.).

However, we propose that the AIS UI, with its familiar
metaphor, offers a middle way and good performance for
end users who need a fair bit of both schema and data
management, where their resources do not allow them to
invest in a bespoke solution or enterprise software.

The results show that it is beneficial indeed to manipulate
schemas and data graphically, according to the motivation
we presented at the introductory section. That is, large
organisations that can afford experts on relational or
document databases might not avail much of a desktop-like
representation of schemas. Similarly, individuals who need
to organise a single collection of data, e.g., personal
finances, might be better off using a spreadsheet. Since the
vast majority of organisations, SMEs, and NGOs do not lie
in these categories, but need a middle level of data
management complexity, it is probable that they will find a
system like our AIS UI not only usable, but also useful.

FUTURE WORK
Future work includes building an AIS UI which is more
scalable and which includes specific views for each
archetypal category.

In addition, the scenario of this usability study
demonstrated the usability of changing an existing schema
but not of merging two or more similar schemas. Thus,
further usability testing needs to be conducted. We plan to
achieve this by putting the AIS UI into trial in small
organisations to apply it to real-world situations instead of a
laboratory experiment. We anticipate that evaluating with
users in organisations onsite might provide a larger pool of
users, too.

Moreover, we plan to implement a version based on graph
databases. We anticipate that we will be able to improve
relationship modelling, e.g., by explicitly joining attributes
of concepts through a visual dropdown-like menu.

CONCLUSION
In this paper we presented the Adaptive Information System
UI, which adapts and augments the desktop metaphor to
facilitate data management. Our implementation allows
direct manipulation of icons to perform operations on
concepts, attributes and relationships. We evaluated our
system by conducting a user study that compared the AIS
UI with Microsoft Excel and Microsoft Access when used
in a simple business data management scenario. The AIS UI
performed equally well to or better than Access and
significantly better than Excel (~43% on average), and its
SUS usability score was almost double that of the scores of
Access and Excel.

REFERENCES
1. Bakke, E., Karger, D.R., and Miller, R.C. A

Spreadsheet-Based User Interface for Managing Plural
Relationships in Structured Data. In Proc. CHI 2011,
ACM Press (2011), 2541-2550.

2. Canfield Smith, D., Irby, C., Kimball, R., and
Harslem, E. The Star User Interface, In Proc. AFIPS
NCC 1982, AFIPS Press (1982), 515-528.

3. Chan, Y.E., and Storey, V.C. The use of spreadsheets
in organizations: determinants and consequences.
Information & Management 31, 3 (1996), 119-134.

4. England, D., Randles, M., and TalebBendiab, A.
Runtime user interface design and adaptation. Proc.
BCS-HCI '09, BCS (2009), 463-470.

5. Ertl, D., Kaindl, H., Arnautovic, E., Falb, J., and Popp,
R. Generating high-level interaction models out of
ontologies. Proc. IUI SEMAIS’11, CEUR (2011), 467-
468.

6. Evamy, M. World Without Words. Laurence King
Publishing, London, UK, 2003.

7. Gajos, K., and Weld, D.S. 2004. SUPPLE:
automatically generating user interfaces. Proc. IUI
'04, ACM Press (2004), 93-100.

8. Horton, W. The Icon Book. John Wiley & Sons, 1994,
13-16.

9. Kapros E., McGinnes S. Cognitive Semantic
Categories as a Basis for Adaptive Information
Systems. In Semantic Models for Adaptive Interactive
Systems, Springer, London, UK, 2013, 43-57

10. Kohlhase, A., and Kohlhase, M. Spreadsheets with a
semantic layer. Electronic Communications of the
EASST Volume X, (2010).

11. McGinnes, S., and Amos, J. Accelerated Business
Concept Modeling: Combining User Interface Design
with Object Modeling. In Object Modeling and User
Interface Design: Designing Interactive Systems,
Addison-Wesley, Boston, MA, USA, 2001, 3-36.

12. Raden, N. Shedding light on shadow IT: Is Excel
running your business? Hired Brains, Inc., Santa Fe,
NM, USA, 2005.

13. Wach, E.P. Automated ontology evolution as a basis
for adaptive interactive systems. Proc. IUI
SEMAIS’11, CEUR (2011), 467-468.

14. Whitehouse, R. The uniqueness of individual
perception. In Information Design. MIT Press,
Cambridge, MA, USA, 2000, 103-129.

15. Zhao, C., Zhao, L., and Wang, H. A spreadsheet
system based on data semantic object. Proc. ICIME
2010, IEEE (2010), 407-41.

16. Dahalin, Z., 2005. Risks of user-development
application in small business. International Journal of
Management Studies (IJMS), 12(2), pp.41–52.

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

30

17. Codd, E. F. A relational model of data for large shared
data banks. Communications of the ACM, 13(6)
(1970), 377-387.

18. McGinnes, S.: Systems and Methods for Software
Based on Business Concepts. 20050289524, USPTO
(2005)

19. Moore, C.J., Price, C.J.: A Functional Neuroimaging
Study of the Variables that Generate Category-
Specific Object Processing Differences. Brain 122,
943-962 (1999)

20. Markman, A.B.: Similar and Different: The
Differentiation of Basic-Level Categories. Learning,
Memory 23, 54-70 (1997)

21. Caramazza, A., Mahon, B.Z.: The Organization of
Conceptual Knowledge: the Evidence from Category-
Specific Semantic Deficits. Trends in Cognitive
Sciences 7, 354–361 (2003)

22. McGinnes, S.: Conceptual Modelling: A
Psychological Perspective. Ph.D Thesis, Department
of Information Systems, London School of
Economics, University of London (2000)

23. Karger, D., Bakshi, K., Huynh, D., Quan, D., and
Sinha, V. Haystack: A General Purpose Information
Management Tool for End Users of Semistructured
Data. CIDR, (2005), 13-26.

24. Borges, C., and Macías, J. 2010. Feasible database
querying using a visual end-user approach. Proc.
EICS '10. ACM, 187-192.

25. Puerta, A.R. A Model-Based Interface Development
Environment. IEEE Software 14, 4, 1997, 41-47.

26. Brooke, J. SUS: a “quick and dirty” usability scale. In
Usability Evaluation in Industry. London: Taylor and
Francis. (1996).

Adaptation EICS'14, June 17–20, 2014, Rome, Italy

31

