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ABSTRACT
We investigate the effects of missing observations on the
robust Bayesian model for spectral analysis introduced by
Christmas [2013]. The model assumes Student-t distributed
noise and uses an automatic relevance determination prior on
the precisions of the amplitudes of the component sinusoids
and it is not obvious what their effect will be when some of
the otherwise temporally uniformly sampled data is missing.

Index Terms— Bayesian methods, Fourier series, dis-
crete Fourier transforms, parameter estimation, amplitude es-
timation, phase estimation.

1. INTRODUCTION

In [1] we introduce a Bayesian model for spectral analysis
that is made robust to outliers by assuming that the observa-
tion noise is distributed according to the heavy-tailed Student-
t distribution. We learn posterior distributions for the noise
variables, as well as the amplitudes and phases of the sinu-
soids that make up the spectral components. In this paper we
explore the effects of missing observations on the model.

In general our observations are discrete samples of some
(unknown) continuous function. If the sampling interval, fs,
is uniform then there is an infinite number of other continuous
functions that fit the data, but there will only be one limited
to the Nyquist frequency ( 12fs) [2, 3]. Where the true func-
tion includes frequencies above the Nyquist limit, unavoid-
able aliasing occurs. With uniform sampling the effects of
aliasing are predictable; [4] shows that where the spacings
are unequal, spectral analysis produces comparable results
to those from uniformly-spaced data, but that the effects of
aliasing must be analysed in light of the actual time intervals
recorded.

With real datasets it is often the intention to sample uni-
formly in time, but errors or failures ensure that some ob-
servations are missing. In these cases the missing values are
often interpolated (see, for example, [5]) or the data are re-
sampled to a uniform time interval (so-called gridding; see,
for example, [6]) so that standard methods of analysis may be
utilised. A method that operates on the irregularly-sampled
directly is normalised convolution [7], which associates a de-
gree of certainty with each sample and uses these certainties
to interpolate the missing data.

Our model also operates directly on the incomplete data,
but aims to learn the degree of uncertainty in the resulting
spectral decomposition through the estimation of posterior
probability distributions. It is not clear what the effects are of
the Student-t noise assumption and the use of the automatic
relevance determination priors [8, 9] on the precisions of the
component amplitudes (which tend to suppress components
for which there is no evidence in the data, by constraining the
amplitudes to be close to zero).

A brief overview of the model is described in section 2.
Results from synthetic and real data are shown in section 3
and conclusions drawn in section 4.

2. THE MODEL

Our model deconstructs the set of N observations into a sum
of C sinusoidal components with varying amplitudes and
phases, so that the nth observation at time tn is defined as:

yn =

[ C∑
c=1

ac cos(φc − ωctn)

]
+ εn (1)

where ac, φc and ωc are respectively the amplitude, phase and
angular frequency of the cth component and εn is the observa-
tion noise. Noise is often assumed to be Gaussian distributed,
but the Gaussian is known to be badly affected by outliers,
so if the true distribution is significantly heavier-tailed than
Gaussian then any model built upon this assumption is likely
to perform badly. We assume that the noise is distributed ac-
cording to the heavy-tailed Student-t with zero mean:

p(εn) = S(εn | 0, λ, d) (2)

=
Γ
(

(d+1)
2

)
Γ
(
d
2

) (
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πd

) 1
2
(

1 +
λε2n
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)− d+1
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(3)

=

∫ ∞
0

N (εn | 0, (λz)−1)G(z | d
2
,
d

2
) dz (4)

where λ is known as the precision, d is the degrees of free-
dom, Γ(·) is the gamma function, N (·) a Gaussian distribu-
tion and G(·) a Gamma distribution1. As d→∞ the distribu-
tion tends to a Gaussian, at d = 2 it is the Cauchy and when
d < 2 the variance becomes effectively infinite.

1defined as G(x | a, b) = ba

Γ(a)
xa−1 exp(−bx)
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Fig. 1 A graphical representation of the model priors.

The ωc and tn are parameters whose values we specify.
We treat as variables the ac, φc, λ, d and the latent zn (from
(4)) and infer posterior distributions for them. The integrals
required for exact Bayesian inference are intractable, so, in-
stead of using computationally expensive Monte Carlo meth-
ods, we use variational approximation.

2.1. Priors

The Student-t observation noise assumption leads to the fol-
lowing likelihood (using vector notation):

p(yn |a,φ, λ, d;ω, tn) = S
(
yn |aT cos(φ− ωtn), λ, d

)
(5)

In this model we consider the component sinusoids to be in-
dependent of one another, so to each amplitude we assign a
Gaussian prior, with precision δc, and to each δc a conjugate
Gamma distribution:

p(ac | δc) = N (ac | 0, δ−1c ) (6)
p(δc) = G(δc | aδ, bδ) (7)

The latter is the automatic relevance determination prior [8,
9]. With no prior information about the component phases φc,
we model each of them as Uniformly distributed over the full
range of values, i.e. any 2π range:

p(φc) = U(φc | −π, π) (8)

The observation noise precision λ is assigned a conjugate
Gamma prior, as is the degrees of freedom d and each ele-
ment of the latent variable z (from (4)):

p(λ) = G(λ | aλ, bλ) (9)
p(d) = G(d | ad, bd) (10)

p(zn) = G(zn | d/2, d/2) (11)

A graphical representation of the model is shown in figure 1.

2.2. Posteriors

The integrals required to calculate the evidence in exact
Bayesian inference are intractable. Instead we use the
variational approximation technique which minimises the
Kullback-Leibler (KL) divergence [10, 11] between the ap-
proximate posterior distribution q(·) and the true posterior
p(· |y) (for tutorials see [12, 13]). We use mean field ap-
proximation for the minimisation [14, 15] (see also [16, 17]),
which exploits an assumed factorisation of the posteriors
(conditioning of the true posteriors on y has been omitted for
clarity):

p(a | δ) p(δ) p(φ) p(λ) p(z | d) p(d)

≈

[∏
c

q(ac) q(δc) q(φc)

][∏
n

q(zn)

]
q(λ) q(d) (12)

With 〈·〉 denoting a posterior expectation and, for conve-
nience, defining uc,n = cos(φc−ωctn), we get the following
definitions for the approximate posteriors. For the amplitudes
q(ac) is the Gaussian N (ac |µc, σ2

c ), where

σ2
c =

(
〈δc〉+ 〈λ〉

N∑
n=1

〈zn〉〈u2c,n〉
)−1

(13)

µc = σ2
c 〈λ〉

N∑
n=1

〈zn〉〈uc,n〉

 C∑
i=1
i 6=c

〈ai〉〈ui,n〉 − yn

 (14)

This allows the possibility of negative amplitudes; to avoid
oscillations around zero, and the consequent effect on the
phases and on convergence generally, we use the absolute
value of 〈ac〉 in the later posterior expressions.

For the precision of each amplitude, q(δc) is the Gamma
G(δc |αδc , βδc), where

αδc = aδ + 1/2 (15)

βδc = bδ + 〈a2c〉/2 (16)

For each phase, q(φc) is a circular Generalised Von Mises
distribution of order 2. The potential bimodality of this
distribution is problematic, but a good approximation (see
[1]) is the standard, unimodal von Mises M(φc |µc, κc) ∝
exp(κc cos(φc − µc)), where:

µc = atan2(βc,1, αc,1) (17)
κc = αc,1/ cos(µc) (18)

αc,1 = 〈ac〉〈λ〉
N∑
n=1

〈zn〉 cos(ωctn)〈gc,n〉 (19)

βc,1 = 〈ac〉〈λ〉
N∑
n=1

〈zn〉 sin(ωctn)〈gc,n〉 (20)

〈gc,n〉 = yn −
C∑
i=1
i6=c

〈ai〉〈ui,n〉 (21)



For the observation noise precision, q(λ) is the Gamma
G(λ |αλ, βλ), where

αλ = aλ +N/2 (22)

βλ = bλ +
1

2

N∑
n=1

〈zn〉
[
y2n − 2yn

C∑
c=1

〈ac〉〈uc,n〉

+

C∑
c=1

(
〈a2c〉〈u2c,n〉+ 〈ac〉〈uc,n〉

C∑
i=1
i 6=c

〈ai〉〈ui,n〉
)]

(23)

For each latent variable, q(zn) is the Gamma G(zn |αz, βzn),
where

αz = (〈d〉+ 1)/2 (24)

βzn =
1

2

{
〈d〉+ 〈λ〉

[
y2n − 2yn

C∑
c=1

〈ac〉〈uc,n〉+

C∑
c=1

(
〈a2c〉〈u2c,n〉+ 〈ac〉〈uc,n〉

C∑
i=1
i 6=c

〈ai〉〈ui,n〉
)]}

(25)

and, finally, for the degrees of freedom we get the Gamma
q(d) = G(d |αd, βd), where

αd = ad +N/2 (26)

βd = bd −
1

2

[
N +

N∑
n=1

(
〈log(zn)〉 − 〈zn〉

)]
(27)

The expectations 〈cos(φc)〉 and 〈sin(φc)〉 required for 〈uc,n〉
are calculated numerically.

In general the hyperparameters for one posterior are de-
pendent on the hyperparameters of one or more of the other
posteriors. [15] show that evaluating the each posterior in
turn and then iterating over the whole set converges to a local
minimum of the KL divergence.

3. RESULTS

In all of these tests we start withN original observations with
a uniform unit time interval between them (i.e. ∆t = 1); M
of these observations are then removed.

The effect on the model of missing observations depends
on how the missing observations are arranged and which an-
gular frequencies (the values in ω) are selected to train the
model on. We will demonstrate the two extremes of arrange-
ments: (A) values missing at random and (B) a contiguous
block of missing values which we locate at the centre of the
observation period. If M is very small then we might be
happy to construct ω as if none of the observations are miss-
ing, since ∆t is still 1 in the majority of cases (even though
we are trying to estimate distributions for a total of N ampli-
tude and phase variables given fewer than N observations);

we shall refer to this as ωf . However, with more observa-
tions missing it would perhaps be better to construct ω based
on the N −M observations; we shall refer to this as ωp. For
comparison, as well as the four cases so far described (ar-
rangements A and B, and the two sets of frequencies ωf and
ωp), we will also show the results for N −M observations
uniformly distributed in time using the frequencies in ωp.

To construct one test set, a signal is constructed from a
single significant component, with amplitude 10 and phase
π/6. To avoid the contaminating effects of leakage, the an-
gular frequency of this significant component, ωc, is set to
the smallest value in whichever of ωf and ωp is being tested
that is greater than or equal to 0.1. For arrangements A and
B, N = 100 observations are recorded at 1Hz; for arrange-
ment A, M observations are randomly selected and removed;
for arrangement B the centre M observations are removed.
For the comparison set, N −M observations are uniformly-
distributed across the observation period. Noise is then added
to the observations: a single set of M samples is taken from
a zero-mean Student-t distribution, with precision 1 and de-
grees of freedom 1.5, and this same set of noise samples is
added to the observations in each of the five test cases.

For each test set, the five different cases were trained for
M in the range of 0 to 50, at intervals of 5, until convergence.
This was repeated for 100 test sets. As in [1] we use uninfor-
mative priors, with hyperparameters set as follows:

aλ = bλ = aδ = bδ = 10−6, ad = 100, bd = 10 (28)

Figure 2 shows how the estimate of the amplitude at the
significant frequency (in black) falls, and the mean amplitude
at all other frequencies (in grey) rises, as the proportion of
missing observations increases. Figure 3 shows how the un-
certainty (in the form of the posterior standard deviation) in-
creases, both for the significant component and the others.
The comparison case shows a small rise in the uncertainty as
the number of observations decreases.

Figure 4 shows how the posterior concentration hyperpa-
rameter κc (18) for the phase of the significant component
changes as the missing proportion increases. As in figures 2
and 3, the shape of the plots does not depend on the choice
of angular frequency set, so henceforth only those for ωp are
shown. For arrangement A there is a clear relationship be-
tween the proportion of missing values and the concentration
parameter: as M increases, so κc, and therefore certainty, de-
creases. For arrangement B the effect is less marked, and
there is clearly a link between the sudden drop in the esti-
mate of the significant component’s amplitude (see figure 2d)
and that of the significant phase concentration. Again, the
comparison case shows a higher uncertainty as the number of
observations decreases.

Figure 5 shows how the posterior distribution of the phase
changes as the missing proportion increases for one arbitrar-
ily selected test set. For clarity, only results for the 0%, 15%,
30% and 50% missing values are shown. For arrangement
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Fig. 2 As the proportion of missing observations increases, the estimate of the amplitude at the significant frequency (in black) decreases
and the mean estimate of all other frequencies (in grey) increases. The horizontal dashed line marks the true significant amplitude. The
subcaptions refer to the missing value arrangement (A=missing at random, B=missing a single block in the centre of the observations) and
which set of angular frequencies is used. The boxes showing the median and 25th and 75th percentiles for each proportion of missing values.
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Fig. 3 As the proportion of missing observations increases, the uncertainty (posterior standard deviation) in the amplitude at the significant
frequency (in black) and at all other frequencies (in grey) increases. Plot format is as per figure 2.
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Fig. 4 The change in the posterior concentration κc (18) of the sig-
nificant phase as the proportion of missing observations increases.
Plot format is as per figure 2.

A, as expected, the uncertainty (spread) in the phase esti-
mation increases as the number of missing values increases.
Although the expected value becomes less accurate, the true
value (marked as a thin, vertical, black line) lies well within
the body of the distribution. For arrangement B, in this ex-
ample, we get an accurate phase estimate only where there
is no missing data, and we see the pattern shown in figure 4b
whereby the concentration does not change markedly until we
reach the 50% missing mark. The comparison case continues
to accurately estimate the phase and the concentration does
not change significantly.

Using the posterior expectations for the amplitude and
phase variables, ac and φc, we may use (1), without the noise
term, to reconstruct the wave form associated with the obser-
vations. Ideally the model will capture the noise separately
and so the reconstruction will be of the underlying signal and

not the observations themselves. For each test, two mean
squared errors are calculated: (a) between the reconstruction
and the underlying signal at the observation times, and (b) be-
tween the full reconstruction (i.e. for allN observation times)
and the full signal. Figure 6 shows, for each of the five test
cases, how these three error measures vary as the proportion
of missing values increases.

As before, we see that the results for arrangements A and
B do not appear to be highly dependent on the choice of set
of angular frequencies. In both cases a better reconstruction
of the signal is achieved for arrangement B than in A. The
comparison case is almost unperturbed by missing data.

Figure 7 shows an example of the original signal overlaid
with the observations and signal reconstruction for one of the
tests with 25% missing values. Here we can see that for ar-
rangement B the model appears to be better at absorbing the
gross outliers into the noise distribution.

3.1. Real data

The top plot in figure 8 shows the monthly precipitation
recorded by the Rakkestad weather station in Norway be-
tween January 1990 and December 2012 [18]. Many of the
weather stations are truly missing data, but in this case the
data is complete and a block of 26 observations (approxi-
mately 10%) have been artificially removed prior to training
the model. The model was trained for 500 iterations on the
mean-centred data and the results compared with those from
the discrete Fourier transform (DFT) (where the missing val-
ues were set to zero). This plot shows the true data in grey,
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Fig. 5 The change in the posterior distribution of the significant
phase as the proportion of missing observations increases. Subcap-
tion format is as per figure 2. (a) Shows how, for arrangement A,
the spread of the distribution increases as the missing proportion in-
creases, but the expectation remains close to the true value (vertical
black line). (b) Shows that arrangement B (for this example) leads
to less accurate expectations where data is missing, but the spread is
less affected. The comparison case, in (c), is largely unaffected by
the reduction in the number of observations.

overlaid with the reconstruction from the trained model; for
the missing data this is poor, but for the remaining data it
is generally very good. More significantly, the bottom plot
compares the amplitude spectrum from the model with those
from DFT. The spectra are very similar, but note how many
components have been “switched off” by automatic rele-
vance determination in the new model (amplitudes of less
that 0.1mm are marked by black circles), showing that the
model is more parsimonious in its representation of the orig-
inal data. Despite the missing data, the annual precipitation
cycle is still clearly identified.

4. CONCLUSIONS

In conclusion, the effect on the model of missing observa-
tions depends on how the missing values are distributed, with

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

percentage missing

m
s
e
 (

s
ig

n
a
l 
s
u
b
s
e
t)

 

 

comparison
A, ω

f

A, ω
p

B, ω
f

B, ω
p

(a) reconstruction vs signal

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

percentage missing
m

s
e

 (
s
ig

n
a

l 
fu

ll)

 

 

comparison
A, ω

f

A, ω
p

B, ω
f

B, ω
p

(b) full reconstruction vs signal

Fig. 6 For each test, two mean squared errors are calculated: (a) be-
tween the reconstruction and the underlying signal at the observation
times, and (b) between the full reconstruction (i.e. for all N obser-
vation times) and the full signal. The mean values over each of the
100 test sets are shown for each proportion of missing values. For ar-
rangement B, the performance of the reconstructions at the observed
timestamps are indistinguishable from the comparison case.

a lesser effect observed where a contiguous block is missing
than where observations are randomly missing. There seems
to be little difference between the two sets of angular frequen-
cies, theN/2 values inωf and (N−M)/2 values inωp, even
where a significant proportion of observations are missing.
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from the trained model. Subcaption format is as per figure 2.
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