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Abstract—Many compactness measures are available in the
literature. In this paper we present a generalised compactness
measure Cq(S) which unifies previously existing definitions of
compactness. The new measure is based on Minkowski distances
and incorporates a parameter q which modifies the behaviour of
the compactness measure. Different shapes are considered to be
most compact depending on the value of q: for q = 2, the most
compact shape in 2D (3D) is a circle (a sphere); for q → ∞,
the most compact shape is a square (a cube); and for q = 1, the
most compact shape is a square (a octahedron).

For a given shape S, measure Cq(S) can be understood as a
function of q and as such it is possible to calculate a spectum of
Cq(S) for a range of q. This produces a particular compactness
signature for the shape S, which provides additional shape
information.

The experiments section of this paper provides illustrative
examples where measure Cq(S) is applied to various shapes and
describes how measure and its spectrum can be used for image
processing applications.

Keywords: shape compactness, shape description, image pro-
cessing, computer vision.

I. INTRODUCTION

Shape descriptors provide a quantitative representation of a
particular characteristic of the shape. Afterwards these values
can be used in intelligent image processing applications, for
example image classification or image retrieval. Classification
is performed by grouping together images which represent
similar shapes, for example grouping together oranges and
apples (similar because of their roundness), and separating
them from pineapples and bananas. Image retrieval consists
on searching a database for images which have similar shape
to the given query image.

A variety of shape descriptors for 2D and 3D shapes
exists in literature, such as the well known moment invariants
[1], asymmetries in the distribution of roughness (ADR) [2]
and the anisotropy measure for multiple component shapes
[3]. Shape descriptors have been used in a range of image
processing applications ranging from shape classification [4]
to medical applications [5].

One of the most intuitive and useful shape characteristics is
the compactness of the shape. A common way to understand
compactness in 2D is as a ratio between the area of and
perimeter of a given shape as follows:

C2D(S) =
4π ·Area(S)

Perimeter(S)2
(1)

Using the definition in equation (1), a circle will be the most
compact shape possible. This definition can easily be extended
to 3D in which case the most compact possible shape is a
sphere:

C3D(S) =
36π ·Volume(S)2

Surface(S)3
(2)

Other definitions of compactness exist in the literature, such
as [6] which defines a cube as the most compact shape. In
[7], [8] and [9] the authors give alternative definitions of
compactness which make a sphere, a cube or an octahedron the
most compact shapes. These definitions are derived in a very
similar way and compare the distribution of mass in the shape
with the distribution in the most compact shape. They only
differ by using different distance metrics as their starting point
– Euclidean distance in the case of the sphere and Chebyshev
distance in the case of the cube and Manhattan distance in
the case of the octahedron. These distance metrics are in fact
particular cases of the Minkowski distance.

The Minkowski distance between D-dimensional vectors x
and y is

‖x−y‖q = (|x1−y1|q+ |x2−y2|q+ . . .+ |xD−yD|q)
1
q (3)

When q = 2 the standard Euclidean distance is recovered;
when q = 1 the distance corresponds to the Manhattan
distance and as q →∞ the Chebyshev distance, ‖x−y‖∞ =
max(|x1 − y1|, |x2 − y2|, . . . , |xD − yD|) is obtained.

In this paper we unify the compactness, cubeness and
octahedroness definitions introduced in [7], [8] and [9] by
defining a compactness measure based on any one of the
Minkowski distances. As such, the compactness measures
introduced in [7], [8] and [9] are special cases of the com-
pactness measure introduced here. Furthermore, by using a
range of values for the Minkowski distance it is possible to
obtain a a spectrum of compactness measures that give a more
complete characterisation of the shape.

The paper is organised as follows. In the next section we
define our measure of compactness and establish its properties,
after which in section III we discuss how it may be efficiently
calculated. In section IV we apply the compactness measure
to a number of 2D and 3D shapes. Section V includes
conclusions and final remarks.
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II. GENERALIZED COMPACTNESS MEASURE

In order to construct the Minkowski compactness measure,
we begin by defining the q-ball:

Bq(a) = {x : ‖x‖q ≤ a} (4)

Here a is the radius of the q-ball, i.e. any point on the boundary
of the q-ball, is at a distance ‖x‖q = a from the origin and the
boundary of Bq(a) intersects the coordinate axes at a distance
a from the origin 1. The boundaries of a selection of these in
are shown in Figure 1.

q = 0.5 q = 1 q = 2 q = 5

Fig. 1: Boundaries of unit q-balls Bq(1) for various q in 2D
(top row) and 3D (bottom row).

Notice that in 2D the q-ball for q = 1 and q → ∞ is
in both cases a square, only differing in rotation and scale
(see Figure 1); a compactness measure derived using metrics
‖x‖q=1 and ‖x‖q→∞ would be equivalent. However this is
not the case in 3D: the q-ball for q → ∞ is a cube while
the q-ball for q = 1 is a octahedron; compactness measures
derived from these ‖x‖q=1 and ‖x‖q→∞ in 3D would yield
different results.

We consider a shape S which comprises the set of points x
belonging to the shape. As usual we define the area (in 2D)
or volume (in 3D) of the shape as:

Vol(S) =

∫

S

dx (5)

The existing compactness measures provide a numerical
indication of the similarity between a given shape and a proto-
typical ‘most compact’ shape. To begin with our definition of
compactness consider following measure for a shape S, whose
centre of mass lies at the origin:

Mq(S) =

∫

S

‖x‖q dx (6)

The quantity Mq(S) is the integrated distance, using the
Minkowski distance, of all points in the shape S to the origin
(its centre).

1Note: For simplicity and without loss of generality it is assumed through-
out that the centre of mass of S lies at the origin.

The radius a? can be selected such that the q-ball Bq(a?)
has volume equal to the volume of S:

Vol(Bq(a
?)) =

∫

Bq(a?)

dx = Vol(S) (7)

Based on the above, we provide the following theorem:
Theorem 1: For any given shape S and a? as defined by

(7), then Mq(S) ≥ Mq(Bq(a
?)) and Mq(S) = Mq(Bq(a

?))
if and only if S = Bq(a

?).
Proof 1: For convenience write B?q ≡ Bq(a?). Consider the

regions S ∩B?q , S \B?q and B?q \S. Note that Vol(S \B?q ) =
Vol(B?q \ S) because Vol(S) = Vol(B?q ).

Also notice that ‖x‖q > a? for x ∈ S \B?q , while ‖x‖q <
a? for x ∈ B?q \ S. Consequently:

∫

B?
q\S
‖x‖q dx <

∫

S\B?
q

‖x‖q dx. (8)

Therefore

Mq(S) =

∫

S∩B?
q

‖x‖q dx+

∫

S\B?
q

‖x‖q dx (9)

>

∫

S∩B?
q

‖x‖q dx+

∫

B?
q\S
‖x‖q dx (10)

= Mq(B
?
q ) (11)

If S = B?q , then clearly Mq(S) = Mq(B
?
q ). In the reverse

direction, suppose that Mq(S) = Mq(B
?
q ) and S 6= B?q . Then

equations (8) and (9) show that Mq(S) > Mq(B
?
q ) and the

contradiction implies that S 6= B?q . �
Theorem 1 might be more easily understood by simply

observing the shapes in Figure 2. Figure (a) which shows a
given shape S (dark grey) and its corresponding Bq(a

?) for
q = 2 (light grey); figures (b) and (c) show B?q \S and S \B?q
respectively. It can be seen that the Euclidean distance from
any point in B?q \S to the origin is smaller than the Euclidean
distance from any given point in S \B?q to the origin.

(a) S and B?
q (b) B?

q \ S (c) S \B?
q

Fig. 2: A given shape S and its equivalent Bq=2(a?). With
q = 2, it is clear that any given point in B?q \ S is closer to
the origin than any given point in S \B?q .

Now we give a definition for the Minkowski compactness
measure:

Definition 1: Let S be any given shape, and let R(S, θ) be
the rotation of S parametrised by an angle θ (an angle in 2D
and 2 angles in 3D). Then, the compactness measure Cq(S)
is defined as:

Cq(S) = min
θ

Mq(R(S, θ))

Mq(Bq(a?))
(12)
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For the instances where q = 1, q = 2 and q = ∞,
the integrals for the measure Cq(S) can be simplified and
calculated in terms of shape moments [8], [7], [9]. In the
generalised form this is not so straightforward, but the integrals
can still be calculated numerically; this is discussed further in
section III.

The compactness measure Cq(S) has the following proper-
ties:

a) Cq(S) ∈ [1,∞), for any given shape;
b) Cq(S) is invariant with respect to similarity transforma-

tions (rotation, translation and scaling);
c) Cq(S) = 1 if and only if S is related to Bq by a similarity

transform;
d) For any given shape S1 there is a shape S2 such that

Cq(S1) < Cq(S2).

III. CALCULATION OF THE COMPACTNESS MEASURE

Calculation of the compactness requires finding the nu-
merator and denominator of equation (12). Except for a few
shapes and particular values of q the numerator must be found
numerically. When the shapes are defined by pixels or voxels
this is straightforwardly done by approximating the integral
(6) by a summation over the pixels. We note that it is more
accurate to rotate the coordinate system which defines ‖x‖q
rather than rotating the shape itself.

The denominator of equation (12) is Mq(Bq(a
?)). This can

be found without numerical integration except to find Vol(S),
which again can be approximated by summation over the
pixels (pixel count). Mq(Bq(a

?)) can be calculated as follows:
First we note that changing variables in the integration from
equation (6) shows that:

Mq(Bq(a)) = aD+1Mq(Bq(1)) (13)

The quantity Mq(Bq(1)) can be related to Vol(Bq(1)) in
the following way. In (hyper-) spherical polar coordinates
(r, φ1, φ2, . . . , φD−1) we have:

‖x‖q = r (| cosφ1|q + | sinφ1 cosφ2|q + . . .

+| sinφ1 sinφ2 . . . sinφD−2 cosφD−1|q)
1
q (14)

≡ rb(φ) (15)

The last equation shows that b−1(φ) = b−1(φ1, . . . , φD−1) is
the distance from the origin to the boundary of Bq(1) in the
φ direction. In polar coordinates the volume of the Bq(1) can
be found by integrating over the positive orthant:

Vol(Bq(1)) = 2D
∫ π

φD−1=0

∫ π/2

φD−2=0

· · ·
∫ π/2

φ1=0

∫ b−1(φ)

r=0

rD−1J(φ) drdφ (16)

where J(φ) is the angular part of the volume element. The
integration with respect to r can be carried out immediately

to yield:

Vol(Bq(1)) =
2D

D

∫ π

φD−1=0

∫ π/2

φD−2=0

· · ·
∫ π/2

φ1=0

[b(φ)]−DJ(φ)dφ (17)

In a similar way and using the fact that ‖x‖q = r · b(φ), we
may write Mq(Bq(1)) as:

M(Bq(1)) = 2D
∫ π

φD−1=0

∫ π/2

φD−2=0

· · ·
∫ π/2

φ1=0

∫ b−1(φ)

r=0

r · b(φ) · rD−1J(φ) drdφ (18)

=
2D

D + 1

∫ π

φD−1=0

∫ π/2

φD−2=0

· · ·
∫ π/2

φ1=0

[b(φ)]−DJ(φ)dφ (19)

Consequently

M(Bq(1)) =
D

D + 1
Vol(Bq(1)) (20)

Using this result, (13) and the fact that

a? =

[
Vol(S)

Vol(Bq(1))

]1/D
(21)

which follows from Vol(Bq(a)) = aD Vol(Bq(1)), allows
Mq(Bq(a

?)) to be written as:

Mq(Bq(a
?)) =

D

D + 1
[Vol(S)]

D+1
D [Vol(Bq(1))]

− 1
D (22)

Finally we note that the volume of a unit q-ball in D-
dimensions can be efficiently computed as [10]:

Vol(Bq(1)) = 2D
Γ( 1

q + 1)D

Γ(Dq + 1)
(23)

A. Special cases

As it was mentioned above, the compactness, cubeness and
octahedroness measures introduced in [7], [8] and [9] are
indeed particular cases of the compactness measure Cq(S)
introduced here. In these cases, measure Cq(S) indicates a
similarity with a geometric shape (sphere, cube and octahe-
dron) and therefore the denominator of (12) can be calculated
from the well known formulas for volume of these geometric
shapes.

Further simplification is possible for q = 2: given that
euclidean distance is rotationally invariant, i.e. ‖x‖q=2 =
‖R(x, θ)‖q=2 for any θ, it is unnecessary to minimise for any
rotation of S, so (12) can be simplified to:

Cq=2(S) =
Mq=2(S)

Mq=2(Bq=2(a?))
(24)
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Recalling that moment for a 3D shape centred at the origin
are defined as [1]:

µp,q,r(S) =

∫∫∫

S

xpyqzrdxdydz (25)

it is easy to see that Cq=2(S) can expressed in terms of second
order moments µ2,0,0(S), µ0,2,0(S) and µ0,0,2(S). It is well
known that moments can be computed efficiently [11], which
implies Cq=2(S) can also be computed efficiently.

IV. EXPERIMENTS

In this section we show how the measure Cq(S) behaves
for different 2D and 3D shapes and provide an indication of
how it can be used for image processing applications.

A. Experiments on two-dimensional shapes

Figure 3 shows a number of shapes to be analysed2. Table
I shows the computed Cq(S) values for different values of q.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: A selection of shapes to be analysed.

q = 0.1 q = 0.5 q = 1.0 q = 2.0 q = 5.0

(a) 1.573 1.193 1.154 1.172 1.155
(b) 1.502 1.134 1.092 1.107 1.092
(c) 1.917 1.458 1.414 1.439 1.416
(d) 1.371 1.043 1.012 1.030 1.014
(e) 1.745 1.328 1.289 1.315 1.290
(f) 1.561 1.173 1.124 1.135 1.120
(g) 1.526 1.145 1.097 1.105 1.095
(h) 1.845 1.380 1.317 1.318 1.314

TABLE I: Measure Cq(S) for shapes in Figure 3 for different
values of q.

As it can be seen in Figure 3, using measure Cq(S) with a
range of q values provides additional information which may
be useful for processing these images. For example, shapes
(b) and (g) have very different Cq(S) scores for q = 0.1, but
very similar scores for q = 2.0. Shape (c) is the least compact
shape from the set, having the highest Cq(S) score for any
value of q, while shape (d) is the most compact shape from

2The shapes are taken from: www.lems.brown.edu/ dmc/.

the set, having the lowest Cq(S) score for any value of q.
Notice that shape (d) reaches its minimum Cq(S) value for
q = 1.0 (1.012) and also has a very similar value for q = 5.0
(1.014), this is to be expected as the shape is almost a square,
and both Cq=1.0(S) and Cq→∞(S) reach their minimum for
a square.

For any given shape S, the measure Cq(S) can be seen as a
function of q. As such, a spectrum of Cq(S) can be calculated.
The spectrum Cq(S) provides characteristic information of the
shape, which may allow to differentiate between shapes.
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Fig. 4: A selection of shapes and their compactness spectra.

As mentioned above, a spectrum of measure Cq(S) can be
calculated for a given shape. Figure 4 shows some figures and
their compactness spectra in range q ∈ (0, 5).

We point out that the minimum value of Cq(S) is 1, which
is achieved when S is the Minkowski ball for that q. Thus
in Figure (b) the shape is similar to a circle and achieves a
minimum Cq for q = 2. Likewise the shape in Figure (e) is
approximately square and has small Cq values when q ≈ 1
and for large q (recall that in two dimensions the Minkowski
balls for q = 1 and q → ∞ differ only by a rotation and
isotropic scaling).

It is expected that similar shapes will have similar spectra.
Thus the spectra of the ‘cross-like’ shapes in Figures (c),
(d) are similar, although their magnitudes are different. In
addition, the spectra reveal the similarity of these two shape
to the ‘butterfly’ (Figure (f)) and the ‘bird’ (Figure (i)).

It is advantageous to have a spectrum of Cq(S) instead of
a single value of Cq(S) because two shapes may have the
same Cq(S) value for a given value of q, but they may be
distinguished by the rest of their spectra. For instance in Figure
4, shapes (b) and (d) have almost identical Cq(S) ≈ 1.05 for
q = 1, however their Cq(S) spectra differ markedly for other
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q.

B. Experiments for 3D case

In this section we use measure Cq(S) to calculate the
compactness of a collection of 3D images 3. Figure 5 shows
some 3D shapes and Table II shows the computed Cq(S)
values for different values of q.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: A selection of 3D shapes to be analysed.

q = 0.1 q = 0.5 q = 1.0 q = 2.0 q = 5.0

(a) 2.486 2.879 4.303 2.013 3.397
(b) 2.879 4.303 2.013 3.397 3.193
(c) 1.634 3.550 4.209 4.756 3.790
(d) 2.201 2.066 2.177 2.198 2.199
(e) 2.747 3.605 3.175 2.749 2.478
(f) 1.675 1.755 1.823 1.633 1.604
(g) 1.695 2.823 3.540 2.303 3.011
(h) 6.584 3.306 3.401 4.312 3.765

TABLE II: Measure Cq(S) for shapes in Figure 5 for different
values of q.

It can be observed in Figure 5 that different shapes have
higher or lower Cq(S) scores for different values of q. For
example, shape (f) has the lowest Cq(S) score for almost any
value of q, however from the shapes in Figure 5 there is none
which is consistently least compact for any value of q.

Using different values of q, shapes in 5 would be ordered
differently. Therefore using different values of q allow for
differentiation of shapes. For example, shapes (d) and (g)
have very similar Cq=2.0(S) scores (2.198 and 2.303), but
their Cq=1.0(S) (2.177 and 3.540) are distinctively different.
This implies that they have similar spherical compactness but
they differ in their octahedroness. Likewise, shapes (e) and
(h) have very similar Cq=0.5(S) and Cq=1.0(S) scores, but
are significantly different on their Cq=0.1(S), Cq=2.0(S) and
Cq=5.0(S) scores.

3The shapes are taken from the McGill database:
http://www.cim.mcgill.ca/ shape/benchMark/. [12]

V. CONCLUSION

In this paper we have presented a generalised measure of
compactness which is based on the Minkowski distance. We
have show that the compactness measures previously presented
in [7], [8] and [9] are indeed particular cases of the Cq(S)
compactness measure for specific values of q. We have shown
that the calculation of Cq(S) is straight forward and that
it can be approximated numerically for any given shape.
Section IV provides illustrative examples which demonstrate
the behaviour of Cq(S) applied to a set of 2D and 3D shapes.
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[8] C. Martinez-Ortiz and J. Žunić, “A family of cubeness measures,”
Machine Vision and Applications, vol. 23, no. 4, pp. 751–760, 2012.

[9] C. Martinez-Ortiz, “2d and 3d shape descriptors,” Ph.D.
Thesis, University of Exeter, 2010. [Online]. Available:
http://hdl.handle.net/10036/3026/

[10] X. Wang, “Volumes of generalized unit balls,” Mathematics Magazine,
vol. 78, no. 5, pp. pp. 390–395, 2005. [Online]. Available:
http://www.jstor.org/stable/30044198

[11] L. Yang, F. Albregtsen, and T. Taxt, “Fast computation of three-
dimensional geometric moments using a discrete divergence theorem
and a generalization to higher dimensions,” Graphical Models
and Image Processing, vol. 59, no. 2, pp. 97–108, 1997. [On-
line]. Available: http://www.sciencedirect.com/science/article/B6WG4-
45M9002-V/2/255e8cc8718dc2cba3fa30463f95650f

[12] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, and
S. Dickinson, “Retrieving articulated 3d models using medial surfaces,”
Machine Vision and Applications, vol. 19, no. 4, pp. 261–275, 2008.

66


