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Summary. Omission of relevant covariates can lead to bias when estimating treatment or exposure effects from survival data
in both randomized controlled trials and observational studies. This paper presents a general approach to assessing bias when
covariates are omitted from the Cox model. The proposed method is applicable to both randomized and non-randomized
studies. We distinguish between the effects of three possible sources of bias: omission of a balanced covariate, data censoring
and unmeasured confounding. Asymptotic formulae for determining the bias are derived from the large sample properties
of the maximum likelihood estimator. A simulation study is used to demonstrate the validity of the bias formulae and to
characterize the influence of the different sources of bias. It is shown that the bias converges to fixed limits as the effect of the
omitted covariate increases, irrespective of the degree of confounding. The bias formulae are used as the basis for developing
a new method of sensitivity analysis to assess the impact of omitted covariates on estimates of treatment or exposure effects.
In simulation studies, the proposed method gave unbiased treatment estimates and confidence intervals with good coverage
when the true sensitivity parameters were known. We describe application of the method to a randomized controlled trial and
a non-randomized study.
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1. Introduction
Treatment or exposure effects are commonly estimated from
survival or other time-to-event data using the Cox model.
The gold standard design for conducting such evaluations is
the randomized controlled trial because randomization acts
to balance measured and unmeasured confounders. Although
it is common for researchers to present unadjusted analyses,
it is recommended to adjust proportional hazards models for
all measured covariates in randomized studies to maximise
power to detect treatment effects (Hernandez, Eijkemans, and
Steyerberg, 2006). Gail, Wieand, and Piantadosi (1984) de-
rived asymptotic formulae for the bias in estimates of treat-
ment effects when balanced covariates are omitted from the
Cox model. It was shown that when censoring is moderate,
the Cox model yielded more biased estimates of treatment
effect than analysis with the exponential model.

In practice, randomized experiments may be difficult
to conduct for reasons of cost, logistics or ethics (Black,
1996). The increasing availability of electronic medical record
databases and population-based studies is creating new op-
portunities for using observational data to assess the effect of
medical treatments and exposures (Ghani et al., 2001; Tan-
nen, Weiner, and Xie, 2009). A major challenge in using clini-
cal databases in this way is addressing the potential bias intro-
duced due to unmeasured differences between the treatment
groups(Klungel et al., 2004). Lin, Psaty, and Kronmal (1998)
presented approximate formulae for the bias due to omission
of a binary or continuous confounder when estimating treat-

ment effects from censored survival time data using the Cox
model. The bias formulae were used as the basis for a method
of conducting sensitivity analysis to assess how the point and
interval estimates of the treatment effect vary under a range
of assumptions about the unmeasured confounder. The idea
behind this approach is that the plausibility of the estimated
treatment effects will increase if the inferences are insensitive
over a wide range of relevant scenarios.

In this paper, we develop a general framework for estimat-
ing bias and conducting sensitivity analysis when covariates
are omitted from the Cox model. Formulating the problem
more broadly than previous work, we consider the combined
influence of three different sources of bias: (1) bias due to
omitting a balanced covariate; (2) bias due to censoring; (3)
bias due to the missing covariate being a confounder. The pro-
posed approach is applicable to both randomized trials and
observational studies, and provides explicit formulae for arbi-
trary distributions of measured and unmeasured confounders.
We consider the general case in which the censoring distribu-
tion can depend on treatment or other covariates. The treat-
ment variable can be either a binary or continuous exposure.

The paper is organized as follows. Asymptotic bias formu-
lae, derived from the large sample properties of the partial
maximum likelihood estimators, are presented in Section
2. Simulation studies conducted to investigate the accuracy
of the bias formulae and to characterize the impact of the
different sources of bias are presented in Section 3. Section
4 discusses how the bias formulae can be used to develop a
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new method of sensitivity analysis for treatment effects in
proportional hazards models. The method is applied to data
from a randomized controlled trial and a non-randomized
study in Section 5.

2. Bias Formulae

We denote random variables by upper case letters and their
values by lower case letters. Suppose X = (X1, . . ., XK) are
K measured covariates with joint distribution f (x), and C =
(C1, . . ., Cq) are q unmeasured covariates with conditional
joint distribution f (c|x). Let T and T + represent the true
event/failure time and possible censoring time respectively.
We assume failure and censoring times are independent con-
ditional on x (i.e., T +⊥T |x). We observe (T̃ , �), where T̃ =
min(T, T +), and � = 1 if T ≤ T + and 0 otherwise. The true
hazard is assumed to be

h(t|X, C) = h0(t) exp(Xθ + Cβ), (1)

where h0(t) is the baseline hazard function and θ =
(θ1, . . ., θK)tr and β = (β1, . . ., βq)

tr are coefficients for X and
C, respectively. But since C is omitted, one is forced to fit the
model

h(t|X) = h∗
0(t) exp(Xθ∗), (2)

where θ∗ = (θ∗
1, . . ., θ

∗
K)tr are the coefficients when C is missing.

Let (T̃i, �i, Xi) be ñ independent replicates of (T̃ , �, X). Then
the average partial log-likelihood based on (2) is

l(θ∗) = 1

ñ

ñ∑
i

�i

(
Xiθ

∗ − log

ñ∑
j

Yj(T̃i) exp(Xjθ
∗)

)
, (3)

where Yj(T̃i) = 1 if T̃j ≥ T̃i and 0 otherwise. It is shown in Web
Appendix A that as ñ → ∞, the score function ∂l(θ∗)/∂θ∗

k has
the limit

0 = Uk = Uk(θ
∗, θ;β)

= EOBS

[
Xk − Exc

{
eXθ∗

e−H0(T )eXθ+Cβ
XkS

+(T |X)
}

Exc

{
eXθ∗e−H0(T )eXθ+Cβ

S+(T |X)
} ]

(4)

for k = 1, . . ., K, where EOBS (OBS=observed events) is the mean
over the uncensored subjects, Exc is under the density
f (c|x)f (x) and S+(T |X) is the survival function of censor-
ing time conditional on X. Inclusion of S+(T |X) allows the
censoring distribution to depend on covariates.

The system of equations (4), 0 = U = (U1, . . ., UK)tr, relate
θ∗ and θ, and therefore the asymptotic biases θ∗ − θ can be
evaluated from them. The first-order Taylor series approxi-
mation is

θ∗ − θ ≈ I−1(θ)U(θ, θ;β), with I(θ∗) = −∂U/∂θ∗tr
. (5)

2.1. The Distributions of Uncensored Subjects

Let

ϕxc = P(T + ≥ T |x, c) =
∫

P(T + ≥ t|x, c)P(T = t|x, c)dt

=
∫

S+(t|x, c)f (t|x, c) dt

be the uncensoring probability conditional on x and c, where
f (t|x, c) is the density of model (1) and S+(t|x, c) is the sur-
vival function of censoring time.

The density of the observed event times is then given by

fOBS(t|x, c) = P(T = t|T + ≥ T, x, c)

= P(T + ≥ t|x, c)P(T = t|x, c)

P(T + ≥ T |x, c)

= S+(t|x, c)

ϕxc

f (t|x, c).

The mean of Xk for uncensored subjects is

EOBS(Xk) =
∫

xkP(xk|T + ≥ T )dxk

=
∫

xkP(T + ≥ T |xk)P(xk)dxk

P(T + ≥ T )

= Exc(XkϕXC)

Exc(ϕXC)
. (6)

2.2. Extension of the Results of Lin et al. (1998)

Lin et al. (1998) proposed bias formulae for survival analysis
with unmeasured confounders based on the assumption of rare
events (small H0(t)) or small |β|. For binary x, the proposed
bias approximation is

θ∗ − θ ≈

⎧⎨⎩ log
eβρ1 + (1 − ρ1)

eβρ0 + (1 − ρ0)
if C|x ∼ B(1, ρx)

β(μ1 − μ0) if C|x ∼ N(μx, σ
2)

(7)

The simulation of Lin et al. (1998) showed that (7) are good
approximations when t+ was generated from the uniform (0, τ)
distribution and the censoring percentage is 90%.

Using the assumption of rare events and the simulation
settings in Lin et al. (1998), Web Appendix B shows that
Equation (4) reduces to a simple equation of θ and θ∗:

Ex(Xeθ∗X)

Ex(eθ∗X)
≈ Exc(XeθX+βC)

Exc(eθX+βC)
, (8)

which leads to the formulae (7) when X ∼ B(1, P) and C|x ∼
B(1, ρx) or C|x ∼ N(μx, σ

2). The Equation (8) therefore pro-
vides a general extension of the results in Lin et al. (1998) to
arbitrary distributions of X and C.
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3. Bias Analysis

3.1. Bias Analysis for a Binary Treatment with a Single
Omitted Covariate

We now show the asymptotic formula for the bias in the im-
portant special case of a single missing covariate C and a
binary exposure variable X taking values 1 or 0 with proba-
bilities p and 1 − p, respectively.

The Equation (4) leads to (see proof in Web Appendix C)

EOBS

{
V (θ∗)

} =
{

(1 − p)
ϕ0

ϕ1

+ p

}−1

(9)

with

V (θ∗) =
{

(1−p)e−θ∗ S+(T |x = 0)Ec|x=0

(
e−H0(T )eβC

)
S+(T |x = 1)Ec|x=1

(
e−H0(T )eθ+βC

) + p

}−1

,

where the expectations Ec|x and EOBS are under f (c|x) and

fOBS(t) =
∫

x

∫
c

fOBS(t|x, c)f (c|x)f (x)dc dx

respectively, and ϕ0/ϕ1 = Ec|x=0(ϕXC)/Ec|x=1(ϕXC) is the ratio
of uncensoring rates between control and treatment groups.

From (9), it can be seen that the relation between θ∗ and θ

mainly depends on three factors (corresponding to the three
sources of bias): the effect of the missing covariate, β; cen-
soring mechanism, EOBS , S+(·) and ϕ0/ϕ1; and the ratio of
conditional expectations, Ec|x=0 [·] /Ec|x=1 [·]. The latter ratio
represents how much the density of C varies between x = 0
and x = 1 and, hence, measures the extent to which C is a
confounder.

The bias is also affected by the cumulative baseline hazard
function H0(·). But if times are not censored, H0(T ) is an
exponential variable with the rate eθx+βc and (9) reduces to

Ez

[{
(1 − p)e−θ∗ Ec|x=0

(
e−ZeβC

)
Ec|x=1

(
e−Zeθ+βC

) + p

}−1]
= 1, (10)

where Z = H0(T ) ∼ Exp(eθX+βC). As a result, the bias is inde-
pendent of the form of H0(·) in the absence of censorship.

When Ec|x=0 [·] /Ec|x=1 [·] = 1, C is not a confounder. In this
case, Equation (10) shows that θ∗ 
= θ and, consequently, the
MLE of the Cox model is still biased even if C is a balanced co-
variate. Bretagnolle and Huber-Carol (1985) studied the bias
in this case and showed that the estimated effect is biased
toward zero as |β| increases. This is because the event times
with c 
= 0 tend to zero as β → ∞ and tend to ∞ as β → −∞.
Consequently the subjects with c 
= 0 cannot provide informa-
tion about θ in the limiting case. However, the subjects with
c = 0 do still supply information about θ and hence the limit
of θ̂∗ as |β| → ∞ is not zero for binary C. An illustration of
this explanation is given in Web Figure 1.

Figure 1. Comparison of simulated biases, asymptotic bi-
ases and first-order Taylor series approximations for differ-
ent types of omitted covariate and censorship. Since θ∗ is the
asymptotic value of the MLE θ̂∗ and the sample size=10,000
is large, we calculated the simulated bias by θ̂∗ − θ. The
asymptotic biases and Taylor series approximations were ob-
tained from (9) and (11), respectively. Monte Carlo integra-
tion was used to approximate the expectations in formulae.
(a) Binary confounder c: (ρ0 = 0.3, ρ1 = 0.7), censored; (b)
Normal confounder c: (μ0 = −1, μ1 = 1), censored; (c) Bi-
nary confounder c: (ρ0 = 0.7, ρ1 = 0.3), censored; (d) Normal
confounder c: (μ0 = 1, μ1 = −1), censored; (e) Binary bal-
anced c: (ρ0 = ρ1 = 0.5), uncensored; (f) Normal balanced c:
(μ0 = μ1 = 0), uncensored.

Following (5), the first-order Taylor series approximation is

θ∗ − θ ≈
{
(1 − p)ϕ0/ϕ1 + p

}−1 − EOBS

{
V (θ)

}
EOBS

{
V (θ) − V (θ)2

} . (11)

3.2. Accuracy of Asymptotic Formulae and Taylor
Series Approximations

Figure 1 shows a comparison of the asymptotic and simulated
biases and Taylor series approximation under the influence of
different sources of bias. We generated 10,000 x from B(1, 0.5).
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The confounder C was generated from B(1, ρx) for the binary
confounder, and from N(μx, 1) for the normal confounder. The
event times t were generated from model (1) with h0(·) = 1,
θ = 1 and β taking 100 sequence values from −10 to 10. For
the censoring cases, we let T + ∼ uniform(0, τ) with τ = 1. The
observed times were given by t̃ = min(t, t+).

Figure 1 shows that the simulated and asymptotic biases
are seen to agree closely, confirming that these asymptotic
formulas adequately describe the biases. The accuracies of the
Taylor series approximations decrease as |θ∗ − θ| gets large,
because the approximation error is of the order O

{
(θ∗ − θ)2

}
.

For more modest values of θ, for example 0.25 and 0.5,
the biases will have similar patterns but be shifted up as
θ → 0 (see Web Figures 2 and 3). In Web Figure 8, we let
τ = 0.5 exp(x) and τ = exp(−3x) to allow the distribution of
censoring to depend on treatment group. The figure illustrates
how different choices of censoring function can impact on the
biases.

3.3. Bias of Omitting a Balanced Covariate in
Randomized Studies

Figure 1e and f show the biases when a balanced covariate
is omitted. It is clear that omission of a relevant covariate
leads to biased treatment estimates for the Cox model, even
in randomized studies.

The reason is that the parameters θ and θ∗ are measur-
ing different features of the population. When we model the
hazard as

h(t|x, c) = h0(t) exp(θx + βc) = f (t|x, c)

S(t|x, c)
,

the interpretation of exp(θ) = h(t|x = 1, c)/h(t|x = 0, c) is the
hazard ratio between x = 1 and x = 0 while the values of c are
fixed. But in randomized studies (where we assume f (c|x) =
f (c)), when we model the marginal hazard as

h(t|x) = h∗
0(t) exp(θ∗x) = f (t|x)

S(t|x) =
∫

c
f (t|x, c)f (c)dc∫

c
S(t|x, c)f (c)dc

, (12)

the interpretation of exp(θ∗) = h(t|x = 1)/h(t|x = 0) is the
hazard ratio between x = 1 and x = 0 while c is marginalized.
Similarly, h0(t) is the hazard when x = c = 0, and h∗

0(t) is the
hazard when x = 0 and c is marginalized. The superscript ∗
emphasizes that they do not have the same interpretation.

When c is integrated out, the marginal hazards (12) for
x = 1 and x = 0 are not proportional over time, and the MLE
of θ∗ represents an average over time of the log marginal
hazard ratios between x = 1 and x = 0 (Lin and Wei, 1989).
Therefore, it will lead to bias if we use a marginal hazard ra-
tio exp(θ∗) to estimate a hazard ratio exp(θ). In randomized
studies, as outlined in Section 3.1, usually |θ∗| < |θ| and θ∗

will attenuate to some limit between 0 and θ as |β| → ∞.

3.4. The Limits of Biases as |β| → ∞
One phenomenon that can be noticed from Figure 1 is that
all biases increase with |β| but always tend to some limits,
no matter if C is a confounder or not. The reason is that the
marginal hazard ratio has finite limits as β tends to ∞ and

−∞. For example, for C|x ∼ B(1, ρx), the marginal hazard is

h(t|x) =
∫

c
f (t|x, c)f (c|x)dc∫

c
S(t|x, c)f (c|x)dc

= ρxh0(t)e
θx+βe−H0(t)eθx+β + (1 − ρx)h0(t)e

θxe−H0(t)eθx

ρxe−H0(t)eθx+β + (1 − ρx)e−H0(t)eθx
.

The ratio, h(t|x = 1)/h(t|x = 0), tends to eθ as β → ∞ and

(1 − ρ1)h0(t)e
θe−H0(t)eθ

ρ1 + (1 − ρ1)e−H0(t)eθ
/
(1 − ρ0)h0(t)e

−H0(t)

ρ0 + (1 − ρ0)e−H0(t)
as β → −∞.

3.5. The Effect of Censoring

Figure 2a shows the effect of censoring on the bias of omitting
a balanced covariate. The event times were generated from
(1) with h0(t) = 1, θ = 1, X ∼ B(1, 0.5) and C ∼ B(1, 0.5). The
possible censoring times t+ were simulated from uniform (0, τ)
with τ = exp(γ0 + γ1x).

Following the result A-4 in Web Appendix, the uncensoring
probability can be written as

ϕxc = 1 −
∫

f+(t|x, c)e−H0(t)eθx+βc

dt,

where f+(t|x, c) is the density of possible censoring times.
Under the simulation settings, H0(t) = t and f+(t|x, c) =

1/τ. The probability of censoring conditional on x is thus

1 − ϕx = 1 − Ec|x(ϕXC) = Ec|x

{
1

τ

∫ τ

0

e−H0(t)eθX+βC

dt

}
= Ec|x

{
1 − e−τeθX+βC

τeθX+βC

}
(13)

The values of γ0 and γ1 were then solved from (13) such that
the probabilities of censoring were the same for x = 0 and
x = 1 and could be 0%, 30%, 50%, 70%, and 90%. The number
of event times n was fixed at 100,000 and the total sample size
was ñ = n/Exc(ϕXC).

Figure 2a shows that censoring influences the bias in two
different ways. The bias increases as the censoring percentage
increases from 0% to 50%, but decreases as the censoring per-
centage increases from 50% to 90%. The bias is plotted for a
wider range of censoring percentages in Web Figure 4.

The reason for this inconsistent effect of censoring is as fol-
lows: when the censoring percentage increases (0–50%) and
β > 0, the subjects with c = 0, which provide most of the in-
formation about θ, are likely to be censored, and consequently,
the bias is increased. But as the censorship rate increases fur-
ther (50–90%), almost all of the few events occur with c = 1
and almost all the times with c = 0 are censored. So nearly
all the subjects supplying information about θ have the same
value of c = 1 (Chastang, Byar, and Piantadosi, 1988). If the
sample size is sufficiently large, the bias will tend to zero as
the censoring percentage tends to 100%. A similar explana-
tion applies for β < 0. An illustration of this explanation is
given in Web Figure 5.
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Figure 2. The effect of overall censoring and confound-
ing on bias: (a) biases of omitting a balanced covariate
where 0% → 90% data are censored; (b) biases under dif-
ferent strengths of confounding, (ρ0, ρ1) = (0.5, 0.5), (0.3, 0.7)
and (0.1, 0.9) when 50% data are censored.

3.6. The Effect of Confounding

Of particular relevance to non-randomized studies, we con-
sidered the influence of different levels of confounding on
the bias function when 50% of the data are censored (Fig.
2b). We generated X ∼ B(1, 0.5), C|x ∼ B(1, ρx) and consider
three scenarios with (ρ0, ρ1) = (0.5, 0.5), (0.3, 0.7), (0.1, 0.9).
The difference ρ1 − ρ0 represents the imbalance of the dis-
tributions of C|x ∼ B(1, ρx) between x = 1 and x = 0 and so
measures the strength of confounding. As ρ1 − ρ0 increases, it
can be seen that the estimate is biased upwards for β > 0 and

downwards when β < 0. For the case ρ0 > ρ1, the bias would
be affected in the other direction.

3.7. The Effect of Additional Measured Covariates

In practice, the analyst is likely to have access to additional
measured covariates (possibly confounders) that would need
to be adjusted for, in addition to the exposure variable X (and
the unmeasured confounder, C).

Under the approach of Lin et al. (1998), an additional co-
variate Z does not affect the bias if the mean of C conditional
on x and z is additive in x and z, that is E(C|x, z) = q1(x) +
q2(z) (VanderWeele, 2008). However, our simulation results in
Figure 3a–c show that an additional covariate may introduce
a small degree of bias when |β| is large. We generated 100,000
X ∼ B(1, 0.5) and C ∼ B(1, 0.3 + 0.4x). The additional co-
variate Z was simulated from B(1, 0.5), B(1, 0.3 + 0.4x) and
B(1, 0.05 + 0.9x) for Figure 3a–c, respectively. Under these
data-generating processes, E(C|x, z) = E(C|x) and the addi-
tivity assumption is satisfied.

A sample of 100,000 survival times was generated from
h(t|x, c, z) = exp(x + βc + β2z) and T + ∼ uniform(0, 1). The
data were then fitted by the reduced model h∗

0(t) exp(θ∗x +
β∗

2z). It can be seen that the bias is not impacted by the dis-
tribution of Z, but is affected by β2, when |β| is large. The
results were similar when we allowed censoring to depend on
X and Z by assuming T + ∼ uniform(0, exp(−θx − β2z)) (see
Web Figure 9).

It is then natural to investigate the influence of more than
one additional covariate when |β| is large. To simplify the
problem, we examine the case where all the additional covari-
ates are binary and independent of each other, with the same
coefficient β2. As the bias is only significant for large negative
β, we set β = −5. The results displayed in Figure 3d, show
the bias increases slightly with the number of covariates and
the increments are not linear.

4. Sensitivity Analysis

The aim of our proposed method of sensitivity analysis is to
assess how the point and interval estimators for θ or associated
P-value would change given clinically plausible values of the
sensitivity parameters β and f (c|x).
4.1. Point Estimate

For a sample with ñ observed times t̃1, . . ., t̃ñ, of which n are
uncensored t1, . . ., tn, from (4) we have the relation between

θ and θ∗ approximately relies on the equations 0 = Ũ(θ; θ∗) =
Ũ = {Ũ1, . . ., ŨK}tr with

0 = Ũk = 1

n

n∑
i=1

×

⎡⎣xik −
∑ñ

j=1
S+(ti|xj)e

xjθ
∗
xjkEc|xj

{
e−H0(ti)e

xj θ+Cβ
}

∑ñ

j=1
S+(ti|xj)exjθ

∗
Ec|xj

{
e−H0(ti)e

xj θ+Cβ
}

⎤⎦
for k = 1, . . ., K, (14)

where the expectation Ec|xj
(·) can be calculated analytically

or approximately with respect to f (c|x).
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Figure 3. The effect of additional measured covariates on the simulated bias θ̂∗ − θ: (a) Z|x ∼ B(1, 0.5); (b) Z|x ∼ B(1, 0.3 +
0.4x); (c) Z|x ∼ B(1, 0.05 + 0.9x); (d) the effect of increasing the number of measured covariates on the simulated bias when
β1 = −5 and β2 = 1, 2 and 3.

Write θ = R(θ∗) = argθ

{
Ũ(θ; θ∗) = 0

}
. Due to the func-

tional invariance property of MLE, the point estimate of the
true value θ is then θ̂ = R(θ̂∗). The function R(·) and its in-
verse R−1(·) relate θ and θ∗, and play a key role in sensitivity
analysis.

The baseline survivor function e−H0(ti) in (14) is estimated
by solving

Ŝ(ti|xi = 0) = Ec|xi=0[e
−Ĥ0(ti)e

Cβ

],

where Ŝ(ti|xi = 0) is the Breslow (1972) estimator:

Ŝ(ti|xi = 0) = exp

{
−

∑
m:tm≤ti

1∑
j:̃tj≥tm

exj θ̂
∗

}
.

The survival function of censoring can be also approximated
by the Breslow (1972) estimator by considering events as “cen-
sored” observations and censored observations as “events”
(Satten and Datta, 2001).

4.2. P-Values

In many applications, we are interested in evaluating the ev-
idence the data give about a null hypothesis H0 : θ = θ0 (for

example, that a hazard ratio equals one). Using θ = R(θ∗),
this null hypothesis is equivalent to H0 : θ∗ = R−1(θ0) and the
two-sided P-value is therefore

P-value = 2�

{
−

∣∣∣∣ θ̂∗ − R−1(θ0)

σ∗

∣∣∣∣} , (15)

where �{·} is the cumulative distribution function of N(0, 1)
and σ∗ is the standard error of θ̂∗.

4.3. Confidence Intervals

Since the distribution of θ̂ = R(θ̂∗) might be slightly skewed
(see example in Web Figure 6), the traditional way of using
standard error to calculate confidence intervals (CI) could
be misleading. An alternative way is to construct CI by the
highest density interval. To do this, we generate B bootstrap
samples {θ̂∗1, . . ., θ̂∗B} from the multivariate normal distribu-
tion N{θ̂∗,Cov(θ̂∗)}, where Cov(θ̂∗) is the covariance matrix
of θ̂∗. The sample of the kth parameter θ̂k, (θ̂1

k , . . ., θ̂
B
k ) is then

obtained from θ̂b = R(θ̂∗b) for b = 1, . . ., B. The highest
density interval of θ̂k can be computed from the sample
(θ̂1

k , . . ., θ̂
B
k ) by using the emp.hpd function in the R package

TeachingDemos.
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Table 1
Simulated bias of point estimates and coverage of 95% confidence intervals for the hazard ratio associated with treatment

under two methods of sensitivity analysis, when censoring is moderate. The equations (14) and (16) were used to estimate θ

and its confidence interval in the last two columns

unadjusted Lin et al. (1998) θ̂ = R(θ̂∗)
Fraction

ñ τ β ρ0 ρ1 Censored (%) Bias Coverage (%) Bias Coverage (%) Bias Coverage (%)

100 0.56 1 0.1 0.9 50 0.78 39 0.01 97 −0.04 95
0.57 0.3 0.7 51 0.35 83 −0.02 91 0.00 98
0.58 0.5 0.5 51 −0.08 90 −0.08 90 −0.03 99
0.35 2 0.1 0.9 50 1.38 3 −0.04 96 0.07 96
0.36 0.3 0.7 50 0.42 78 −0.21 87 −0.06 97
0.35 0.5 0.5 50 −0.24 82 −0.24 82 0.01 100
0.20 3 0.1 0.9 50 1.71 0 −0.12 91 0.15 91
0.22 0.3 0.7 49 0.36 84 −0.40 72 −0.11 99
0.21 0.5 0.5 50 −0.44 68 −0.44 68 0.00 100

500 0.57 1 0.1 0.9 50 0.76 0 −0.02 95 0.00 95
0.58 0.3 0.7 50 0.32 42 −0.06 90 −0.01 98
0.57 0.5 0.5 50 −0.10 90 −0.10 90 −0.01 99
0.34 2 0.1 0.9 50 1.27 0 −0.15 82 −0.04 92
0.34 0.3 0.7 50 0.43 11 −0.20 70 0.03 99
0.34 0.5 0.5 50 −0.30 44 −0.30 44 0.01 100
0.20 3 0.1 0.9 50 1.65 0 −0.18 81 0.04 89
0.20 0.3 0.7 50 0.38 21 −0.38 28 −0.02 100
0.21 0.5 0.5 50 −0.48 4 −0.48 4 0.01 100

1000 0.57 1 0.1 0.9 50 0.73 0 −0.04 93 −0.02 96
0.57 0.3 0.7 50 0.30 11 −0.07 89 0.01 99
0.58 0.5 0.5 50 −0.10 80 −0.10 80 −0.01 100
0.34 2 0.1 0.9 50 1.29 0 −0.13 80 0.00 94
0.34 0.3 0.7 50 0.40 1 −0.23 41 0.00 99
0.34 0.5 0.5 50 −0.30 7 −0.30 7 −0.01 100
0.20 3 0.1 0.9 50 1.65 0 −0.18 65 0.03 90
0.20 0.3 0.7 50 0.40 0 −0.36 6 0.00 99
0.21 0.5 0.5 50 −0.49 0 −0.49 0 −0.01 100

However, the bootstrap method may become computa-
tionally inefficient, when the dimension of θ is high (e.g.,
K ≥ 7). We thus give an approximation by using the con-
fidence bounds of θ̂∗. Suppose we are interested in the pa-
rameter θk and its confidence interval (C

θk
L , C

θk
U ). As shown

in Section 3.7, the effect of additional measured covariates is
negligible. It means that the solution of θk would not change
appreciably if we ignore all the covariates except xk in (14).

In addition, θk is usually a monotonically increasing func-

tion of θ∗
k in practice. Let (C

θ∗
k

L , C
θ∗
k

U ) be the confidence interval

of θ∗
k . The lower bound C

θk
L then can be estimated from the

equation

0 = 1

n

n∑
i=1

×

⎡⎢⎢⎣xik −

∑ñ

j=1
S+(ti|xj)e

xjkC
θ∗
k

L xjkEc|xjk

{
e−H0(ti)e

xjkC
θk
L

+Cβ

}
∑ñ

j=1
S+(ti|xj)e

xjkC
θ∗
k

L Ec|xjk

{
e−H0(ti)e

xjkC
θk
L

+Cβ

}
⎤⎥⎥⎦.

(16)

Similarly, C
θk
U can be obtained from the above equation by

substituting C
θ∗
k

L by C
θ∗
k

U . Our simulation shows that this ap-
proximation is sufficiently accurate and very efficient.

4.4. Simulation Study

Lin et al. (1998) proposed a simple method for sensitivity
analysis. Here we conducted simulation studies to compare
their method with our approach.

Table 1 shows the biases of point estimators and coverage of
95% CIs in 1,000 simulation replications, when given the true
β and f (c|x). To compare with the method of Lin et al. (1998),
we used similar simulation settings to theirs: θ = 1, h0(t) = 1,
X ∼ B(1, 0.5), C|x ∼ B(1, ρx) and τ was solved from (13) so
as to ensure moderate levels of censorship (fraction censored
was about 50%). It is clear that our proposed method gives
almost unbiased point estimates and good coverage of confi-
dence intervals. The method of Lin et al. (1998) gets worse
as β increases, because it only addresses the bias attributable
to confounding. The results for light (10%) and heavy (90%)
censorships are presented in Web Tables 1 and 2, respectively.
We note that both methods of sensitivity analysis gave biased
treatment estimates when censoring was heavy and the sam-
ple size was small (ñ = 100). However, since the accuracy of
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approximation (14) increases with the number of observed
events, the proposed method is asymptotically unbiased irre-
spective of the censoring rate. The minimum sample size at
which the method achieves approximately unbiased estimates
increases with the censoring rate, and for a censoring rate as
high as 90% is about ñ = 1, 000.

5. Real Examples for Sensitivity Analysis

5.1. Vitamin and Minerals Trial

Ellis et al. (2008) conducted a randomized controlled trial
assessing the effect of antioxidant and folinic acid supplemen-
tation on developmental outcomes for children with Down
syndrome. Comparing infants allocated to folinic acid (x = 0)
with those who were not (x = 1), the estimated hazard ratio
for age of sitting was 1.25 (95% confidence interval 0.88–1.78).
These results did not change appreciably after adjustment for
area of residence, maternal ethnicity, birth weight, and social
class.

We now assess the impact on the treatment estimates for
age at sitting of assuming a binary confounder, c, has been
omitted from the model, where C|x ∼ B(1, ρx). As this is a
randomized controlled trial and any random imbalance in the
prevalence of the unmeasured confounder between treatment
groups is likely to be small, we restrict 0 ≤ ρ0 − ρ1 ≤ 0.2. As-
suming the true prevalence of the omitted covariate for treat-
ment groups combined is 0.5, the probability of a confounding
effect ρ0 − ρ1 of more than 0.2 by chance is 0.02 for the trial
sample of size ñ = 138.

Figure 4a shows the sensitivity of the lower limit of the con-
fidence interval for the hazard ratio of folinic acid to adjust-
ment for an unmeasured binary covariate of specified proper-
ties, where we set ρ0 + ρ1 = 1. For exp(β) = 10, the difference
in probabilities ρ0 − ρ1 must be > 0.14 for the treatment effect
to become significant. The same conclusion can be obtained
from the contour plot in Web Figure 3 which shows results
of a similar sensitivity analysis for the P-value of the treat-
ment estimate. The results for antioxidant supplementation in
Web Table 3 show that the treatment effect is significant only
when exp(β) = 10 and ρ0 = 0.9, ρ1 = 0.7. Given the nature of
the study design, the conditions required for the treatment
effects to be significant are implausible, suggesting that the
original findings of non-significance are robust to the presence
of realistic levels of unmeasured confounding.

A simulation study was conducted with similar sample size
and censoring rates to the vitamin and mineral trial, providing
support for the validity of the treatment estimates presented
in the sensitivity analysis (see Web Table 4). However, we
note that in this illustrative application, the width of the con-
fidence intervals suggests the sensitivity analysis, in common
with the original analysis, lacks power to establish statistical
significance for small studies.

5.2. Leukaemia and Deprivation Study
(Non-Randomized)

Henderson, Shimakura, and Gorst (2002) analyzed the ef-
fect of a social deprivation score X (where lower values in-
dicate less affluent areas) on the time in years since diag-
nosis with acute myeloid leukemia to death (ñ = 1, 043).
The estimated hazard ratio for a 1 point increase in x

Figure 4. Contour plots of sensitivity analysis results: (a)
the lower bounds of the 95% confidence intervals (use (16))
for the hazard ratio of folinic acid on age of sitting for chil-
dren with Down syndrome; (b)the P-values (use (15)) for
the two-sided test that the log-hazard ratio of deprivation
score θ = 0.

was 1.03 (P-value = 0.0012) after adjustment for age, gen-
der and white blood cell count, indicating that prognosis is
less good if the patient lives in a more deprived residential
location.

We now consider a potential unmeasured binary confounder
C, which affects both survival time T and the deprivation
score X. We generated c from C|x ∼ B

{
1, expit(r1 + r2x)

}
,
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where (r1, r2) were solved from⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E(C) = E

{
expit(r1 + r2X)

} = 0.5

corr(X, C) = E(XC) − E(X)E(C)

sd(X)sd(C)

= E
{
Xexpit(r1 + r2X)

} − 0.5E(X)

0.5sd(X)

such that the marginal distribution is C ∼ B(1, 0.5) and the
desired corr(X, C) is obtained.

Figure 4b shows the sensitivity of P-value for different
choice of β and corr(X, C). It shows that even if the corre-
lation is strong, that is corr(X, C) > 0.5, the hazard ratio of
the confounder needs to be > 4 for the hazard ratio of x to
become non-significant at the 5% level. It seems unlikely that
such an important covariate would be missed, suggesting that
the original finding of a significant effect of deprivation score
is robust to the presence of realistic levels of unmeasured con-
founding.

A simulation study was conducted with the same sample
size (ñ = 1043), covariate X and censoring rate (15.7%) as
this non-randomized study. To extend the range of scenarios
considered, survival times were simulated assuming the true
value of θ was 0 (i.e., assuming the continuous exposure has
no effect on survival). Here the emphasis was on comparing
the extent to which the sensitivity analysis methods avoid
false rejection of the null hypothesis H0 : θ = 0. The results
are summarized in Web Table 5 and provide further support
for the validity of the proposed formulae when applied to data
from non-randomized designs.

6. Discussion

We explored a general framework for assessing bias in treat-
ment estimates from the Cox model with omitted covariates.
Bias formulae based on asymptotic properties of the likeli-
hood estimator were presented and validated in simulation
experiments. The results showed that the confounding biases
for censored survival data are typically complicated. However,
the proposed approach made it possible to describe the influ-
ence of three different sources of bias: omission of a balanced
covariate, data censoring and unmeasured confounding. Fig-
ure 5 characterises the sources of bias:

(a) In the absence of a missing covariate, the bias curve re-
mains at zero (the solid line); when a balanced covariate
is omitted, the effect is underestimated to a limit as |β|
increases (the dashed line).

(b) When the data are censored, the bias is maximized at
50% censoring but decreases with heavy censorship.

(c) When the missing covariate is a confounder, the shape
of bias changes. If the association between x and c is
positive, the limits increase on the right side but de-
crease on the left side, and hence the slope of bias in-
creases. Conversely, if the association between x and c

is negative, the limits decrease on the right side but
increase on the left side.

Although the bias formula is applicable under a range of
assumptions, this paper has focused on considering the sim-

Figure 5. An illustration of the influence of the different
sources of bias when estimating binary treatment effects from
the Cox proportional hazards model with an omitted binary
covariate. (a) solid: no missing data, no bias; dashed: bias
due to omitting a balanced covariate. (b) solid: bias due to
omitting a balanced covariate; dashed: bias due to omitting a
balanced covariate and censoring. (c) solid: bias due to omit-
ting a balanced covariate and censoring; dashed: bias due to
omitting a confounder and censoring.

ple case of a binary exposure and a single unmeasured con-
founder. Further simulation work showed that the bias in-
creased slightly in the presence of one or more measured con-
founders for large values of |β|. The extension to multiple un-
measured confounders is straightforward. If there are several
missing covariates c1, . . ., cq with coefficients β1, . . ., βq, then
we can interpret c as the composite score, β1c1+, · · ·, +βqcq,
with β = 1 (Lin et al., 1998). Lin et al. (1998) also argue that
the choice of a single unmeasured confounder is a less severe
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restriction when all the known confounders are adjusted for
in the survival model.

The bias formula was used as the basis for proposing a
new method to assess the sensitivity of estimates of treat-
ment effects to omission of relevant covariates. Simulation ex-
periments were conducted to compare the method with the
approach of Lin et al. (1998), a special case of the proposed
method when the rate of censoring is high. The method of
Lin et al. (1998) has the benefit of ease of implementation,
being based on a simple adjustment formula, but its relative
performance deteriorates as the magnitude of |β| increases. In
contrast, the simulations indicate that the proposed method
can provide sufficiently unbiased treatment estimates, and as-
sociated confidence intervals with good coverage, over a wide
range of scenarios, when the true sensitivity parameters β and
f (c|x) are known.

Sensitivity analysis is a flexible approach to addressing
omission of covariates that makes it possible to assess the im-
pact of ’clinically plausible’ levels of unmeasured confound-
ing and other sources of bias on the treatment estimates
(Groenwold, 2010). However, it does not provide a single pre-
cise estimate of treatment effectiveness nor does it help iden-
tify the nature of any bias from omitting covariates. A number
of alternative strategies for tackling unmeasured confounding
have been proposed that do attempt to provide explicit esti-
mates of causal effects. An overview of these different methods
was given in Aleyamehu et al (2011), including instrumental
variables and the prior event rate ratio method (Tannen et al.,
2009).

The method of sensitivity analysis proposed in this paper
could be extended in a number of ways. First, incorporat-
ing adjustment for the propensity score into the sensitivity
analysis would provide an efficient way of controlling for the
effect of measured covariates (Rosenbaum, 1991). Other pos-
sible developments include consideration of specific distribu-
tional forms (both univariate and multivariate) for the un-
measured confounder(s) to provide special cases of the generic
bias formulae for a wider range of common confounding
models.

Omission of relevant covariates is a common source of bias
when estimating treatment or exposure effects from survival
data. Although we cannot directly adjust for unmeasured co-
variates, their potential impact can be assessed by means of
sensitivity analyses. Indeed, Groenwold et al. (2010) argue
that all analyses of causal associations in observational data
should include an assessment of robustness to unmeasured
confounding. The current study provides new tools for con-
ducting sensitivity analysis for survival outcomes, with ap-
plicability to both randomized controlled trials and observa-
tional studies. Implementation of the methods requires nu-
merical evaluation of the appropriate bias formulae. This can
be achieved using Monte Carlo methods and illustrative R
code is available on request from the authors.

7. Supplementary Materials

Web appendices, tables and figures referenced in Sections 2,
2.2, 3.1, 3.2, 3.5, 4.3, 4.4, 5.1 and 5.2 are available with this
paper at the Biometrics website on Wiley Online Library.
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