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Urban drainage catchment modelling is an important hydrological problem that necessitates 

accurate runoff predict ion. This paper presents a model, based on an artificial neural network 

and trained with an evolutionary algorithm, which makes accurate predictions of sewerage flow 

in urban catchments where the runoff is  dominated by infiltrat ion problems . A range of input 

sets are examined, the best of which is found to be a linear aggregation of antecedent rainfall 

and air temperatures over a period of three months. 

INTRODUCTION 

Accurately modelling rain fall runoff is an important issue in hydrology. In order to be able to 

properly plan how to respond to extreme rainfall events and prevent floodin g, organisations 

must be able to predict the runoff that will result from forecast events. Urban drainage 

catchment modelling requires rainfall runoff models as a prerequisite and a variety of different 

runoff models can be used. These include the Wallingford Procedure Runoff [1] (i.e., PR 

Equation), the New UK Runoff Model [2], and the SCS Method [3]. These methods are based 

on relatively simple procedures which have been shown to be reasonably robust in predict ing 

runoff. This paper takes an alternative approach to constructing a practical runoff model that 

will allow for the complex inter-relation of runoff that actually  occurs from impermeable areas, 

local surface storage and variation in rainfall induced infiltration due to wet weather responses. 

 

As an alternative to constructing physical models, various computational intelligence 

approaches have been used to predict model output, including artificial neural networks (ANNs) 

[4]. Apart from the uncertainties associated with the actual measurement of connected surfaces 

to an urban drainage system, the process by which runoff occurs is known to be non-linear, and 

ANNs are adept at pred icting such processes.  They  have been used to predict runoff in a 

number of natural catchments (e.g., [5]) and in studies for predicting the performance of urban 

drainage systems (e.g., [6]). Th is paper proposes a model that uses an ANN trained to predict  

runoff in a system dominated by infilt ration. The ANN is a data-driven approach, in this case 

using information about various meteorological conditions (e.g., rainfall and air temperature 

over time) as inputs and flow data as a single output to be predicted. The basic procedure for 

making predictions with an ANN is as follows. The network is trained on inputs for which the 

corresponding outputs (in this case, the amount of runoff caused by the meteorological 

conditions at a given time) are known and validated on a further set of known examples that 



were not used during training. The resulting model is called a black box model, as the inner 

workings of the ANN cannot be equated to the physical processes driving runoff. The goal of 

the study is to determine a set of inputs that produces sewerage flow predictions in urban 

catchments where the runoff is dominated by infilt ration problems  (due to high groundwater 

table and sewer condition), a  major issue for the water industry. As demonstrated by the results 

presented later in this paper, given an appropriate set of inputs an ANN is capable of predict ing 

runoff, thus avoiding many of the uncertainties involved in tradit ional runoff modelling.  

 

The results presented in this paper are for a site in the UK in  which runoff is dominated by 

infiltration. The goal of the study is to demonstrate that an ANN is capable of modelling runoff 

in such an environment. The available data relating to the case study site comprises of rainfall 

data, air temperature and sewer flow data. All data has been aggregated from their native 

frequencies to the hourly level, and is availab le over a period covering January 2010 to October 

2012. There are periods within th is range where measurements were not recorded. 

 

Figure 2: Rainfall events; rainfall is shown from the top and flow runs along the bottom. The 

separation of the data into events is shown, and the numbers running along the centre of the plot 

show the event IDs. 

 

The inputs used in this study are rainfall and air temperature data. This data is separated into a 

set of 15 rainfall events that have been identified such that they contain contiguous 

measurements (i.e. they have no missing data) and any intervening periods with  missing data 

are excluded from study.  Figure 1 illustrates the data, subdivided into rainfall events. 

MODELLING RUNOFF WITH ANNS 

The model proposed in this study is called RAPIDSLite,  and is based on an earlier ANN model, 

RAPIDS [7]; it was specifically developed for modelling rainfall runoff. It consists of an ANN 

model which is trained by an evolutionary algorithm (EA).  

Neural Network Model  

An ANN is a computational model based on the way in which the human brain processes 

informat ion [4]. It is a collection of neurons which are arranged into layers. Neurons in adjacent 

layers are connected by weighted edges. The model consists of an input layer, a h idden layer, 

and an output layer. The neurons in the hidden and output layer produce a signal that is 

calculated by taking a weighted sum of the inputs to the neuron: 



 

       

 

   

          (1) 

 

Here, xd is an input to the node, and wkd is the edge between that input and the node. The bias 

term is wk0. The output yk is then passed through an activation function: 

 

     
 

     
  (2) 

 

RAPIDSLite employs the sigmoid function (Eq . 2) and, in this study, uses a single hidden layer 

of size H = 10. Various studies have used this architecture [5]. Since the aim is to predict total 

daily flow, the network consists of a single output. 

Network Training 

The network weights were trained with an EA. An EA is a population-based algorithm in which  

each candidate solution is an ANN model. The training process seeks a set of weights that 

maximises the predictive quality of the model. Edge weights are constrained to lie between -1 

and 1, and are mutated with probability 1/P (P is the number of solution parameters , for P  edges 

in the ANN) using an additive Gaussian mutation. The pred ictive quality of a network is 

evaluated with the mean absolute error (MAE) of the predictions for the training data and the 

best solutions from the combined parent and ch ild  populations are retained as the parent 

population in the next generation. The EA is executed for sufficient generations to allow it  to 

converge; this period was determined experimentally.  

 

In order to p revent over training [8], whereby the model cannot generalise to new observations, 

a cross validation scheme is used. Given the set of E rainfall events, leave-one-out cross 

validation was used such that the model was trained E  times on the fu ll set of training data with 

one of the events omitted. This event was then used to test the data by using it as a set of 

previously unseen inputs. 

EXPERIMENTAL S ETUP AND RES ULTS  

One of the principal mot ivations behind this study is to identify a set of inputs that can be used 

to predict runoff. To this end, RAPIDSLite has been tested on a range of different inputs 

(varying the form of antecedent rainfall incorporated into the model). In the case of each 

experiment, the optimisation parameters remain fixed. The standard deviation σ of the mutation 

was 0.1 (computed from the Gaussian distribution from which the mutations were drawn). The 

EA operated with a population size µ = 5 and its runtime, determined experimentally, was 2,000 

generations for daily inputs and 10,000 generations for sub-daily inputs. In order to study the 

sensitivity of the model to d ifferent sets of inputs, each experiment was repeated 10 times so 

that the distribution of results could be evaluated. Experimental results were evaluated using 

Nash-Sutcliffe Efficiency Coefficient (NSEC) [9], where the best possible score is 1 and would  

indicate that the model has perfectly matched the target values. NSEC scores of 0.5 or higher 

are generally accepted in the water industry, and in this paper scores of 0.8 or higher are sought. 



Initial Results 

Initial experiments were conducted at the daily level with inputs describing rainfall and air 

temperature. The inputs for rainfall consisted of the current day value, as well as for the 

previous seven days, and aggregated inputs covering the 30 and 90 days prior to the current 

observation. Matching air temperatures were used, making a total of 20 inputs. 
 

Table 1: The parameters used in the three configurations of the initial experiments conducted. A 

mark indicates that a given input was included in the model tested under a specific option.  
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Option 1 ● ● ● ● ● ● ● ● 

Option 2 ● ●  ● ● ●  ● 

Option 3 ● ● ●  ● ● ●  

 

Table 1 lists the inputs that were included in each of the three in itial configurations of the 

model. The first contains all of the inputs, while the subsequent two options omit the 30 and 90 

day antecedent informat ion, in order to study the difference in quality caused by long periods of 

antecedent rainfall and air temperature data.  

 

 
Figure 3: Boxplots showing the distribution of NSEC results for the in itial set of experiments. 

The results show that the model is reasonably insensitive to the length of antecedent rainfall, 

although results for option 3 are marginally  worse than those for options 1 and 2. A preliminary  

experiment omitting 30 and 90 days antecedent information entirely produced considerably 

poorer results. 

 

 
Figure 4: Hydrographs for exemplar test events evaluated with a model developed under the set 

of inputs described by option 2. 

 

 

 



Figure 3 illustrates the distribution of NSEC results of the 15 rainfall events for each of the first 

three model configurations examined. Each of the 15 boxes in each experiment represents a 

single event, each of which was used as the training event 10 times in order to evaluate the 

distribution of results. NSEC results below -1.5 are omitted from these plots. The configuration 

that yielded the most events with a mean NSEC of 0.5 or greater was option 2 (with 8 events), 

however it  is difficult  to say that there is a clear winner between  the three options as the results 

are fairly  similar. Opt ion 3 has the worst performance; the fewest events of the three options 

achieved a mean NSEC of 0.5 or greater, and two of the events are completely omitted as they 

are completely below the lower bound of  -1.5. Exemplar hydrographs for option 2 are shown in  

Figure 3. 

 

In the case of option 3, the model evaluated on event 2 again showed the best results;  the 

model identifies the shape of the main  peak in  the flow data, and its prediction of the peak’s 

magnitude is only slightly below that of option 2. As in Figure 3, the period of low flow in the 

first half of the event, where the model has over-predicted the amount of flow, is likely to be 

indicative of inaccuracies in the target data. In both events 1 and 9, the predicted flow values are 

much worse than those for event 2, with the model failing to match the shape, and in some case 

the magnitude, of the peaks. The significantly poorer predictions in these events, characterised 

by a lack of rainfall and compared  to events with more rainfall on which pred ictions were much  

better, indicates that these events are affected by a dry weather flow; results for these two events 

were systematically poor for all experiments conducted in this study . This demonstrates the 

importance of selecting a set of inputs that completely represents the complete runoff 

generation process. In fact, the NSEC performance for these events throws into question its 

suitability as a performance measure for this type of analysis; for low flows it tends to heavily 

penalise the algorithm, resulting in the values shown for events 1 and 9. 

Sub-Daily Timesteps 

Rainfall can occur within the daily frequency discussed so far. To demonstrate that the model 

can make predictions at sub-daily timesteps, we perform a similar experiment to the daily 

simulations described above, for 6-hourly inputs. The input set is as follows: 

 

 
Figure 5: NSEC results for the sub-daily experiment. 

 



 
Figure 6: Event hydrographs for the sub-daily experiments. 

 

1. Rainfall and air temperature for the current timestep (2 inputs). 

2. Rainfall and air temperature for the previous 24 hours at 6-hourly intervals (8 inputs). 

3. Rainfall and air temperature for the three days preceding the 6-hourly inputs in (2) at  

24-hourly intervals (6 inputs). 

4. Summed rainfall and average air temperature for the previous 90 days (2 inputs). 

 

The input set therefore has  a total of 20 inputs. The parameterisation of the optimiser and the 

ANN configuration remains unchanged from the previous set of experiments , however, to cope 

with the increased number o f observations the model was trained for 10,000 generations. 

 

Figure 4 shows the distribution of NSEC values for the sub-daily experiments. As before, the 

model is capable of making predictions with mean  NSECs of 0.5 or more, however perhaps the 

more interesting result is for events 1 and 9. As can be seen, the events (which  the model failed  

to predict accurately in the daily  experiments) show an improvement. A lthough they still 

represent poor results, the error is less severe indicating that the model is able to better predict 

events containing little  flow using sub-daily timesteps; optimising the ANN for longer may  

further improve the results . Figure 5 illustrates the hydrographs predicted by the sub-daily 

configuration. The quality o f the predictions in  this case is poorer;  this is to be expected, as the 

target hydrographs themselves are less smooth. That said, the general t rend has been identified, 

imply ing that further train ing may result in a better fit of the noisy target data. 

Alternative Antecedent Precipitation as a Network Input 

The previous section’s experiments incorporated the notion of antecedent rainfall into the 

model by means of aggregated rainfall values, for 30 and 90 days. An alternative is to use the 

normalised antecedent precipitation index (NAPI) [10], formulated as follows: 

 

     
   

  
      

        
    

  (3) 

 

NAPI is incorporated into the set of inputs, replacing the summed antecedent rainfall inputs 

used in the previous experiments. Two sets of inputs are examined. Both of which include the 

current day’s rainfall and NAPI fo r the preceding 30 days. One of the options also contains an 

input describing rain fall for each of the 7 days leading up  to the current observation, as was the 

case in options 1–3. The air temperature inputs remain the same as used in the previous 

experiment; the structure of the ANN and the parametrisation of the EA is unchanged from 

options 1–3 (running for 2000 generations). The NAPI decay coefficient k  is set to 0.8. 

 



Table 2 shows the inputs used in the two NAPI experiments and Figure 6 illustrates the 

corresponding distribution of NSEC results for the two experiments. The results for option 5 are 

comparable to those of options 1–3, however are of slightly lower quality (the mean NSEC is 

0.5 or greater for fewer events than it is for those of option 2). Option 6, which omitted the 

inputs relating to the previous 7 days rainfall, resulted in noticeably poorer results than for any 

of the input sets tested so far, with the model output simply peaking on days of peak rainfall. 

None of the events achieved predictions with NSEC scores greater than 0.5, indicating that the 

increased resolution close to the event is important, as was shown for the sub -daily input set. 

Figure 7 illustrates flow hydrographs for option 5. In each case, the predictions are a poorer 

match than those shown for earlier daily input sets. In particular, this configuration is unable to 

properly match the peaks of the true target signal, under or over predicting in each case. 

 

Table 2: The parameters used in the two configurations of the NAPI experiments. 
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Option 5 ● ● ● ● ● ● 

Option 6 ● ●  ● ●  

 

 
Figure 7: NSEC results for the NAPI experiments.  

 

 
Figure 8: Event hydrographs for option 5, the first of the NAPI experiments. 

Summary of Results  

Comparing the three types of configuration tested in this section, the best result is for the initial 

configuration (under option 2, 8/15 events have NSEC greater than 0.5, compared to option 4 

with 4/15 and option 5 with 6/15) in which antecedent rainfall information is incorporated in the 

form of aggregated values (summed for rainfall and averaged for air temperature) over a 



significant period, such as the 90 days used in this study. Such an input set is capable of 

producing a model with comparab le p redictive ability  in  other catchments, provid ing that the 

physical drivers of the runoff process  itself are not drastically  different to  that of the case study 

site used as an example in this paper.  

CONCLUS ION 

This paper has demonstrated an ANN model for p redicting runoff in a system dominated by 

sewer infiltrat ion. The study compared various sets of inputs with the aim of determining a 

sensible input configuration, and, while they cannot be said to be a general set of inputs, those 

based on summed antecedent rainfall and averaged air temperature produced the best results, 

with the majority of the predict ions resulting in NSEC scores greater than 0.5. Models for other 

case study sites using such an input set should theoretically produce runoff predict ions of a 

similar quality to those shown for the case study used in this paper. Subsequent experiments 

with sub-daily inputs produced the interesting result that the prediction error of the model in the 

worst case was significantly reduced. Other input sets included NAPI values in the place of 

summed antecedent rainfall, and this was shown to be less  effective for this case study. 
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