
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION 1

TransCom: A Virtual Disk-Based Cloud Computing
Platform for Heterogeneous Services

Yuezhi Zhou, Member, IEEE, Yaoxue Zhang, Yinglian Xie, Hui Zhang, Laurence T. Yang, Member, IEEE,
and Geyong Min, Member, IEEE

Abstract—This paper presents the design, implementation, and
evaluation of TransCom, a virtual disk (Vdisk) based cloud
computing platform that supports heterogeneous services of
operating systems (OSes) and their applications in enterprise
environments. In TransCom, clients store all data and soft-
ware, including OS and application software, on Vdisks that
correspond to disk images located on centralized servers, while
computing tasks are carried out by the clients. Users can choose
to boot any client for using the desired OS, including Windows,
and access software and data services from Vdisks as usual
without consideration of any other tasks, such as installation,
maintenance, and management. By centralizing storage yet
distributing computing tasks, TransCom can greatly reduce the
potential system maintenance and management costs. We have
implemented a multi-platform TransCom prototype that supports
both Windows and Linux services. The extensive evaluation based
on both test-bed experiments and real-usage experiments has
demonstrated that TransCom is a feasible, scalable, and efficient
solution for successful real-world use.

Index Terms—Centralized management, distributed platforms,
cloud computing, virtual disks, heterogeneous services.

I. INTRODUCTION

RAPID advances in hardware, software, and networks in
the past decades have made personal computer (PC)

a great success. They have been ubiquitously deployed in
enterprise environments such as universities, corporations, and
government organizations, where many PCs are networked
with a few application servers. A great challenge for these
systems is the high management overhead for system admin-
istrators and end users to maintain the software and to back up
and secure the distributed data, resulting in the high total cost
of ownership. It is shown that the annual cost of managing
a PC can be up to five times the cost of deploying it [1].

Manuscript received October 29, 2012; revised October 8, 2013. The special
issue guest editors coordinating the review of this paper and approving it for
publication were G. Martinez, R. Campbell, and J. Alcaraz Calero.

Y. Zhou is with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing 100084, P. R. China (e-mail:
zhouyz@mail.tsinghua.edu.cn).

Y. Zhang is with the School of Information Science and Engineering,
Central South University, Changsha, Hunan 410083, P. R. China (e-mail:
zyx@csu.edu.cn).

Y. Xie is with the Microsoft Research Silicon Valley, CA 94043, USA
(e-mail: yxie@microsoft.com).

H. Zhang is with the Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA 15213, USA (e-mail: hzhang@cs.cmu.edu).

L. T. Yang is with the Department of Computer Science, St. Francis Xavier
University, Canada (e-mail: ltyang@stfx.ca).

G. Min is with the Department of Computing, University of Bradford, UK
(e-mail: g.min@brad.ac.uk).

Digital Object Identifier 10.1109/TNSM.2013.122613.120358

Meanwhile, as all files and data are stored on the local disks of
individual machines, they may be lost once the corresponding
device is damaged or compromised, requiring distributed data
backup and restoration services. More seriously, if sensitive
server data are fetched and cached at local disks, they will
be potentially available to the public or to attackers who have
access to the machine.

Recently, cloud computing [2], [3] has become a popular
topic in the academe and industry, aiming to provide appli-
cation software, data, and even hardware as a service hosted
in data centers. The power of cloud computing has also been
recognized to address the above challenges faced by the PC
paradigm. While there are different types of usage, the models
can be roughly classified into the following two categories.

The first category is to host the applications, such as
Salesforce [4], Google Docs [5], in data centers, and then
deliver them to end users through the web browser or other
special utilities. This new paradigm can sharply reduce the
cost of software maintenance and management by centralizing
all of them in the data centers. However, these application
programs in cloud computing are specialized and dedicated,
making it very difficult for traditional applications (e.g., MS
Windows Media Player 10, and Quake 4) to be hosted and
delivered. In addition, this just solves the maintenance and
management issues of specific applications, which are not
concerned with traditional OSes, e.g., Windows.

The other category is a virtual machine (VM) based thin-
client approach emerging as virtual desktop solutions in data
centers, such as Xen Desktop [6] and VMware View [7],
which create virtual PCs/desktops (i.e., instances of Windows)
on the server or server blade with virtualization technology.
Thus, the user has a complete virtual PC in the data center
or cloud, but only consumes a fraction of the resources of
the server. The virtual desktop can be accessed from any
client devices, such as normal PCs, thin clients, and mobile
devices, through a remote display protocol, e.g., remote desk-
top protocol (RDP) [8], independent computing architecture
(ICA) [9], virtual network computing (VNC) [10]. Compared
with traditional thin-client systems, a virtual PC/desktop can
guarantee and isolate user performance and improve security.
However, as a type of thin client, it is very hard to support
graphics-intensive multimedia applications due to the huge
network bandwidth needed to transfer video display data, even
in an enterprise environment.

This paper presents TransCom, a new cloud computing
architecture for supporting heterogeneous OSes. Our key

1932-4537/13/$31.00 c© 2013 IEEE

2 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

technique for addressing the above challenges is the use of
virtual disks (Vdisks), each of which simulates a physical
block-based storage device using a disk image file located on
the centralized server and accessed via a network connection.
Since disk operations are located beneath file systems and
applications, TransCom can support heterogeneous OSes and
applications, including Windows (it does not have a single
kernel file) and its applications whose source code is not
available for modification.

With all computing tasks still carried out by the clients,
TransCom retains the high performance of PCs, yet signifi-
cantly reduces the management overhead by completely elim-
inating the end user management tasks and reducing the incon-
sistent or faulty software states on local disks. Meanwhile, disk
and network bandwidth has been increasing, especially with
the advent of RAID technology [11], [12]. Although high-
performance storage technologies may be expensive to deploy
on PCs, it is realistic to deploy them on servers by amortizing
the costs over clients. Such technology trends may lead to a
powerful server with faster I/O access that makes access to
network-based Vdisks faster than accessing low-performance
client local disks. Specifically, TransCom has the following
desirable features:

• Heterogeneous OS support: TransCom supports hetero-
geneous OSes with no or minimum OS modification.
TransCom clients can choose to boot the desired Oses
flexibly via the same remote OS boot process.

• Flexible software and data sharing: Our design enables
both data and application software sharing. System and
application file sharing is transparent to users with a novel
file redirector mechanism.

• User and application transparency: The use of Vdisks
is transparent to users and applications, and requires
no application modification. From the perspective of
applications and users, there is no difference between
accessing data from Vdisks and that from local hard
disks.

We have implemented a multi-platform prototype system
for running both Windows and Linux at TransCom clients.
The Windows-based system has already been deployed at
universities’ e-learning classrooms for daily use. Our extensive
evaluation, consisting of both test-bed experiments and real-
usage experiments, has shown that by using a powerful server,
TransCom clients can achieve comparable or even better
disk and application performance than regular PCs with local
hard disks. By centralizing storage yet distributing computing,
TransCom is more responsive and scalable than existing thin-
client systems or VM-based thin-client-like cloud computing
approaches.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of the TransCom system archi-
tecture. Sections III, IV, and V describe the system in details,
including the remote OS boot, Vdisk access and sharing,
and its implementations. In Section VI, we present extensive
test-bed and real-usage experiment evaluation of TransCom.
Section VII discusses possible extensions and optimizations.
Section VIII describes the related work before providing the
conclusion in Section IX.

Fig. 1. Overall architecture of a TransCom system with a server and a single
client.

II. SYSTEM OVERVIEW

TransCom adopts the conventional client and server archi-
tecture, where a single server supports up to tens of client
machines connected in a network system. A client machine can
be any regular PC without local storage devices. The server
can be either a regular PC or a higher-end dedicated machine.
In our current design, the TransCom server uses MAC address
to identify a unique client. The entire system should reside in a
local area network, protected from other networks by network
address translator (NATs) or firewalls for security.

Figure 1 illustrates the overall architecture of a TransCom
system with a server and a single client. Without local hard
disks, each client accesses software (including OSes) and
data from one or more Vdisks that simulate physical block-
based storage devices. A Vdisk, in essence, is one or more
disk image files located on the server and accessed by the
client remotely via a Vdisk access protocol (VDAP). Access
to Vdisks can be generally supported across different OSes
with a Vdisk driver - a specialized device driver running on
the TransCom client. Disk buffer requests and page faults are
handled regularly through the Vdisk driver as if there existed
a local hard disk.

The TransCom client boots from the server remotely to load
the desired OS, including the Vdisk driver. The client issues
separate requests for OS boot and disk access. When a client
is powered up, it makes a boot request to the TransCom server,
and uses a remote boot protocol to first download and enable
Vdisk access functions. The client then issues Vdisk access
requests to launch the desired OS from its own Vdisks. During
this OS loading process, a Vdisk driver will be loaded in place
of the traditional hard disk driver. Further disk requests will go
through the Vdisk driver, and the control of the hardware will
be handed to the OS for the boot process to finish regularly
as if with a local hard disk (Section III).

By using Vdisks, TransCom enables not only data sharing,
but also software sharing for OSes and popular applica-
tions. Specifically, multiple user-perceived Vdisks on different

ZHOU et al.: TRANSCOM: A VIRTUAL DISK-BASED CLOUD COMPUTING PLATFORM FOR HETEROGENEOUS SERVICES 3

Fig. 2. The remote OS boot process of a TransCom client.

clients can be mapped to the same Vdisk image on the
TransCom server. In order to avoid the conflict of multiple
users’ write and then read operations on the file of the
same shared Vdisk, each client uses a file system agent
called file redirector to redirect the access of written files
on user-perceived Vdisks to the access of different shadow
files on user-specific server-perceived Vdisks (Section IV-B).
Eventually, every file access request will be converted into
one or more disk block access requests, handled by the
corresponding Vdisk driver through communication with the
server (Section IV-A).

The TransCom server is running as an application daemon.
It maintains a client management database, a disk management
database, and a list of all Vdisk image files belonging to all
clients in the system. The client management database is con-
figured with a list of mappings between clients’ IP addresses
and their MAC addresses. The Vdisk management database
maintains a mapping between clients’ IP addresses and the
corresponding Vdisk image files. Given a disk access request,
the TransCom server first looks up the Vdisk management
database to find the corresponding Vdisk images and then
performs the requested operations before sending replies back
to the client (Section V-B).

III. OS-INDEPENDENT REMOTE BOOT

Figure 2 lists the steps involved in the TransCom remote
boot process. As a first step in OS boot, each TransCom
client submits an OS boot request to the server and obtains
an IP address for subsequent communication. This step can
be supported by hard coding a remote boot protocol into the
client’s BIOS beforehand. In our current implementation, we
adopt the existing Intel PXE protocol [13] and tools. The
TransCom server maintains a client MAC address to the IP
address mapping table in the client management database.
Given the boot request, the server assigns the corresponding
IP address to the client via DHCP [14] based on the client
MAC address.

The client then downloads a universal OS loader from the
server using TFTP [15], also supported by PXE (step 3). The
purpose of the universal OS loader is to replace the BIOS
hard disk access function (e.g., INT 13 in x86 architecture)
with a customized one that redirects all disk access requests
to the server using VDAP. Once the universal OS loader is up
and running, the client will have the ability to access Vdisks
remotely from the server (step 4). Thus, the immediate next
step is to read and execute the master block record in the
client’s Vdisk, which is usually the first step in the regular OS
boot process (step 5). After this point, the OS takes control to
resume initializing various modules, including device drivers
and file systems (step 6).

However, as this regular OS boot process progresses, the
BIOS-enabled Vdisk access will no longer work due to its
real-mode memory management. Most modern OSes access
memory in protected mode. Once in control, the modern
OS will bypass the BIOS real-mode disk access functions
and replace them with its disk device drivers for improved
performance. Hence, the booted OS will not be able to access
those memory segments that store the BIOS functions in
real mode, including the specialized Vdisk access instructions
installed by the universal OS loader.

To solve this problem, we replace the normal disk driver
with a Vdisk driver in the boot process so that the client
machine can continue accessing Vdisks after the OS switches
to the protected mode of memory access. Note that disk
drivers are typically loaded before the network device drives
in the normal OS booting process. Since the Vdisk driver
relies on the network functions, we switch the device driver
loading order so that the network devices are launched first
for establishing connections to the server (steps 7 and 9).

Another important detail is to enable the DHCP client
before the Vdisk driver is activated. This is because the IP
address obtained under real mode will no longer be accessible
after the OS switches to the protected mode. Therefore, after
loading network drivers, the TransCom client needs to contact
the server again using DHCP to re-obtain its IP address
(step 8). By the time that the real-mode access fails, all the
required modules for accessing Vdisks, including the network
interfaces and the Vdisk driver, will have been loaded into
the memory. Once the OS switches to the protected mode, all
disk access goes through the Vdisk driver as if there existed a
physical local disk (step 10). The OS can resume the rest of
the boot procedures until all the other required modules are
up and running normally.

IV. ACCESSING VDISKS

The core concept of TransCom is the notion of Vdisks.
From a user or application’s perspective, there is no difference
between accessing data from a Vdisk and from a local hard
disk. The actual contents in Vdisks reside at the remote server,
and will be fetched to the client on demand. In this section, we
describe the detailed process of accessing data from Vdisks
as well as how data are organized and shared across different
clients.

4 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

A. Vdisk and Vdisk Access Protocol

Vdisks are flat addressable block-based virtual storage de-
vices located beneath the file systems. Each block has 512
bytes. A TransCom client can be configured to access data
from one or more Vdisks, with each corresponding to a Vdisk
image located on the server. A Vdisk image consists of one
or more files, depending on the required disk size. To manage
the Vdisks of different clients, the TransCom server sets
up a Vdisk management database to maintain the mappings
between a client’s IP address and the corresponding Vdisk
images. Administrators can configure the quotas of client
Vdisks using a TransCom application tool that updates the
server’s Vdisk management database.

Vdisk images are regular flat files located at the TransCom
server. The contents of a Vdisk image exactly simulate those
of a hard disk, by fragmenting the file contents into fixed 512
byte records. Each record corresponds to a block of Vdisk.
Note that there exist several special, initial blocks proceeding
the data blocks. These special blocks are hardware dependent,
containing disk parameters such as disk capacity, cylinders,
heads, and sectors.

Every Vdisk data access request goes through a specialized
Vdisk driver on the client. There are two types of disk requests
involved in accessing Vdisk data:

• A virtual disk request is a disk access request issued by
the file system to the Vdisk driver. It is of the same format
as a disk access request to regular SCSI or IDE disk
devices. Each request consists of the disk block number,
the start offset, and the length of data to be read or
written.

• A remote disk request is a disk access request issued
by the Vdisk driver to the remote TransCom server
through network communication. Given each virtual disk
request received from the file system, the Vdisk driver
will compose one or more remote disk requests to send
to the server.

Each Vdisk driver maintains two request queues, one for the
virtual disk requests received from the file system and another
for the remote disk requests to be sent to the server. For a
simple client failover, the network communication between
the Vdisk driver and the server uses a UDP-based VDAP.
Thus, the TransCom server maintains no client states or active
connections, and processes requests individually as they arrive.
For reliable data transmission, the TransCom server will send
an explicit acknowledgment for each received remote disk re-
quest. If the request is a data read request, the acknowledgment
can be piggy backed with the returned data.

Vdisk drivers use time-outs to detect lost remote disk
requests or replies for request retransmission. Each remote
disk request has a unique ID so that both the client and the
server can detect and drop duplicate packets. For efficient
performance, we would like a small time-out value in case
of network loss. Our empirical experience has shown that
most disk access involves a small amount of data (see Sec-
tion VI-G2). Hence, the maximum size of data is set to be
read or written by a remote disk request to 32 KB.

To ensure that there are no out-of-order requests, each Vdisk
driver uses a simple wait-and-send solution to send remote

Fig. 3. Format of VDAP request/response packets.

disk requests. After a request is removed from the queue and
sent to the server, the Vdisk driver will not send the next
request until it receives the response to the last message.
Hence, a read request following a lost write request will
not return stale data, and repeated read/write requests are
guaranteed to generate the same effects.

Figure 3 shows the format of each remote disk request and
reply in an application-level packet. Each packet starts with
an identification field of 4 bytes to denote the unique packet
sequence number. The 2-byte operation mode is used to dis-
tinguish between three different types of remote disk packets:
read request, write request, and server acknowledgment. The
logical block number and block length specify the start block
number and the total number of blocks to be read or written
on the corresponding Vdisk. If the packet is a write request
or a read response, then the actual disk data to be written or
read will follow.

Given a client remote disk request, the server first looks up
the corresponding Vdisk image based on the client IP address.
If the client is allowed to perform the requested operation (see
Section IV-B), the server retrieves or updates the requested
disk image and sends a response to the client, acknowledging
the completion of the process. If the client request is a read
request, the server will also attach the requested disk data in
the reply.

B. Disk Organization and Data Sharing

The disk-level remote data access provides a wide spectrum
of design space to share data across different clients at the
server. At one extreme end, we can perform coarse-grained
sharing based on an entire disk. This solution is simple but
not efficient in disk utilization. At the other extreme end, we
can perform fine-grained sharing based on each disk block,
which could be efficient in disk utilization, but may result in
high management overhead due to information booking and
access control.

TransCom shares data at the granularity of files since they
are the most natural units for sharing and access control in
convention. However, since the TransCom server handles disk-
level access requests, it is difficult to directly support file-
level sharing. To maximize disk utilization, we would like
TransCom to support the sharing of system files, including
OS and application software, which would be used by multiple
clients, while isolating user files that involve private user data.
TransCom uses different mechanisms to share system files and
user files:

1) Sharing user files: TransCom uses the existing remote
file system solutions such as AFS [16], NFS [17], or common
internet file system (CIFS) [18] to share user files. This
solution gives users flexibility in choosing different remote

ZHOU et al.: TRANSCOM: A VIRTUAL DISK-BASED CLOUD COMPUTING PLATFORM FOR HETEROGENEOUS SERVICES 5

Cr:
(mono disk)

Cr’:
(shadow disk)

File
redirector

Dr:
(private disk)

C: (system files) D: (user files)

Fig. 4. Vdisk mappings: C and D are user-perceived Vdisks for storing
system files and user files, respectively. Cr , C’r ,and Dr are server-perceived
Vdisks for storing shared system files, customized system files, and user files,
respectively. The file redirector is a file system agent for redirecting user-
perceived Vdisk requests to server-perceived Vdisk requests.

file systems based on the desired degree of sharing. It is also
simple, as access control and user authentication will be per-
formed at the client file systems, reducing server management
overhead.

2) Sharing system files: However, it would be difficult to
use the existing remote file system solutions to share the
above defined system files, mostly because certain system files
are also user-specific, containing customizable configuration
entries, yet having fixed path names for OSes or applications to
work correctly. However, client users need to write or modify
these system files, resulting in conflicts. For example, the
World Soccer Winning 11 game must save the user-specific
game progress information in a subdirectory. In order to share
such software with NFS-like solutions, users will need to
change the directory locations. This potentially requires OS
or application software modification and is often impossible
in practice.

TransCom uses a file system level agent called file redirector
to map user-perceived Vdisks into server-perceived Vdisks for
sharing system files. The set of system files is specified by
the system administrator, with prior knowledge of potential
TransCom usage scenarios. Figure 4 illustrates this idea. From
a user’s perspective, each client is configured with two types
of Vdisks, one for storing shared system files and another for
user files. From the server’s perspective, each client has three
types of Vdisks. The existence of these three types of Vdisks
is transparent to the users.

• Mono disk: It is used to store OS and application files that
are shared across all clients in a TransCom system. The
mono disks of different clients are mapped to a single
Vdisk image at the server. Thus, mono disk is for read-
only files.

• Shadow disk: Each client has a shadow disk that is used to
store the customized or written system files. The shadow
disk maps to a client or user-specific Vdisk image at
the server. The corresponding data are private and will
not be shared by other client machines. Therefore, the
shadow disk is, in essence, a copy-on-write (COW) disk
for isolating written user-specific configuration files and
system files.

• Private disk: Each client has one or more private disks
that are used to store private user data. Similar to shadow
disk, each client’s private disks map to client-specific
Vdisk images at the server, and will not be shared.

The file redirector translates the file access requests on user-
perceived Vdisks into those on server-perceived Vdisks by
intercepting all file system calls. If the file to be accessed
locates on the private disk (user-perceived), the redirector
simply maps the request to the same file on the server-
perceived private disk. If the file to be accessed is on the
system disk, the file redirector will redirect the request to the
shadow disk in the following two cases: (1) a read request to a
system file that already has a customized copy on the shadow
disk, and (2) a write request to a system file (in this case, a
copy of the file will be created first on the shadow disk before
being written). Otherwise, the file redirector will redirect the
request to the mono disk. The file redirector therefore supports
the dynamic redirection of system files for enabling file system
level COW semantics. This software agent will be loaded from
the mono Vdisk as part of the underlying file system. We defer
the discussion of its implementation in Section V.

V. TRANSCOM IMPLEMENTATION

We have developed a multi-platform (Windows and Linux)
prototype of TransCom based on the Intel x86 architecture. In
this section, we present the implementation details.

A. Client Implementation

We choose Windows XP as the Windows client OS to show
back compatibility on low-end hardware. For Linux client OS,
we adopt RedFlag 4.1 Desktop [19] (Linux kernel 2.4.26-1).
There are three major implementation modules for supporting
TransCom clients under different OSes: (1) universal OS
loader, (2) Vdisk driver, and (3) file redirector.

1) Universal OS loader: Our current implementation uses
Intel PXE as the remote boot protocol for sending boot
requests. The PXE tools are burned into the client BIOS
beforehand. With the x86 architecture, the universal OS loader
will replace the INT 13 interrupt code to enable real-mode
Vdisk access. It is implemented as 15,000 lines of ASM code.
The implementation of the universal OS loader is independent
of the client OS to be loaded.

2) Vdisk driver: Because device drivers are platform de-
pendent, we implement two different Vdisk drivers, cus-
tomized for Windows and Linux, respectively. The implemen-
tations are in C++. The loading procedure of the Vdisk driver
is also non-trivial and platform dependent. This is because the
TransCom client must load the network device drivers before
loading the Vdisk driver in the remote OS boot procedure, as
discussed in Section III.

Since Windows XP is a modified microkernel, we simply
modify the corresponding Windows registry files to ensure that
the network device driver gets loaded before the Vdisk driver.
There is no need to change or recompile the kernel. However,
as Linux is a monolithic kernel, the Vdisk driver has to be
compiled into the kernel. We also change the initialization
sequence of the device drives by modifying the related kernel
source code before recompilation.

6 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

Fig. 5. TransCom server architecture.

There is also need to enable the client DHCP service for re-
obtaining the client IP address before loading the Vdisk driver.
While the Linux kernel already provides DHCP facility, the
DHCP client provided by Windows XP operates in user mode,
and will not be launched until the kernel boots successfully.
Therefore, for Windows, we also implement a DHCP client
driver in the kernel mode to enable IP configuration before
the kernel initializes TCP/IP.

The currently implemented Vdisk driver uses a time-out
value of 100 ms for sending remote disk requests to the
server. It does not support device driver level cache or read
ahead functions. Such optimization can potentially increase
performance, and is a topic of our ongoing work.

3) File redirector: The file redirector is a file system
agent that intercepts all file system calls. For Windows XP,
it is implemented as a file system driver sitting on top of
the device driver chain for handling file system operations.
It intercepts the I/O request packet (IRP) from the built-in
Windows I/O manager to perform the redirection, as described
in Section IV-B. For Linux, we modify the open() file
system call provided by the virtual file system of the Linux
kernel, by maintaining a dirty table that records the mappings
between the modified system files and their corresponding
shadow disk versions.

B. Server Implementation

The TransCom server is implemented as a multi-process
program, with each process listening on a dedicated port,
handling different types of client requests (Figure 5).

Specifically, there are three disk request handler processes
handling the requests for three different types of disks. Each
process maintains a request queue per TransCom client, and
serves queues in a round-robin fashion. Conceptually, there
is only one Vdisk management database at the TransCom
server. However, in the implementation, each disk request
handler deals with a dedicated Vdisk management database
implemented as a file. As discussed in Section IV-B, there
exists only one mono Vdisk image for all TransCom clients.
For shadow disks and private disks, the TransCom server
maintains one Vdisk image per client disk. The default mono
disk size is 8 GB, and the default shadow disk and private
disk sizes are set to 1 GB per disk.

The boot manager handles boot requests with a DHCP
service and a TFTP service for clients to obtain IP addresses
and to download the universal OS loader, respectively. The
disk quota manager is responsible for processing disk quota-
related requests. System administrators can log in from a pre-
configured special client to submit disk quota requests to the
server and change the number of user disks. After that, a client
must then reboot to reflect the changes.

The server is implemented in C++ for both Windows and
Linux. The Windows server OS is Windows 2003 Server (SP1)
edition, and the Linux server OS is RedFlag DC Server 5.0
(Linux kernel 2.4.21-32)1.

VI. PERFORMANCE EVALUATION

This section evaluates TransCom performance using both
test-bed experiments and real-usage experiments. We focus
on the TransCom Windows prototype, which has already been
deployed so that it is feasible to collect real-usage data.

We are primarily interested in the following questions: (1)
What is the Vdisk access performance? And how does it
compare against the performance of accessing local disks and
VM disks? (2) What is the TransCom client OS boot latency?
(3) How does Vdisk access impact file system and application
performance? (4) What is the scalability of TransCom, and
how does it compare against other existing solutions? (5) What
is the TransCom performance in real-world usage?

A. Experiment Setup

We use five sets of experiments to investigate the above
questions. In all the test-bed experiments, TransCom clients
are configured as Intel Celeron 1 GHz machines, each with
128 MB DDR 133 RAM and a 100 Mbps onboard network
card. The server is configured as an AMD Athlon 64 3000+
machine, with 2 GB Dual DDR 400 RAM, two 80 GB
Seagate Barracuda 7,200 rpm soft RAID0 hard disks, and a
1 Gbps onboard network card. The clients and the server are
connected by an Ethernet switch with 48 100 Mbps interfaces
(used for clients) and two 1 Gbps interfaces (one used to
connect the server). We also compare the TransCom client
performance with a regular PC, which has the same client
hardware configuration but with an additional local hard disk
(80 GB Seagate Barracuda 7,200 rpm), and a VM emulating
the stateless thick-client-like approaches [20], [21], which is
virtualized with 128 MB memory and 8 GB (dynamically
expanding) SCSI hard disk using VMWare Workstation 5.0
hosted by Windows XP SP2 with NTFS 5.0 file system on
the same regular PC hardware (but with 512 MB physical
memory). The server OS is Windows 2003 Server (SP1)
edition running an NTFS 5.2 file system and Redflag DC
Server 5.0 running EXT3 file system. The TransCom clients,
the regular PC, and the stateless thick clients all use Windows
XP SP2 with NTFS 5.0 file system. Among the 128 MB client
memory, about 90 MB is used for the working set of Windows,
8 MB is used as the video frame buffer, and the remaining 30
MB is free after the OS boot.

1In fact, these two servers can be merged into one. We separate them here
just for consideration of user customization in real deployment. The single
one-server version is also available in the lab.

ZHOU et al.: TRANSCOM: A VIRTUAL DISK-BASED CLOUD COMPUTING PLATFORM FOR HETEROGENEOUS SERVICES 7

TABLE I
AVERAGE TIME SPENT AT VARIOUS STEPS IN PROCESSING A DISK READ OR WRITE REQUEST OF TWO DIFFERENT SIZES (µS).

Operation Vdisk read (4 KB) Vdisk read (8 KB) Vdisk write (4 KB) Vdisk write (8 KB)

Windows Linux Windows Linux Windows Linux Windows Linux

Queuing 6.44 1.02 6.38 1.03 6.35 1.02 6.51 1.13

Request pack 2.58 1.02 2.39 1.06 17.04 1.27 32.57 1.29

Reply parse 9.92 4.51 15.69 4.82 5.53 2.15 5.74 2.85

Server parse 5.25 1.06 5.04 1.08 7.43 9.82 8.57 11.84

File system I/O 18.53 372.67 19.99 432.05 541.49 531.53 2,407.2 642.66

Reply pack 1.60 1.04 1.56 1.06 1.62 1.03 1.66 1.06

Network 676.45 657.54 1,050.85 1,071.92 571.04 669.23 1,076.05 1,167.80

Total 720.77 1,038.86 1,101.9 1,513.02 1,150.5 1,216.05 3,538.3 1,828.63

Local disk 7,407.41 8,443.80 7,462.69 8,557.61 5,208.33 7,928.82 5,347.60 8,264.10

VM-based disk 8,264.46 9,097.50 8,474.57 9,317.59 5,464.48 8,759.97 5,617.97 8,887.60

B. Vdisk Performance

We evaluate the Vdisk access performance in terms of
latency and throughput in a single-client TransCom system.

1) Vdisk access latency: We first examine the latency
spent on various steps of accessing Vdisk data. We disabled
the client file system cache, and used the Microsoft I/O
performance evaluation tool SQLIO [22] in Windows (with
the testing file size being 512 MB) and Iometer [23] in
Linux environment to submit random disk access requests of
different sizes to the client. Because the request data size is
small, each disk access request triggered only one remote disk
request in the experiments.

Table I shows the average measured latencies of 20 disk
requests. The standard deviations are small (less than 10%)
and are omitted. The “total” latency corresponds to the time
elapsed between the Vdisk driver receiving a disk access
request from the file system and returning the results back
to it. The first three steps are processed by the client Vdisk
driver. The “queuing” step measures the queuing delay before
the Vdisk driver starts processing the request. The “request
pack” step corresponds to the time the Vdisk driver spends
parsing the request and packing it into remote disk requests
for sending to the server. The “reply parse” step corresponds
to the latency for the Vdisk driver to parse the server reply
and return the results back to the file system.

The next three steps are processed by the server, including
parsing the received requests and looking up the corresponding
Vdisk image (“server parse”), performing the requested disk
access operation (“file system I/O”), and packing replies for
sending to the client (“reply pack”). Finally, the “network”
step is the time for sending both the request and the reply
over the network.

For Vdisk read requests, the majority of time is spent on
network transmission. The server file system I/O accounts for
only a small fraction of latency. This is mostly due to the
server-side memory cache, which is further explored in the
next section. For write requests, in addition to the network
communication, the server file I/O is also a bottleneck, partic-

ularly when we increase the amount of data to be written each
time. The total latency is on the order of milliseconds, which
is acceptable to most users and applications today. Because
the bottleneck of read access is the network communication,
we expect the performance to be improved when we increase
the network speed (e.g., using 1 Gbps network card) and use
TCP/IP off-load engine (TOE) technology. To reduce the disk
write latency, we can additionally optimize the server Vdisk
write operation by increasing the I/O speed or implementing
application-level write optimization schemes such as lazy
write.

We also compare the total latency with that of local disks
and VM-based disks in stateless thick-client-like systems.
The latency of the VM disk access is a little more than
that of the local disks, showing a virtualized overhead of
around 10% in read operation and 5% in write operation,
respectively. However, these two latencies are much more than
that of TransCom. This is because the virtualization of disk
in the TransCom is not only implemented inside the operating
system, but also can leverage the high-performance network
and server capacity.

2) Vdisk throughput: We evaluate the Vdisk throughput,
also using SQLIO for Windows and Iometer for Linux. Previ-
ous studies have shown that most file access involves random
disk access with small request sizes [24]. We thus focus on
the random disk read/write, and compare the performance with
the local hard disk throughput measured from the regular PC
and that of the VM-based disk in stateless thick-client-like
systems (see Section VI-A).

Figures 6(a)-(f) show the Vdisk read and write throughput
in various scenarios in Windows. For read access, the Vdisk
throughput (“VD”) increases with the request size, but satu-
rates when the request size is larger than 32 KB, which is
the maximum size handled by a remote disk request. This
is because the network communication time dominates read
latency, and a large request size will result in multiple remote
disk reads.

When the request sizes are small (≤ 64 KB), the Vdisk read

8 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

0 1 2 4 8 16 32 64 128

2

4

6

8

10

12

14

16

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (128M)
VD (256M)
VD (512M)
VD (1G)
VD (2G)
VD (2G No cache)
LD (128M)

0 1 2 4 8 16 32 64 128

2

4

6

8

10

12

14

16

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (128M)
VD (256M)
VD (512M)
VD (1G)
VD (2G)
VD (2G No cache)
LD (128M)

0 1 2 4 8 16 32 64 128

2

4

6

8

10

12

14

16

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (128M)
VD (256M)
VD (512M)
VD (1G)
VD (2G)
VD (2G No cache)
LD (128M)

0 1 2 4 8 16 32 64 128

2

4

6

8

10

12

14

16

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (128M)
VD (256M)
VD (512M)
VD (1G)
VD (2G)
VD (2G No cache)
LD (128M)

(a) Unbuffered (c) Buffered (e) Unbuffered (g) Unbuffered
Read, RAID0 Read, IDE Read, Linux

0 1 2 4 8 16 32 64 128

2

4

6

8

10

12

14

16

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (2G)
LD (128M)
VMD (128M)

0 1 2 4 8 16 32 64 128

2

4

6

8

10

12

14

16

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (2G)
LD (128M)
VMD (128M)

0 1 2 4 8 16 32 64 128

1

2

3

4

5

6

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (2G)
LD (128M)

0 1 2 4 8 16 32 64 128

1

2

3

4

5

6

7

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

VD (2G)
LD (128M)

(b) Unbuffered (d) Buffered (f) Unbuffered (h) Unbuffered
Write, RAID0 Write, IDE Write, Linux

Fig. 6. Random Vdisk throughput: “buffered” means the client file system and device driver buffers were enabled, while “cache” means the server file
system cache was enabled.

throughput obtained using the 2 GB memory server is higher
than the local disk throughput (“LD”). We vary the server
memory size and observe that decreasing the server memory
size significantly reduces the performance. When the server
is configured with the same 128 MB memory as the regular
PC, the Vdisk read throughput is lower than the hard disk
throughput. For further investigation, we disable the server
file system cache in the 2 GB memory case and observe a
significant performance drop. Thus, a large server memory
cache is the key factor for explaining the high Vdisk read
throughput.

For write requests, the throughput increases monotonically
with larger request sizes as the server file system I/O per-
formance is the dominant factor for Vdisk write. The server
memory cache does not play a significant role. Interestingly,
for local disk access, the write throughput is higher than
the read throughput. One reason could be the lazy write
optimization implemented by the OS and the hard disk, in
which case data are written to the cache instead before the
operations are returned successful. This reason may also
explain why a larger server memory increases the Vdisk write
throughput.

We also compare the disk throughput with and without
client file system and device driver buffers. When the buffers
were enabled, the performance increased slightly as expected.
There is no significant difference between accessing RAID0
and IDE disks at the server, with the former having slightly
higher performance.

Comparing the throughput with that of local disk (“LD”)
and VM-based disk (“VMD”) in Figures 6(e)-(f), we can see
that the read and write performance of the TransCom is better.

We also measure and compare the disk throughput with
local disk in the Linux environment. As shown in Figures 6(g)-
(h), the trend is very similar to that in Widows, but only with

Fig. 7. Average time spent at various steps for a TransCom client to boot
remotely from the server. We vary the number of simultaneously booting
clients and report the average latency observed among all clients.

a relatively low value. This may be due to the difference in
OSes and evaluation tools.

Note that TransCom cannot achieve better performance than
local disks or even VM-based disks all the time. In fact, we
find that in sequential read/write cases, TransCom perform
worse than local disks. TransCom can only achieve better disk
access performance when the request size is small and the fast
server disk and server memory cache can make up the network
transportation latency in random read/write cases.

C. Remote Boot Performance

In this section, we evaluate the remote OS boot latency, and
compare it against a regular PC boot latency. To time-stamp
the boot process of a client, a dedicated monitor machine was
linked to the client with a hub that is connected to the server
via the Ethernet switch. The monitor machine collected all
observed network packets to and from the client using the
EtherPeek tool [25]. For each experiment, we repeat the above

ZHOU et al.: TRANSCOM: A VIRTUAL DISK-BASED CLOUD COMPUTING PLATFORM FOR HETEROGENEOUS SERVICES 9

TABLE II
AVERAGE TIME SPENT AT VARIOUS PHASES OF THE APACHE WINDOWS

SOURCE TREE BENCHMARK (SECOND).

Phase TransCom Local disk CIFS VM-based disk

mkdir 0.93 1.03 2.93 1.69

cp 27.58 58.36 81.96 49.01

scan dir 92.41 89.88 156.43 283.61

cat 175.56 214.64 296.78 550.13

make 330.82 319.89 535.37 628.10

Total 627.30 683.79 1,073.47 1,512.54

process to measure the boot latency of every client in the
system and compute the average latency across all clients.
Figure 7 shows the time spent on various steps by varying the
number of clients booting simultaneously in the system.

The “BIOS” step is the time spent by the client launching
the hardcoded BIOS program. “PXE” is the time spent in
obtaining an IP address and downloading the universal OS
loader. “USOL” is the time for initializing the universal OS
loader to read the Vdisk MBR. These three steps take constant
amount of time regardless of the number of clients, and
account for a small fraction of the total boot latency. The
majority of boot time is spent in loading the OS remotely
from the server (“OS loading”). This portion of time increases
when the number of clients is increasing.

Overall, with a small number of clients (fewer than five), the
total boot latency of a TransCom client is even smaller than
that of a regular PC (The dotted line marked value denotes
the total latency) is due to that its Vdisk throughput is higher
than that of the local disk in our experiments. The total latency
increases roughly in line with the number of clients within our
range, and is on the order of tens of seconds.

D. File System Performance

In this section, we evaluate the overall file system per-
formance of a TransCom client using a modified Andrew
benchmark [16], [26]. We compare its performance against
the file system performance of a regular PC with a local
disk, the CIFS [18], and the VM-based disk in stateless thick-
client-like systems. For CIFS, the same TransCom client and
server hardware configuration are used. In our benchmark,
the Windows Apache 2.0.53 source tree is used, which has
39.3 MB data before compilation and 42 MB data after
compilation. Table II shows the average performance over five
runs. For each run, we rebooted both the client and the server
to clean various caches.

TransCom achieves better performance than both a regular
PC and CIFS, except for the “scan dir” phase, which requires
accessing a large number of directories and files. With Vdisks,
this phase will result in a large number of remote disk requests,
and thus incurring larger network communication overhead.

Our file system performance evaluation shows that, by using
a more powerful server and fast network access, TransCom can
achieve file access performance that is comparable to a regular
PC, and can potentially perform better than other remote file
system solutions and that of VM-based approaches in stateless
thick-client-like systems. Note that the file performance of

TransCom depends on the file size and access model due to the
different undergoing disk read/write size and access model, as
shown in Section VI-B. The result here cannot indicate that
TransCom can achieve comparable file access performance on
any other set of files.

E. Application Performance

In this section, we study how virtual disks impact real ap-
plication performance. We compare TransCom with a regular
PC, the VM-based stateless thick-client-like approach, and a
number of thin-client systems, including Microsoft RDP 5.2
(included in Windows Server 2003) [8], Citrix MetaFrame XP
Server for Windows Feature Release 3 (with a client of Citrix
ICA 6.2) [9], and VNC Viewer free Edition 4.1.1 [10]. All
the thin clients run on the same platforms as the regular PC,
as described in Section VI-A. The corresponding servers use
the same configuration as the TransCom server. Note that the
performance of these thin-client systems also estimates the
performance of VM-based thin-client-like systems in cloud
computing.

We use web browsing and video playback as our two
applications. Web browsing performance is measured with Mi-
crosoft IE 6.0 using the web text page load test provided by the
i-Bench benchmark suite 5.0 [27]. This benchmark consists of
a sequence of 30 different web pages, each containing mixed
text and graphs. To compare the performance across other
thin-client systems, we set the window resolution to 800×600.
Meanwhile, video playback performance is measured using
Windows Media Player 9.0 to play a 21-second (320×240
pixels, 24 frames per second) video clip displayed at 800×600
resolution. For both applications, we use a packet monitor to
capture network traffic and measure the performance using
slow-motion benchmarking [28], which allows the quantifica-
tion of performance in a non-invasive manner.

For web browsing, we examine both the average page
download latency and the average amount of data to be trans-
ferred between the client and the server with different network
speeds. TransCom achieves similar performance (“TRC”) as
that of a regular PC (“PC”). Since RDP and VNC ran the web
browsers on more powerful servers, they incur smaller client-
perceived latency than TransCom, but require larger amount
of data to be transferred between the client and the server. The
ICA client experiences a significantly higher browsing latency,
even though the system transfers the least amount of data
by using a higher compression rate algorithm for the screen
display. There is slightly higher latency than a regular PC but
similar data size in the VM-based stateless thick-client-like
approach (“STC”). This means that while it requires only a
small data transfer as in PC and TransCom, the stateless thick-
client approach decreases the computing performance due to
the virtualization of both the CPU and memory, in addition to
disks.

For video playback, we use the playback quality, defined
in the slow-motion benchmarking, in addition to the data
transfer size, as our performance metrics. Since the Vdisk read
throughput with a powerful server is comparable or even better
than the hard disk throughput on a regular PC, the TransCom
client can achieve good playback quality (“TRC”) as that

10 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

RDP ICA VNC TRC PC STC
0

0.20

0.40

0.60

0.80

1.00
La

te
nc

y
(s

)

1.5 Mb
10 Mb
100 Mb

RDP ICA VNC TRC PC STC
0

10

20

30

40

50 180

D
at

a
S

iz
e

(K
B

)

1.5 Mb
10 Mb
100 Mb

(a) Latency (b) Data size

Fig. 8. Web access performance in terms of access latency and the total
amount of data transferred.

RDP ICA VNC TRC PC STC
0%

20%

40%

60%

80%

100%

V
id

eo
 Q

ua
lit

y

1.5 Mb
10 Mb
100 Mb

RDP ICA VNC TRC PC STC
0

100

200

300

400

500

D
at

a
S

iz
e

(M
B

)

1.5 Mb
10 Mb
100 Mb

(a) Video quality (b) Data size

Fig. 9. Video playback performance in terms of video quality and the total
amount of data transferred.

of a regular PC (“PC”), significantly outperforming other
thin-client solutions. In these thin-client systems, the servers
need to perform expensive video clip decoding for sending
display data to the clients, resulting in longer server processing
latencies and larger amount of data to be transferred, which
explains the low playback qualities at the clients. However,
due to the virtualization of the CPU, memory, and graphics,
the stateless thick-client approach results in a decrease in video
quality (“STC”) while there is a similar amount of data to be
transferred compared to the PC and TransCom.

In summary, the web browsing and video playback ex-
periments demonstrate the robust performance of TransCom
across different types of popular applications. They show that
TransCom can achieve better performance than the virtual-
ization of all hardware resources in the stateless thick-client
approach with the same hardware configurations. They also
indicate that TransCom can achieve better performance than
thin-client solutions with the similar hardware configurations,
especially for applications that require heavy computation.

F. Scalability

We study the scalability of TransCom by varying the
number of clients in the system. We use i-Bench 5.0, but
without slow-motion benchmarking, as our workload to eval-
uate the average client latency of the entire i-Bench run,
and compare the performance with both ICA and RDP thin-
client systems (Figure 10(a)). When the number of clients
is smaller than four, the ICA and RDP achieve lower client
latencies than TransCom. However, as the latencies increase
linearly with the number of clients in both the ICA and RDP,
the client latency in TransCom remains constant with small
deviations, suggesting that TransCom is more scalable. This
is because the TransCom server handles only Vdisk access

1 2 3 4 5 6 7 8 9 10111213141516
0

100

200

300

400

500

iBench load number (Clients number)

E
la

ps
ed

 ti
m

e
(S

ec
on

ds
)

ICA
RDP
TransCom

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
120

140

160

180

200

iBench load number (Clients number)

E
la

ps
ed

 ti
m

e
(S

ec
on

ds
)

TransCom

(a) Client scalability (b) TransCom scalability

Fig. 10. (a) The client observed i-Bench run latency by varying the number
of clients in the system; we plot both the mean and the standard deviations.
(b) The TransCom client observed i-Bench run latency by varying the number
of clients in the system; we plot only the mean.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Request size (KB)

P
er

ce
nt

ag
e

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

10

20

30

40

50

60

70

80

90

100

Distance (block amount)

P
er

ce
nt

ag
e

(a) Block size (b) Block distance

Fig. 11. (a) Distribution of the read request block size; (b) distribution of
the initial block position distance between two consecutive read requests

requests, while thin-client servers perform both file access and
computing tasks. In order to further investigate the scalability
of TransCom, we also study the performance with a larger
number of clients and present this in Figure 10(b) with a small
scale. This shows that when the number of clients is small,
the slope is also small, but when it is larger than 15, the slope
gets bigger. Even in the case of large number of clients, the
elapsed time of TransCom is still smaller than that of the ICA
and RDP.

G. Real-usage Experiment

TransCom has been deployed in universities’ e-learning
classrooms and used by students in their daily lives. In
this section, we study the real-world usage of TransCom by
instrumenting the server and letting it run for three days in one
such e-learning classroom. The classroom has more than 100
client machines, and is dedicated for students to learn English
online from 8 am to 11 am and from 2 pm to 5 pm daily.

For our experiments, we isolated 20 clients (the typical
number of clients connected to a server) and connected them to
our instrumented server. The server is an Intel Pentium IV 2.8
GHz PC with 1 GB RAM, an 100 Mbps network card, and an
80 GB 7,200 rpm soft RAID0 hard disk. For each disk request,
we recorded the requested initial block number, the block
length, and the operation type. There are about five million
requests collected in total, with 80.5% being read requests,
and the remaining 19.5% being write requests.

1) Vdisk access workload: To characterize the request
workload, we first examine the read request block size dis-
tribution in Figure 11(a). The disk write request size is fixed
to 2 KB in our real deployment. The majority of read requests
involved only a small amount of data, with 60% of read access

ZHOU et al.: TRANSCOM: A VIRTUAL DISK-BASED CLOUD COMPUTING PLATFORM FOR HETEROGENEOUS SERVICES 11

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

1000

2000

3000

4000

5000

6000

Time (second)

N
um

be
r

of
 r

eq
ue

st
s

pe
r

se
co

nd

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

100

Cost (us)

P
er

ce
nt

ag
e

Read
Write

(a) Request arrival rate (b) Server process latency

Fig. 12. (a) Request arrival rate over time; (b) distribution of server disk
request process latency.

requesting less than 5 KB data each time. We have shown
in Section VI-B2 that the TransCom client read throughput
(with a powerful server) can be higher than that of a regular
PC for small-size disk read access. Thus, in these real-world
scenarios, TransCom users will experience similar or even
better disk performance compared with a regular PC.

We further study how many read requests can benefit
from the server memory cache, which is a key factor for
achieving high Vdisk performance. We plot in Figure 11(b) the
distribution of the distance between the start block numbers
requested by two consecutive read access. A small distance
means that the two consecutive disk read requests have strong
spatial locality in accessing data. After the first request, the
data requested by the second read request are likely to be in
the server memory. More than 75% of the consecutive read
requests asked for data whose initial block numbers differed
by only a few blocks, suggesting that disk read requests
have strong temporal and spatial locality in real usage, where
TransCom is the most helpful in terms of performance.

2) Real-usage Performance: Given 20 TransCom clients,
we examine both the request arrival rate and the server
process latency in real-world scenarios. Figure 12(a) plots the
client request arrival rate over time for one of the three data
collection days. The request patterns in the other two days
look similar. For most of the time, the request rate was low,
on the order of hundreds of requests per second. There were
some request burstiness during the morning and afternoon
active usage periods, with peak rate as high as 6,000 requests
per second. The short quiet period in which no request was
received was during the rest time at noon.

Figure 12(b) shows the server request process latency
distributions for both the read and write disk access. Because
the maximum write request size is 2 KB (four disk blocks),
more than 90% of the write requests are finished in tens of
microseconds. For read requests, the server process time varies
due to the different request sizes, with the majority of them
(more than 60%) finishing within 1 ms. While there was a
small percentage (≤ 10%) of requests having a relatively long
processing latency, which may be due to the burstiness in the
number of requests, all disk access requests are finished within
100 ms.

The strong locality of disk access patterns suggests that
TransCom may outperform regular PCs with local disks in
terms of real-usage.

VII. DISCUSSION

This section discusses the possible extensions of and opti-
mization to TransCom for enhancing cloud services, system
performance, scalability, robustness, and security.

In TransCom, each different computing environment, in-
cluding OS and its above applications (one or more) can be
encapsulated into a Vdisk image, which can be started up and
used on any client as a cloud service. Users can subscribe
and then be authorized to use these cloud services. Therefore,
there are several ways to provide cloud services based on
TransCom system. For one example, a school administrator
can create several different Vdisk images, each of which con-
sists a specific OS and the necessary applications for different
classes. Thus, for each class, students can only choose and use
the assigned services, concentrating on the teaching objects.
For another example, an enterprise administrator can create
different Vdisk images for the staffs. Each Vdisk images
consists the just OS and applications. The staff can only run
the authorized services. If a staff has more than one roles,
he/she can be authorized to run different cloud services.

The use of explicit caches at both the client side and the
server side can potentially enhance performance significantly.
At the client side, the Vdisk driver cache can reduce the
number of network communications, in which latency is the
current performance bottleneck. At the server side, we can
exploit the locality of read requests across different clients by
using a Vdisk image cache and optimize write requests using
application-level write optimization schemes (e.g., lazy write).
The VDAP can be further optimized to improve performance.
In our current implementation, remote disk requests are sent
in sequential order. For future work, we can enhance the disk
access latency and throughput by sending multiple remote disk
requests concurrently.

In order to break through the capacity of a single server and
support large-scale users, we can employ the existing cluster
computing and cloud computing technologies as complemen-
tary solutions. For example, we can use a load balance ap-
proach (e.g., LVS [29]) to support multiple TransCom servers.
Also, we can use HDFS [30] or other large-scale distributed
file systems to store and manage a huge number of Vdisk
images. We are considering to integrate these technologies
into TransCom in future.

Our current prototype does not implement automatic server
failover. When the server crashes or the mono disk image
must be updated, the entire system needs to be manually
shut down and rebooted. As future work, we plan to use
server replication mechanisms (e.g., [31], [32]) to handle these
scenarios, wherein clients can switch to an identical backup
server when required.

The TransCom server needs to prevent and detect unautho-
rized access of information. The current use of MAC addresses
for authentication cannot protect against malicious attackers
that spoof clients’ MAC addresses. A user-level authentication
mechanism (e.g., [33]) might help mitigate the possibility of
such attacks. We can also augment the current system by using
various encryption-based approaches to protect the privacy of
disk data access.

12 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

VIII. RELATED WORK

There has been extensive research on distributed and cloud
computing platforms. Our work is mostly related to systems
such as cloud computing systems, thin clients, network file
systems, and VM-based systems.

The cloud services, such as Salesforce [4], Gmail [34],
Google Docs [5], centralize both computation and storage in
data centers and then deliver the applications to end users
through the web browser or other special utilities. This new
paradigm can sharply reduce the cost of software maintenance
and management by centralizing all of them in data centers.
However, these application programs in cloud computing
are specialized and dedicated, making it very difficult for
traditional applications to be hosted and delivered. In addition,
this just solves the maintenance and management issues of
specific applications, which are not concerned about traditional
OSes, such as Windows.

Thin-client systems have been very popular, providing a
full-featured desktop to users with low management costs
and pervasive access. Example systems include Microsoft
RDP [8], Citrix ICA [9], Sun Ray 1 [35], VNC [10], and
MobiDesk [36]. In the thin-client system paradigm, all com-
puting tasks are performed at the central server, while a
client works only as a user interface by performing display
and keyboard/mouse input/output functions. Although such
systems also achieve centralized management, they greatly
increase the server resource requirements with limited scala-
bility. Applications with heavy computing requirements (e.g.,
multimedia applications) cannot be supported by thin-client
systems efficiently. Furthermore, there is no isolated user
performance guarantee.

Recently developed VM-based thin-client approaches in
cloud computing, such as Xen Desktop [6] and VMware
View [7], also leverage the thin-client model to access the
virtual PC or desktop hosted in data centers. This virtual PC
or desktop is hosted by a VM created and run within a server.
Although approach can guarantee and isolate user performance
and achieve higher security with the help of VM technologies,
it is still hard to support graphics-intensive applications due to
the large network bandwidth needed to transfer video display
data over the Internet.

Network file systems and devices, such as NFS [17],
AFS [16], and NAS [37], are popular solutions for sharing data
in distributed enterprise environments. Although these systems
can be used to share user files flexibly, they generally do not
support sharing system files for the reasons we described in
Section IV-B.

Our idea of centralizing storage while distributing comput-
ing is similar to the concept of diskless computers (e.g., [38],
[39]) in the early years. Without local hard disks, a diskless
computer usually downloads an OS kernel image from the
remote server. Hence, it cannot support OSes that do not
have clear kernel images, such as Windows, and does not
support booting from heterogeneous OSes. Furthermore, the
Vdisks perceived by TransCom users can be flexibly mapped
to the Vdisk image files on the server. Such flexibility allows
TransCom to share OS and application software across clients
to reduce the storage and management overhead while still

isolating personal files for user privacy.
The iSCSI protocol has been used to access disk blocks

through network communication [40]. In particular, the
iBoot [41] project at IBM has proposed a method that can
remotely boot a commodity OS through iSCSI. An iBoot
client needs a special type of BIOS ROM to carry out the OS
boot process, hence it is not generally applicable. For better
performance, TransCom can potentially adopt iSCSI to replace
the current VDAP, but may need to modify it in order to fit
the small-size client BIOS memory.

The concept of resource virtualization has been introduced
a long time ago, but has just been recently adopted to
address security, flexibility, and user mobility. For example,
commercial products such as VMware [42] have extended the
concept of VM to support multiple commodity platforms. The
disks in these VMs are also virtualized, but they reside in the
local host machine and are accessed through the file system of
the host OS. In contrast, TransCom virtual disks are located in
the remote server, with different types of Vdisks for sharing
and isolating data among users.

VM-based stateless thick-client approaches, such as internet
suspend/resume (ISR) [21], use virtual machine technology
(e.g., VMware) together with a network file system (e.g.,
Coda [43]) to support user mobility. Each ISR client runs
OSes and applications on top of a pre-installed VMware on
the host OS. The use of VM supports heterogeneous OSes,
but it also introduces additional performance overhead due to
the virtualization of all hardware resources, including the CPU
and memory, whereas in TransCom, client OSes are running
directly on top of the CPU, memory, and graphics resources.

SoulPad [44] is another project that uses VM concept
for mobility, with a portable storage device for storing the
entire VM image. The collective project [45] proposed a
cache-based system management model based on VMs to
reduce the management tasks of desktop computing. Similar to
TransCom, it also uses different types of virtual disks, among
which an immutable system disk is presented to protect it
against outside threats. Compared with collective, TransCom
uses a COW semantics file instead of COW disks. Moreover,
TransCom adopts on-demand block-level disk access instead
of using network file systems, such as NFS, to access and
cache disk images.

IX. CONCLUSION

We have developed TransCom, a novel virtual disk based
cloud computing architecture for enterprise environments.
TransCom clients store all data and software on virtual disks
that correspond to Vdisk images located on a centralized
server. By using disk-level remote data access, TransCom can
flexibly support running heterogeneous services like OSes,
including Windows.

We performed both test-bed experiments and real-usage
experiments to evaluate TransCom. The results demonstrate
that by using a powerful server, TransCom clients can achieve
comparable or even better disk and application performance
than regular PCs with local hard disks. It is more scalable than
traditional thin-client systems and other recently developed
VM-based cloud computing systems.

ZHOU et al.: TRANSCOM: A VIRTUAL DISK-BASED CLOUD COMPUTING PLATFORM FOR HETEROGENEOUS SERVICES 13

Future work includes further optimizing TransCom per-
formance, supporting multiple servers, increasing the system
robustness, enhancing the system security, and supporting
more types of devices and networks.

ACKNOWLEDGMENT

This work is supported by National High-Tech Research and
Development Plan of China under Grant No. 2011AA01A203,
and by the International Science and Technology Cooperation
Program of China (Grant No. 2013DFB10070). The authors
would like to thank the students, especially Guanfei Guo,
Li Wei, etc., for their contributions in the development and
experiments.

REFERENCES

[1] “Understanding Full Virtualization, Paravirtualization, and Hardware
Assist,” White Paper, VMware Inc., Sept. 2007.

[2] B. Hayes, “Cloud computing,” Commun. ACM, vol. 51, pp. 9–11, July
2008. Available: http://doi.acm.org/10.1145/1364782.1364786

[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Proc. 2008 Grid Computing En-
vironments Workshop, pp. 1–10.

[4] “Salesforce platform,” http://www.salesforce.com, 2012.
[5] “Google Docs,” https://docs.google.com/, 2012.
[6] “Citrix XenDesktop,” http://www.citrix.com/virtualization/desktop/

xendesktop.html, 2012.
[7] I. VMware, “VMware View 4.5, Modernize Desktop and Applica-

tion Management, V.2.0, Brochure,” http://www.vmware.com/files/pdf/
VMware-View-45-DS-EN.pdf, 2012.

[8] B. Cumberland, G. Carius, and A. Muir, “Microsoft Windows NT Server
4.0, Terminal Server Edition: Technical Reference,” Microsoft Press,
1999.

[9] I. Boca Research, “Citrix ICA Technology Brief, Technical White
Paper,” Boca Raton, 1999.

[10] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
Network Computing,” IEEE Internet Computing, vol. 2, no. 1, pp. 33–
38, 1998.

[11] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: high-performance, reliable secondary storage,” ACM Computing
Surveys, vol. 26, no. 2, pp. 145–185, 1994.

[12] R. J. T. Morris and B. J. Truskowski, “The evolution of storage systems,”
IBM Systems J., vol. 42, no. 2, pp. 205–217, 2003.

[13] “Intel Corporation. Preboot Execution Environment (PXE) Specification,
Version 2.1,” 1999.

[14] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131, 1997.
[15] K. Sollins, “The TFTP Protocol,” RFC 1350, 1992.
[16] J. H. Howard, M. L. Kazar, and S. G. Menees, “Scale and performance

in a distributed file system,” ACM Trans. Computer Systems, vol. 6, no.
1, pp. 51–81, 1988.

[17] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and implementation of the sun network filesystem,” in 1985 USENIX
Association Conference Proc.

[18] P. Leach and D. Perr, “CIFS: A Common Internet File System,”
Microsoft Interactive Developer, 1996.

[19] “RedFlag Linux,” http://www.redflag-linux.com, 2011.
[20] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying inter-

active user experience on thin clients,” IEEE Computer, vol. 39, no. 3,
pp. 46–52, 2006.

[21] M. Satyanarayanan, B. Gilbert, M. Toups, N. Tolia, A. Surie, D. R.
O’Hallaron, A. Wolbach, J. Harkes, A. Perrig, D. J. Farber, M. A.
Kozuch, C. J. Helfrich, P. Nath, and H. A. Lagar-Cavilla, “Perva-
sive personal computing in an internet suspend/resume system,” IEEE
Internet Computing, vol. 11, pp. 16–25, Mar. 2007. Available: http:
//portal.acm.org/citation.cfm?id=1256316.1256355

[22] L. Chung, J. Gray, B. Worthington, and R. Host, “Windows 2000
Disk IO Performance,” Technical Report MS-TR-2000-55,Microsoft
Research, 2000.

[23] “Iometer,” http://www.iometer.org, 2011.
[24] W. Vogels, “File system usage in Windows NT 4.0,” in Proc. 1999

Symposium on Operating Systems Principles.
[25] “Etherpeek 4,” http://www.wildpackets.com, 2011.

[26] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: making backup
cheap and easy,” in Proc. 2002 USENIX Symposium on OSDI.

[27] “i-Bench,” ftp://ftp.pcmag.com/benchmarks/i-bench/, 2011.
[28] J. Nieh, S. J. Yang, and N. Novik, “Measuring thin-client performance

using slow-motion benchmarking,” ACM Trans. Computer Systems, vol.
21, no. 1, pp. 87–115, 2001.

[29] “What is the Linux Virtual Server?” http://www.linuxvirtualserver.org/,
2011.

[30] “HDFS Users Guide,” http://hadoop.apache.org/docs/stable/hdfs user
guide.html, 2011.

[31] R. Guerraoui and A. Schiper, “Software-based replication for fault
tolerance,” IEEE Computer, vol. 30, no. 4, pp. 38–74, 1997.

[32] A. Helal, A. Heddaya, and B. Bhar, Replication Techniques in Dis-
tributed Systems. Kluwer Academic Publishers, 1996.

[33] B. C. Neuman and T. TSó, “Kerberos: an authentication service for
computer networks,” IEEE Commun., vol. 32, no. 9, pp. 33–38, 1994.

[34] “Gmail,” http://www.gmail.com, 2012.
[35] “Sun Ray Overview, White Paper, Version 2,” http://www.sun.com/

sunray/whitepapers.html, 2004.
[36] R. A. Baratto, S. Potter, G. Su, and J. Nieh, “MobiDesk: mobile virtual

desktop computing,” in Proc. 2004 International Conference on Mobile
Computing and Networking.

[37] G. A. Gibson and R. Y. Meter, “Network attached storage architecture,”
Commun. ACM, vol. 43, no. 11, pp. 37–45, 2000.

[38] D. R. Cheriton and W. Zwaenepoel, “The distributed V Kernel and its
performance for diskless workstations,” in Proc. 1983 ACM Symposium
on Operating Systems Principles.

[39] B. Croft and J. Gilmore, “Bootstrap Protocol (BOOTP),” RFC 951, 1985.
[40] J. Satran, C. S. K. Meth, M. Chadalapaka, and E. Zeidner, “Internet

Small Computer Systems Interface (iSCSI),” RFC 3720, 2004.
[41] “iBoot-Remote Boot Over iSCSI,” http://www.haifa.il.ibm.com/projects/

storage/iboot/index.html, 2012.
[42] “VMware Workstation,” http://www.vmware.com/products/workstation/

index.html, 2011.
[43] M. Satyanarayanan, “The evolution of coda,” ACM Trans. Computer

Systems, vol. 20, no. 2, pp. 85–124, 2002.
[44] R. Caceres, C. Carter, C. Narayanaswami, and M. Raghunath, “Rein-

carnating PCs with portable SoulPads,” in Proc. 2005 ACM/USENIX
MobiSys, pp. 65–78.

[45] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam, “The
collective: a cache-based systems management architecture,” in Proc.
2005 NSDI.

Yuezhi Zhou obtained his Ph.D. degree in Computer
Science and Technology from Tsinghua University,
China in 2004 and is now working as an associate
professor at the same department. He worked as
a visiting scientist at the Computer Science De-
partment in Carnegie Mellon University in 2005.
His research interests include cloud computing, dis-
tributed systems, mobile devices and systems. He
has published over 80 technical papers in interna-
tional journals or conferences.

Yaoxue Zhang received received his Ph.D. degree in
computer networking from Tohoku University, Japan
in 1989. Then, he joined Department of Computer
Science, Tsinghua University, China. Currently, he is
a fellow of the Chinese Academy of Engineering and
the president of Central South University University,
China. His major research areas include computer
networking, cloud computing, transparent comput-
ing, and active services. He has published over
200 technical papers in international journals and
conferences, as well 9 monographs and textbooks.

Yinglian Xie received Ph.D. in Computer Science
from Carnegie Mellon University, USA. She joined
Microsoft Research Silicon Valley in 2006. Her
general research interests are in security, privacy,
distributed systems, and networking. Her recent
work focuses on improving online service security.

14 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, ACCEPTED FOR PUBLICATION

Hui Zhang received a Ph.D. in computer science
from the University of California, Berkeley. He is
Co-Founder and Chief Scientist of Conviva and
Professor of Computer Science at Carnegie Mellon
University. His research interests include Internet
Quality of Service (QoS), video streaming, network
control, and Internet architecture. He is an ACM
Fellow.

Laurence T. Yang received B.E in Computer Sci-
ence from Tsinghua University, China and Ph.D.
in Computer Science from University of Victoria,
Canada. His is a professor in Computer Science at
St. Francis Xavier University, Canada. His current
research includes parallel and distributed comput-
ing, embedded and ubiquitous/pervasive computing.
He has published many papers in various refereed
journals, conference proceedings and book chapters
in these areas (including around 100 international
journal papers such as IEEE and ACM transactions).

Geyong Min received the Ph.D. degree in Comput-
ing Science from the University of Glasgow, United
Kingdom, in 2003, and the B.Sc. degree in Com-
puter Science from Huazhong University of Science
and Technology, China, in 1995. He is a Professor of
Computer Science in the Department of Computing
at the University of Bradford, United Kingdom. His
research interests include Next Generation Internet,
Wireless Communications, Multimedia Systems, In-
formation Security, Ubiquitous Computing, Model-
ing and Performance Engineering.

