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Abstract—𝑘-means is undoubtedly one of the most popular clustering algorithms owing to its simplicity and efficiency. However,
this algorithm is highly sensitive to the chosen initial centers and a proper initialization is crucial for obtaining an ideal solution. To
overcome this problem, 𝑘-means++ is proposed to sequentially choose the centers so as to achieve a solution that is provably
close to the optimal one. However, due to its weak scalability, 𝑘-means++ becomes inefficient as the size of data increases.
To improve its scalability and efficiency, this paper presents MapReduce 𝑘-means++ method which can drastically reduce the
number of MapReduce jobs by using only one MapReduce job to obtain 𝑘 centers. The 𝑘-means++ initialization algorithm is
executed in the Mapper phase and the weighted 𝑘-means++ initialization algorithm is run in the Reducer phase. As this new
MapReduce 𝑘-means++ method replaces the iterations among multiple machines with a single machine, it can reduce the
communication and I/O costs significantly. We also prove that the proposed MapReduce 𝑘-means++ method obtains 𝑂(𝛼2)

approximation to the optimal solution of 𝑘-means. To reduce the expensive distance computation of the proposed method,
we further propose a pruning strategy that can greatly avoid a large number of redundant distance computations. Extensive
experiments on real and synthetic data are conducted and the performance results indicate that the proposed MapReduce
𝑘-means++ method is much more efficient and can reach a good approximation.

Index Terms—𝑘-means; 𝑘-means++; MapReduce; Approximation
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1 INTRODUCTION

C LUSTERING, which is one of the most fundamental
problems in data analysis and management, has been

applied in many areas of computer science and related
fields, such as data mining, pattern recognition and machine
learning [1] [2] [3] [4]. 𝑘-means is undoubtedly one of the
most popular clustering algorithms owing to its simplicity
and efficiency and has received significant research efforts.
However, for the characteristic of gradient descent, 𝑘-means
often converges to a local optimum and has no accuracy
guarantees. Furthermore, the final solution is often far away
from the global optimum. The fundamental reason is that
𝑘-means is highly sensitive to the chosen initial centers.
Thus, many recent studies have focused on improving
the initialization method [5] [6]. An important piece of
work in this direction is the 𝑘-means++ [7] algorithm
which consists of the initialization step and 𝑘-means step.
In the initialization step, except that the first center is
chosen randomly, each subsequent center is orderly chosen
according to its squared distance from the closet center al-
ready chosen. More importantly, 𝑘-means++ has a provable
approximation guarantee to the optimal solution.
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However, 𝑘-means++ becomes inefficient as the size of
data increases for the reasons below: (1) Large data (like
Terabyte or Petabyte) means that there are a large number
of clusters, leading to a huge number of distance com-
putations. So, 𝑘-means++ initialization becomes inefficient
and even impossible to process large data; (2) Large data
cannot be stored on a single machine and need to be split
to store on multiple machines. Thus, parallel processing of
the large data is so far the best solution. Nevertheless, an
obstacle of 𝑘-means++ initialization is its sequential nature
when choosing initial centers. The probability that a point
is chosen to be a center strongly depends on the previous
center. Due to the lack of scalability, it is difficult to
parallel 𝑘-means++ initialization efficiently; (3) 𝑘-means++
initialization algorithm chooses one center in each pass
and its parallel implementation makes 𝑘 passes over the
data to produce the initial centers. Even though scalable
𝑘-means++ presented in [8] chooses more than one centers
in each pass and is proven as a good approximation of the
original 𝑘-means, it still needs too many passes in practice,
which incurs huge communication and I/O costs.

MapReduce [9] is considered to be an efficient tool in
situations where the amount of data is prohibitively large.
However, for the second and the third obstacles mentioned
above, MapReduce-based systems are still inefficient. To
generate 𝑘 centers, the MapReduce implementation of 𝑘-
means++ initialization needs 𝑘 rounds and 2𝑘 MapReduce
jobs. In addition, a large number of data need to be
transferred between multiple machines.

This paper is concerned with the 𝑘-means++ initial-
ization algorithm in very large data situation and devel-
ops it with MapReduce. The major research challenges
addressed are: (1) how to efficiently implement the 𝑘-
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means++ initialization algorithm with MapReduce. The
main idea behind our method is that, instead of using 2𝑘
MapReduce jobs to choose 𝑘 centers, our method uses
only one MapReduce job. Both Mapper phase and Reducer
phase in our method execute the 𝑘-means++ initialization
algorithm. The Mapper phase runs the standard 𝑘-means++
initialization algorithm and the weighted 𝑘-means++ ini-
tialization algorithm is executed on the Reducer phase. (2)
Although 𝑘-means++ is 𝑂(𝛼) approximation to the optimal
𝑘-means, we prove that our method is 𝑂(𝛼2) approximation
to the optimal of 𝑘-means.

The major contributions of this paper are:
∙ We propose an efficient MapReduce implementation

of 𝑘-means++ initialization which uses only one
MapReduce job to choose 𝑘 centers, avoiding mul-
tiple rounds of MapReduce jobs on many machines
and thus reducing the communication and I/O costs
significantly.

∙ We reach a theoretical guarantee of our method
and prove that the proposed MapReduce 𝑘-means++
method obtains 𝑂(𝛼2) approximation to the optimal
solution of 𝑘-means.

∙ To reduce the expensive distance computation of the
proposed method, we further propose a pruning strat-
egy can dramatically reduce the redundant distance
computation.

∙ We conduct experiments on real and synthetic data.
Experimental results indicate that our MapReduce 𝑘-
means++ algorithm is much efficient and has a good
approximation. Meanwhile, the pruning strategy can
further improve the initialization method.

The rest of this paper is organized as follows. Section 2
reviews the previous related work. Section 3 presents the
useful preliminaries. We describe MapReduce 𝑘-means++
algorithm and its theoretical analysis in Section 4. Section
5 presents the improved MapReduce 𝑘-means++ initializa-
tion algorithm. Section 6 reports the experimental results.
Finally, Section 7 concludes the paper.

2 RELATED WORK

Clustering problem has a long history and there have been
a large number of studies on this topic concerned with
many areas. Clustering has been considered in a parallel
fashion, like MapReduce. The MapReduce implementation
of 𝑘-means was first proposed in [10]. Papadimitriou et
al. presented the distributed co-clustering framework which
introduced practical approaches for distributed data pre-
processing and co-clustering [11]. Ene et al. proposed
the fast clustering using MapReduce [12] by adopting a
MapReduce sampling technique to decrease the data size.
The result of this method was applied to 𝑘-center and 𝑘-
median algorithm. Moreover, they have sufficient flexibility
for practical use because they run in a constant number of
MapReduce rounds. Cordeiro et al. solved the problem of
how to cluster a very large moderate-to-high dimensionality
dataset [13] and proposed Parallel Clustering and Sample-
and-Ignore clustering algorithm with MapReduce which

could reduce communication and I/O cost significantly
through sampling.

The clustering algorithms have been also extensively
studied in terms of the MapReduce framework. Ekanayake
et al. [14] presented a programming model and architecture-
Twister which is a distributed in-memory MapReduce
runtime that supports iterative MapReduce computation
efficiently, such as 𝑘-means, and Deterministic Annealing
Clustering. Twister performs and scales well form many
iterative MapReduce computations. HaLoop [15] was also
designed to support for iterative programs. HaLoop not only
extends MapReduce with programming support for iterative
applications, but also dramatically improves their efficiency
by making the task scheduler loop-aware and by adding
various caching mechanisms.

There are a lot of initialization methods for 𝑘-means,
such as [5] [6] [16] [17]. Celebi et al. [18] proposed a
comprehensive review of the initialization methods of 𝑘-
means. Lloyd’s [19] iteration is the popular method for
finding a locally optimum solution to the 𝑘-means problem.
In the beginning, it chooses a set of 𝑘 centers at random.
In each iteration, it generates a clustering result from the
current set of centers. Then, the centroids of these derived
clusters then become the centers for the next iteration. The
iteration is then repeated until a stable set of centers is
obtained. However, Lloyd’s algorithm could not obtain a
good result in terms of efficiency and quality for its random
initialization method. Its running time may be exponential
in the worst case and 𝛼 is sometimes unbounded even when
𝑛 and 𝑘 are fixed in practice.
𝑘-means++ [7] initialization is an important initializa-

tion method of 𝑘-means and we will give a detailed
introduction in the following section. Scalable 𝑘-means++
[8] is an improved version of 𝑘-means++. It avoids the
major downside of the 𝑘-means++ of its sequential nature
and select ℓ centers in each iteration. This improvement
drastically reduces the number of passes needed to obtain
a good initialization and make 𝑘-means++ easy to parallel.
It also gives a theoretical guarantee of the initialization
algorithm. However, scalable 𝑘-means++ algorithm still
needs too many MapReduce jobs to choose 𝑘 centers.
Generally speaking, it requires two MapReduce jobs in
each iteration. Furthermore, MapReduce does not directly
support the iteration operation and the more MapReduce
jobs the more cost. Both 𝑘-means++ algorithm and scalable
𝑘-means++ algorithm are inefficient with MapReduce. In
the following section, we propose our method which uses
only one MapReduce job to choose 𝑘 centers.

There are also many research studies on 𝑘-means from
theoretical and algorithmic points of view. 𝑘-means++ [7]
provides an 𝑂(𝛼) approximation with the optimal cluster-
ing. Bahman Bahmani et al. [8] proposed an initialization
algorithm obtaining a nearly optimal solution after a loga-
rithmic number of passes and then showed that in practice
a constant number of passes suffices. We have discussed
above, this algorithm needs too many MapReduce jobs. The
research in [12] proposed a fast clustering scheme which
uses the sapling technology. This paper also proved that the



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, JANUARY 2013 3

MapReduce-KCenter was 4𝛼+ 2 for the 𝑘-center problem
and MapReduce-KMedian was 10𝛼+ 3 approximation for
the 𝑘-median problem. Kanungo et al. proposed a local
improvement heuristic for 𝑘-means++ based on swapping
centers in and out. It also proved that this algorithm yielded
a (9 + 𝜖) approximation to the optimal [20]. Kumar et al.
[21] obtained the first liner time (1 + 𝜖) approximation for
the 𝑘-means problem for fixed 𝑘 and 𝜀. Song et al. [22]
presented three 𝑂(1)-approximation algorithms for the 𝑘-
means clustering problem. Ostrovsky et al. [23] presented
a novel and efficient sampling process for choosing initial
centers for Lloyd’s iteration. This method leads to provably
near-optimal clustering solutions when applied to clustering
instances.

3 PRELIMINARIES

To provide a technical context for the discussion in this
paper, we begin with presentation of useful preliminaries.
First, we give a problem definition of 𝑘-means and set up
some notions (Section 3.1). Next, we discuss the algorithm
of 𝑘-means++ in more detail (Section 3.2). Finally, a more
precise overview of the MapReduce mode is given in
Section 3.3.

3.1 Problem and Notation
Given a data set 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} in 𝑑-dimensional
space, 𝑘-means algorithm divides 𝑋 into 𝑘 exhaustive
clusters 𝑌 = {𝑌1, 𝑌2, ..., 𝑌𝑘}, ∪𝑘𝑖=1𝑌𝑖 = 𝑋,𝑌𝑖 ∩ 𝑌𝑗 = ∅
for 1 ≤ 𝑖 ∕= 𝑗 ≤ 𝑘. For a cluster, its centroid is given by

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑(𝑌𝑖) =
1

∣𝑌𝑖∣
∑
𝑦∈𝑌𝑖

𝑦

Let 𝐶 = {𝑐1, ..., 𝑐𝑘} be a set of centers and ∣∣𝑥𝑖 − 𝑥𝑗 ∣∣
denotes the Euclidean distance between 𝑥𝑖 and 𝑥𝑗 . 𝑘-means
algorithm usually generates 𝑘 centers by optimizing the
criterion of Sum of Squared Error (𝑆𝑆𝐸), which is given
by:

𝑆𝑆𝐸(𝐶) =
∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝑥− 𝑐∣∣2

The goal of 𝑘-means clustering is to find an optimal 𝐶 and
minimize the 𝑆𝑆𝐸(𝐶).

Let 𝐶𝑂𝑃𝑇 denote the optimal clustering and 𝑆𝑆𝐸𝑂𝑃𝑇

is the corresponding 𝑆𝑆𝐸. We refer to a solution 𝐶 of 𝑘
centers as an 𝛼 approximation to be optimal if it satisfies
𝑆𝑆𝐸(𝐶) ≤ 𝛼𝑆𝑆𝐸𝑂𝑃𝑇 .

Finding an optimal solution to this problem is NP-
hard, various heuristics have been developed to provide
approximate solutions. Lloyd’s algorithm is a widely used
heuristics, we have discussed in Section 2.

3.2 K-means++
A good clustering result satisfies the condition that the
distance between arbitrary two clusters should be as far
as possible. Intuitively, it is a wise choice to choose the

initial centers that are far away from each other in the
beginning. 𝑘-means++ initialization algorithm follows it,
but the farthest point is not always chosen to be a center. 𝑘-
means++ is extremely simple and runs very fast in practice.
Actually, except that the first center is chosen uniformly and
randomly from the data points, each subsequent center is
chosen from the remaining data points with the probability
proportional to its squared distance from the existing cluster
center closet to the point. 𝑘-means++ addresses the obstacle
of unbounded 𝛼 and guarantees to find a solution that is
𝑂(𝛼) approximation to the optimal 𝑘-means. Let 𝐷(𝑥) be
the Euclidean distance between 𝑥 and the nearest center
that has already been chosen. The 𝑘-means++ initialization
algorithm is presented as follows.

Algorithm 1: 𝑘-means++
Input: 𝑘, the number of clusters.
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a set of data points.
Output: 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑘}.
𝐶 ← ∅1

Choose one center 𝑥 uniformly at random from 𝑋 ,2

𝐶 = 𝐶 ∪ {𝑥}.
Repeat3

Choose 𝑥 ∈ 𝑋 with probability4

𝐷(𝑥)2/
∑
𝑥∈𝑋

𝐷(𝑥)2

𝐶 = 𝐶 ∪ {𝑥}5

Until 𝑘 centers are chosen ;6

Proceed as with the standard 𝑘-means algorithm7

3.3 The MapReduce Model of Hadoop
MapReduce is a parallel programming framework for pro-
cessing the large scale dataset with numerous machines.
Succinctly, a typical MapReduce job consists of three
sequential phases: map phase, shuffle phase and reduce
phase. For a MapReduce job, the shuffle phase usually
incurs considerable performance overhead and is a bottle-
neck in practice. MapReduce model interleaves sequential
and parallel computation, that is the reduce tasks cannot
start until all map tasks finish, while in map and reduce
phase, tasks are parallel. Furthermore, all map tasks are
independent from each other and there is no communication
among them, so do reduce tasks.

For the iteration nature of 𝑘-means and 𝑘-means++
algorithm, it requires multiple MapReduce rounds to im-
plement them. In each round, the data is distributed among
all machines and each machine processes its own input
separately. The output of these machines is either the final
result or becomes the input of another round. However,
the MapReduce-based systems lack built-in support for
iterative programs. In MapReduce, the number of MapRe-
duce rounds is a critical metrics to be optimized, since
each additional job incurs significant running time overhead
because of synchronization and congestion issues, and
communication per round.

The parallel implementation of 𝑘-means with MapRe-
duce has been available. The detailed information of
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MapReduce 𝑘-means is shown in [10]. We will present the
detailed descriptions of our parallel implementation of 𝑘-
means++ and related problems in the following sections.

4 MAPREDUCE 𝑘-MEANS++ AND THEORET-
ICAL ANALYSIS

In this section we present MapReduce 𝑘-means++ algo-
rithm, our parallel version for initializing the centers and
clustering data with MapReduce. The initialization phase
of our method uses only one MapReduce job to choose
𝑘 centers quickly and it is 𝑂(𝛼2) approximation to the
optimal solution of 𝑘-means. We then give the theoretical
guarantee of our method.

4.1 MapReduce 𝑘-means++

As mentioned before, Lloyd’s iteration can be easily
parallelized with MapReduce. Therefore, we only focus
on 𝑘-means++ initialization algorithm with MapReduce
in this section. Combining this initialization algorithm
with MapReduce-𝑘-means generates our MapReduce 𝑘-
means++ algorithm. The 𝑘-means++ initialization method
shown in Algorithm 1 includes two dependent phases:
choosing one point as a center based on the probability
and updating the sum of distances that points to their
nearest centers. In a real MapReduce environment, each
machine cannot see the entire input and cannot see the
data on other machines either. Furthermore, there is no
communication between machines during the Mapper phase
and Reducer phase. Consequently, the MapReduce imple-
mentation of 𝑘-means++ initialization needs two sequential
MapReduce jobs to choose one point as a center. The
first job is responsible for choosing a center and the
second one updates the sum of distances. However, it is a
very expensive parallelized implementation of 𝑘-means++
initialization since it has to run at least 2𝑘 MapReduce jobs
for 𝑘 clusters, incurring high communication cost and I/O
cost. Therefore, this is a poor solution when processing
massive data although it is an 𝑂(𝛼) approximation to the
optimal of 𝑘-means.

In this section, we propose a fast 𝑘-means++ ini-
tialization algorithm with MapReduce. It uses only one
MapReduce job and avoids the high cost of the above
solution. Both Mapper phase and Reducer phase of our
method run a 𝑘-means++ initialization algorithm. But their
difference is that the algorithm in Mapper phase is a
standard 𝑘-means++ initialization while in Reducer phase
is a weighted 𝑘-means++ initialization. If both Mapper and
Reducer phase run a standard 𝑘-means++ initialization, it
incurs a large 𝑆𝑆𝐸 from the optimal solution. Therefore,
in Mapper phase of our method, except for choosing 𝑘
centers, another important work is to compute the number
of points that a center represents, this value is used to
weigh the probability used in Reducer phase. In Reducer
phase, we use the weighted probability to choose the
initial 𝑘 centers for 𝑘-means. The time complexity of
our method is 𝑂(𝑘𝑛𝑑) which is the same as the single

iteration of 𝑘-means. Our method guarantees that the clus-
tering result is an 𝑂(𝛼2) approximation to 𝑘-means and
the detailed analysis is shown in the following section.
Algorithm 2 and Algorithm 3 show the details of the
proposed MapReduce 𝑘-means++ initialization algorithm.
Algorithm 2: Mapper phase of 𝑘-means++ initialization
Input: 𝑘, the number of clusters,
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, a set of data points.
Output: ⟨𝑛𝑢𝑚[𝑖], 𝑐𝑖⟩, 𝑖 = 1, 2, ..., 𝑘.
𝑛𝑢𝑚[𝑖] denotes the number of points that
center 𝑐𝑖 represents.
𝐶 ← ∅1

Choose one center 𝑥 uniformly at random from 𝑋 ,2

𝐶 = 𝐶 ∪ {𝑥}.
for 𝑖 = 1; 𝑖 ≤ 𝑘; 𝑖++ do3

𝑛𝑢𝑚[𝑖] = 0;4

while ∣𝐶∣ < 𝑘 do5

Compute 𝐷(𝑥) between 𝑥 ∈ 𝑋 and its nearest6

center that has already been chosen
Choose 𝑥 with probability 𝐷(𝑥)/

∑
𝑥∈𝑋

𝐷(𝑥)2
7

𝐶 ← 𝐶 ∪ {𝑥}8

for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖++ do9

find the nearest center 𝑐𝑖 ∈ 𝐶 for 𝑥𝑖10

𝑛𝑢𝑚[𝑖] + +11

output ⟨𝑛𝑢𝑚[𝑖], 𝑐𝑖⟩12

Algorithm 3: Reducer phase of 𝑘-means++ initializa-
tion
Input: 𝑘, the number of clusters,
𝑋 , the set of ⟨𝑛𝑢𝑚, 𝑐⟩
Output: 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑘}
𝐶 ← ∅1

Choose one center 𝑥 uniformly at random from 𝑋 ,2

𝐶 = 𝐶 ∪ {𝑥}.
while ∣𝐶∣ < 𝑘 do3

Compute 𝐷(𝑥) between 𝑥 ∈ 𝑋 and its nearest4

center that has already been chosen
Choose 𝑥 with probability 𝑛𝑢𝑚𝐷(𝑥)/

∑
𝑥∈𝑋

𝐷(𝑥)2
5

𝐶 ← 𝐶 ∪ {𝑥}6

Output 𝐶7

System Issues. At a high level, we implement the
MapReduce 𝑘-means++ initialization algorithm in Hadoop.
There are two technical issues that must be handled during
its implementation. Firstly, it requires the global informa-
tion communication between map and reduce operation.
To ensure that we can utilize two Hadoop features: Job
Configuration and Distributed Cache. Job Configuration is a
small piece of information communicated to every map and
reduces task during task initialization. If a large amount of
data must be communicated, Distributed Cache is the best
choice. Second, both in map function and reduce function,
data is processed in the form of tuple ⟨𝑘, 𝑣⟩ and it flows into
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map function and reduces function one by one. Therefore,
it is impossible to implement 𝑘-means++ initialization
algorithm in map function and reduce function. Fortunately,
Hadoop provides the cleanup function for this purpose.

However, this algorithm incurs a lot of unnecessary
distance computations. Thus, we will conduct a detailed
analysis and propose an improved version in Section 5.

4.2 Theoretical Analysis

Although our algorithm is simple, it is high efficiency and
has a good approximation of 𝑘-means. This section focuses
on the analysis of our MapReduce 𝑘-means++ algorithm
and achieves a theoretical guarantee. We firstly introduce
some symbols and definitions used in this section which
are shown in Table 1.

TABLE 1: Symbols and Definitions

Symbols Definitions

𝑋 the set of all data points
𝑋𝑖 the set of data points processed by map task 𝑖
𝑌 the set of centers from all map tasks
𝑌

′
the multiset in Definition 2

𝑌
′′

the set of centers chosen from 𝑋 using 𝑘-means++
𝑌𝑖 the set of centers from map task 𝑖
𝐶 the set of centers from reduce task
𝐶 the optimal set of centers chosen from 𝑋

𝐶∗ the optimal set of centers chosen from 𝑌
′

Definition 1: Map 𝜑 : 𝑋 → 𝑌 . In our method, each map
task runs a 𝑘-means++ algorithm and produces 𝑘 centers.
Thus, for any point 𝑥 ∈ 𝑋 , there always exists a center 𝑦 ∈
𝑌 which is able to represent 𝑥 best, that is the Euclidean
distance between 𝑥 and 𝑦 is the smallest among all points.
Because ∣𝑌 ∣ ≪ ∣𝑋∣, a center in 𝑌 generally represents
more than one point in 𝑋 .

Definition 2: Multiset 𝑌
′
= {𝜑(𝑥)∣𝑥 ∈ 𝑋}. The ele-

ment in 𝑌
′

is allowed duplicate and the size of 𝑌
′
equals

to the size of 𝑋 . 𝑌 is a copy of 𝑌
′

without duplicate
elements.

Lemma 1: If clustering results are constructed with stan-
dard 𝑘-means++, then 𝑆𝑆𝐸 ≤ 𝛼𝑆𝑆𝐸𝑂𝑃𝑇 , 𝛼 = 𝑂(𝑙𝑛𝑘),
𝑆𝑆𝐸𝑂𝑃𝑇 =

∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2.

Proof: According to [7].
In fact, this lemma holds after only 𝑘-means++ initial-

ization and 𝑘-means algorithm further decreases 𝑆𝑆𝐸.
Lemma 2: If the weighted 𝑘-means++ initialization

algorithm is run on the Reducer phase, then∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝜑(𝑥)− 𝑐∣∣2 ≤ 𝛼

∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝜑(𝑥)− 𝑐∣∣2

Proof: Note that 𝜑(𝑥) ∈ 𝑌
′
. After the Reducer phase,

weighted 𝑘-means++ initialization algorithm generates 𝑘
centers. If using the standard 𝑘-means++ algorithm, its
solution is the 𝛼 approximation to the optimal solution on
𝑌 , but not the 𝛼 approximation to the optimal solution
on 𝑌

′
. While, using weighted 𝑘-means++ initialization

algorithm, although it works on 𝑌 , it considers the number

of points in 𝑋 that is presented by the center in 𝑌 . In fact,
it works on 𝑌

′
. Therefore, based on Lemma 1, we have:∑

𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝜑(𝑥)− 𝑐∣∣2 ≤ 𝛼

∑
𝑥∈𝑋

min
𝑐∗∈𝐶∗

∣∣𝜑(𝑥)− 𝑐∗∣∣2 (1)

Because 𝐶∗ is the optimal solution to 𝑌
′
, 𝐶 is the optimal

solution to 𝑋 and 𝑌 is the set of 𝑛𝑘 centers from 𝑋 .
Therefore,∑

𝑥∈𝑋

min
𝑐∗∈𝐶∗

∣∣𝜑(𝑥)− 𝑐∗∣∣2 ≤
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝜑(𝑥)− 𝑐∣∣2 (2)

That is, for the same number of centers, the centers chosen
from 𝑌

′
represent 𝑌

′
better than the centers chosen from

𝑋 . Combining (1) (2) and then the result follows.
Lemma 3: If there are 𝑛 map tasks that run 𝑘-means++

initialization algorithm and generate 𝑛𝑘 centers in total,
then

∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥− 𝑐∣∣2 =

𝑛∑
𝑖=1

∑
𝑥∈𝑋𝑖

min
𝑐∈𝑌𝑖

∣∣𝑥− 𝑐∣∣2

≤
∑
𝑥∈𝑋

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2

Proof: Since the whole data 𝑋 is divided into 𝑛 splits
(each split is 64MB by default), these splits are denoted
by 𝑋1, ..., 𝑋𝑛. Then each split is processed by one map
task with 𝑘-means++ initialization algorithm to choose a
set of 𝑘 centers denoted by 𝑌1, ..., 𝑌𝑛. Therefore,

𝑛∑
𝑖=1

∑
𝑥∈𝑋𝑖

min
𝑐∈𝑌𝑖

∣∣𝑥− 𝑐∣∣2

=
∑
𝑥∈𝑋1

min
𝑐∈𝑌1

∣∣𝑥− 𝑐∣∣2 + ...+
∑
𝑥∈𝑋𝑛

min
𝑐∈𝑌𝑛

∣∣𝑥− 𝑐∣∣2

(3)
If we use one machine to run 𝑘-means++ initialization
algorithm on the whole data 𝑋 and choose 𝑘 centers 𝑌

′′
.

Then, we have,∑
𝑥∈𝑋

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2

=

𝑛∑
𝑖=1

∑
𝑥∈𝑋𝑖

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2

=
∑
𝑥∈𝑋1

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2 + ...+

∑
𝑥∈𝑋𝑛

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2.

(4)

Because 𝑘 centers chosen from a small data set 𝑋𝑖 repre-
sents 𝑋𝑖 better than 𝑘 centers from the whole data 𝑋 . That
is, ∑

𝑥∈𝑋𝑖

min
𝑐∈𝑌𝑖

∣∣𝑥− 𝑐∣∣2 ≤
∑
𝑥∈𝑋𝑖

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2 (5)

Combining (3) (4) (5) and then the result follows.
Theorem 1: The MapReduce 𝑘-means++ initialization

algorithm obtains a solution that is an 𝑂(𝛼2) approximation
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to the optimal solution of 𝑘-means, that is.∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝑥− 𝑐∣∣2 ≤ (𝛼2 + 2𝛼)

∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2

Proof: According to triangle inequality, we have∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝑥− 𝑐∣∣2

≤
∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝜑(𝑥)− 𝑐∣∣2 +

∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥− 𝑐∣∣2

≤ 𝛼
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝜑(𝑥)− 𝑐∣∣2 +
∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥− 𝑐∣∣2

(𝑏𝑦 𝐿𝑒𝑚𝑚𝑎2)

≤ 𝛼(
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2 +
∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥− 𝑐∣∣2)

+
∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥− 𝑐∣∣2 (𝑏𝑦 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦)

= 𝛼
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2 + (𝛼+ 1)
∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥− 𝑐∣∣2

≤ 𝛼
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2 + (𝛼+ 1)
∑
𝑥∈𝑋

min
𝑐∈𝑌

′′
∣∣𝑥− 𝑐∣∣2

(𝑏𝑦 𝐿𝑒𝑚𝑚𝑎3)

≤ 𝛼
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2 + (𝛼+ 1)𝛼
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2

(𝑏𝑦 𝐿𝑒𝑚𝑚𝑎1)

= (𝛼2 + 2𝛼)
∑
𝑥∈𝑋

min
𝑐∈𝐶

∣∣𝑥− 𝑐∣∣2

(6)
For our MapReduce 𝑘-means++ initialization algorithm

is an 𝑂(𝛼2) approximation to the 𝑘-means and the MapRe-
duce 𝑘-means further decreases the squared distance error.
Thus, our MapReduce 𝑘-means++ algorithm is an 𝑂(𝛼2)
approximation to the optimal of 𝑘-means.

Our proof is based on the triangle inequality. It should
satisfy: for any three points 𝑥, 𝑦 and 𝑧, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦)+
𝑑(𝑦, 𝑧).

The proof of Theorem 1 uses triangle inequality twice.
Three elements of the first one are: (1) After the
weighted 𝑘-means++ initialization algorithm in Reducer
phase, we can use the centers to represent all centers,
i.e.,

∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝑥 − 𝑐∣∣2; (2) Because these centers are

generated from the map task output, we can also use them to
represent the points of map output, i.e.,

∑
𝑥∈𝑌

min
𝑐∈𝐶
∣∣𝑥− 𝑐∣∣2.

However, the cardinality of 𝑋 and 𝑌 is different and the
triangle inequality is not satisfied on this condition. So,
we Definition 1 and Definition 2 to replace

∑
𝑥∈𝑌

min
𝑐∈𝐶
∣∣𝑥−

𝑐∣∣2 with
∑
𝑥∈𝑋

min
𝑐∈𝐶
∣∣𝜑(𝑥) − 𝑐∣∣2; (3) After the Mapper

phase, we use the 𝑛𝑘 centers to represent all points, i.e.,∑
𝑥∈𝑋

min
𝑐∈𝑌
∣∣𝑥 − 𝑐∣∣2. Combining (1) (2) (3), the triangle

inequality is satisfied. The second triangle inequality is used
in line 4; its analysis is the same as the first one and we
cannot give it due to space constraints.

For the triangle inequality, Theorem 1 enlarges the upper
bound of approximation. In fact, this approximation is much
less than 𝛼2 + 2𝛼, especially after the post processing
of 𝑘-means algorithm with the centers from 𝑘-means++
initialization.

5 IMPROVED MAPREDUCE 𝑘-MEANS++ INI-
TIALIZATION

We observe that the proposed MapReduce 𝑘-means++ ini-
tialization algorithm in Hadoop is very expensive. Although
each map task only processes 64MB data and the reduce
task processes the data that is much smaller than the whole
data, it is still expensive due to the following reasons: (1)
the inherent iteration nature of 𝑘-means++ initialization
algorithm. Although our algorithm puts iteration operation
on a single machine and avoids a lot of communication
and I/O cost suffering from 𝑘 rounds of MapReduce jobs
on multiple machines, the number of iterations cannot be
reduced. (2) Most importantly, once a new center is chosen,
it needs to determine whether the points belonging to
other clusters should be assigned to the new center or not.
Usually, for each iteration, both map task and reduce task
have to scan all the data to compute the distance between
the point and the new center, and then compare the new
distance with old distance to determine the assignment of
this point. For example, assuming a machine processes 𝑛
points to choose 𝑘 centers, it needs to compute 𝑂(𝑛𝑘2)
times in the worst case. When 𝑛 and 𝑘 are very large, this
operation is very expensive. This motivates us to explore
an improved algorithm which can choose 𝑘 centers quickly
and inexpensively.

As mentioned above, 𝑘-means++ initialization algorithm
need iterate 𝑘 times to generate 𝑘 centers and its iteration
time cannot be reduced. However, it is unnecessary to
calculate the distances of all points when a new center is
determined. For example, if a point is far away from the
new center, that is this point is represented better by the old
center than by the new center, i.e., not necessary to calculate
the distance between this point and the new center. In this
section, we propose an improved MapReduce 𝑘-means++
initialization algorithm which can prune a lot of redundant
distance computations based on the triangle inequality. We
have the following theorem and corollary.

Theorem 2: Let 𝐴 be the set of centers that have been
chosen, ∀𝑜 ∈ 𝐴, 𝐵 is the set of points that are represented
by 𝑜, 𝑐 is a new center just determined, 𝑏 ∈ 𝐵 denotes
the point that is represented worst by 𝑜, i.e., ∀𝑏′ ∈ 𝐵,
∣∣𝑜− 𝑏

′ ∣∣2 ≤ ∣∣𝑜− 𝑏∣∣2. If ∣∣𝑜− 𝑐∣∣2 ≥ 2∣∣𝑜− 𝑏∣∣2, then the
distances of the points in 𝐵 to the new center 𝑐 need not
be calculated, i.e., they still belong to the old center 𝑜, not
the new center 𝑐.

Proof: As shown in Fig. 1(a), 𝑜 is an arbitrary center
in 𝐴, 𝑏 and 𝑏

′
are two arbitrary points in 𝐵, 𝑏 is also the

worst point that is represented by 𝑜, 𝑐 is a new center. The
purpose of this theorem is to avoid the distance computation
between 𝑏

′
and 𝑐, i.e. not to compare ∣∣𝑏′ − 𝑜∣∣2 with ∣∣𝑏′ −

𝑐∣∣2 and determine the assignment of 𝑏
′
. Because of ∣∣𝑏′ −
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Fig. 1: The Schematic Diagram of Theorem2 and Corol-
lary1

𝑐∣∣2 > ∣∣𝑜 − 𝑐∣∣2 − ∣∣𝑜 − 𝑏
′ ∣∣2 and ∣∣𝑜 − 𝑏

′ ∣∣2 < ∣∣𝑜 − 𝑏∣∣2,
hence ∣∣𝑏′ − 𝑐∣∣2 > ∣∣𝑜− 𝑐∣∣2 − ∣∣𝑜− 𝑏∣∣2. And because the
condition ∣∣𝑜 − 𝑐∣∣2 ≥ 2∣∣𝑜 − 𝑏∣∣2, clearly, we can derive
∣∣𝑏′ − 𝑐∣∣2 > ∣∣𝑜− 𝑐∣∣2 − ∣∣𝑜− 𝑏∣∣2 > ∣∣𝑜− 𝑏∣∣2 > ∣∣𝑜− 𝑏

′ ∣∣2
.

Note that the distance between 𝑏 and 𝑜 gives the upper
bound. Any point whose distance to 𝑜 is smaller than it
need not be calculated and they all must retain assigned to
center 𝑜. From the aspect of geometry, the old center 𝑜 and
the distance ∣∣𝑜 − 𝑏∣∣2 determine a circle, the new center
𝑐 and the smallest distance ∣∣𝑜 − 𝑏∣∣2 determine another
circle, if there is no intersection between two circles, i.e.
∣∣𝑜− 𝑐∣∣2 ≥ 2∣∣𝑜− 𝑏∣∣2, the points belong to one circle still
belong to it.

Corollary 1: If ∣∣𝑜−𝑐∣∣2 < 2∣∣𝑜−𝑏∣∣2, there exists a point
𝑑 ∈ 𝐵 whose distance to 𝑜 satisfies ∣∣𝑜− 𝑑∣∣2 ≤ ∣∣𝑜− 𝑏∣∣2.
Any points in 𝐵 whose distance to 𝑜 are less than or equal
to ∣∣𝑜−𝑑∣∣2 construct a set 𝐶 ⊆ 𝐵. If ∣∣𝑜−𝑐∣∣2 ≥ 2∣∣𝑜−𝑑∣∣2,
then the distances of the points in 𝐶 to the new center 𝑐
need not be calculated, that is, they still belong to the old
center 𝑜, not the new center 𝑐.

Corollary 1 is the complement of Theorem 2. As shown
in Fig. 1(b), we use Corollary 1 as follows. When a new
center 𝑐 is determined and not all points in 𝐵 are still
represented by the center 𝑜, i.e., ∣∣𝑜− 𝑐∣∣2 < 2∣∣𝑜− 𝑏∣∣2. We
can use Corollary 1 to determine a point 𝑑 (it may be a real
point or a virtual point) that satisfies ∣∣𝑜−𝑐∣∣2 = 2∣∣𝑜−𝑑∣∣2,
then the points within circle 𝑂1 are still represented by
center 𝑜 and these distances are not necessary to calculate.

With Theorem 2 and Corollary 1, the improved initial-
ization method avoids a lot of redundant distance com-
putations. However, the triangle inequality has its own
drawback in reducing the distance computation. For ex-
ample, as shown in Fig. 1(b), using the triangle inequality,
the improved initialization method only avoid the distance
computation of points within circle 𝑂1. While the points
within circle 𝑂1 and circle 𝑂2 need to be calculated. In fact,
the points within circle 𝑂1, 𝑂2 and at the left of line 𝐿1𝐿2

need not to be calculated either. If using a more accurate
angle, the pruning power will be strengthened. In the future,
we will consider using the triangle to further optimize our
algorithm.

6 EXPERIMENTAL RESULTS

In this section, the experimental results of our proposed
algorithms are presented. Noticing that the main merits of
MapReduce 𝑘-means++ initialization are: (1) efficiency, it
is much more efficient than the parallel implementation
of 𝑘-means++ initialization since it only requires one
MapReduce job to obtain 𝑘 centers; (2) good approxima-
tion, although MapReduce 𝑘-means++ obtains an 𝑂(𝛼2)
approximation to the 𝑘-means which is a little worse
than 𝑘-means++ (𝑂(𝛼) approximaition), it is still much
better than MapReduce 𝑘-means with random initialization
method. No matter MapReduce random initialization or
MapReduce 𝑘-means++ initialization, the ultimate purpose
is to serve the 𝑘-means. Thus, we evaluate MapReduce 𝑘-
means algorithm with different initialization methods. At
last, for the expensive distance computation of MapReduce
𝑘-means++ initialization, we have proposed an improved
MapReduce initialization algorithm, which will also be
evaluated in this section.

All experiments are performed on a homogeneous
Hadoop cluster running the latest stable version of Hadoop
0.20.2. The cluster consists of 12 machines with 1 master
node and 11 slave nodes. Each node has 2 AMD Opteron
2212 2.00GHz CPUs, 8GB of RAM, 80GB SCSI HDD,
Intel 82551 10/100Mbps Ethernet Controller. The operating
system of each node is Ubuntu 10.10 server 64bit and per
Hadoop daemon is allocated 1GB memory. This cluster
has 1 TaskTracker and 1 DataNode daemon running on
each slave, and a single NameNode and JobTracker daemon
on the master. All machines are directly connected to a
100Mbps switch. We configure 2 map slots and 2 reduce
slots on each node. The DFS chunk size is 64MB.

We conduct the experiments on the following datasets:

∙ Oxford Buildings Dataset: This is a real dataset con-
sists of 5062 images collected from Filckr by search-
ing for particular Oxford landmarks. A large number
of 128-dimension SIFT features is extracted from each
image and there are more than 17 million features in
total. Its size is 5.67GB.

∙ Synthetic Dataset: We also generate a random dataset
of points and each point is also 128-dimension. It
consists of 5000 centers and the points are randomly
generated around the centers. Each cluster contains
about 4000 points. This dataset includes more than
20 million points and its size is about 15GB.

The following approaches are evaluated in the experiments.

∙ Efficiency of MapReduce 𝑘-means++ initialization and
scalable 𝑘-means++ initialization.

∙ Approximation of MapReduce 𝑘-means++ initializa-
tion and MapReduce random initialization.

∙ Approximation of MapReduce 𝑘-means++ and
MapReduce 𝑘-means.

∙ Efficiency of MapReduce 𝑘-means++ initialization and
improved MapReduce 𝑘-means++ initialization.
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Fig. 2: SSE Comparison of MR-RI and MR-KMI on
Different Datasets

6.1 Efficiency of MapReduce 𝑘-means++ Initial-
ization and scalable 𝑘-means++ Initialization

As mentioned above, our MapReduce 𝑘-means++ initial-
ization algorithm only uses one MapReduce job to obtain
𝑘 centers, while the scalable 𝑘-means++ needs too many
MapReduce jobs. However, our algorithm does not avoid
the iteration nature of 𝑘-means++ initialization algorithm.
In fact, it replaces the iteration on multiple machines with
the iteration on a single machine. Therefore, it saves a
lot of communication and I/O cost and usually these are
the bottlenecks in the cloud computing environment. From
this perspective, our MapReduce 𝑘-means++ initialization
algorithm is much more efficient than the scalable 𝑘-
means++ initialization.

6.2 Approximation of MapReduce 𝑘-means++ Ini-
tialization and MapReduce Random Initialization

In this experiment, we compare the approximation of
MapReduce Random Initialization (MR-RI) algorithm and
MapReduce 𝑘-means++ Initialization (MR-KMI) algorithm
on different datasets. The results are summarized in Fig.
2. To show the results more clearly, we also summarized
the results of synthetic dataset in Table 2. From Fig. 2
we can see, no matter real dataset and synthetic dataset,
the approximation of both MR-RI and MR-KMI become
better with the increase of centers. But comparing MR-
KMI with MR-RI, the former can achieve a much better
approximation than the latter. Especially on Oxford dataset
(Fig. 2(a)), although the approximation of both MR-KMI
and MR-RI is at the same magnitude (1012), the 𝑆𝑆𝐸 of
MR-KMI is about 1011 less than the MR-RI at the same
number of centers. And for the random nature of MR-RI,
its approximation shows the obvious fluctuation, while MR-
KMI shows a stable approximation trend with the increase
of centers. For synthetic data (Fig. 2(b) and Table 2), the
approximation of MR-KMI is much better than MR-RI
when 𝑘 varies from 1000 to 5000 and 𝑆𝑆𝐸 is over two
orders of magnitude (from 1010 to 1012). Especially, when
𝑘 = 5000, 𝑆𝑆𝐸 of MR-KMI is about 1/13 of the MR-RI.
The reasons are that the points of the synthetic dataset are
generated around the centers to create 5000 clusters and
MR-RI is difficult to capture the above characteristics for
its random nature.

TABLE 2: SSE of MR-RI and MR-KMI on Synthetic
Dataset

k 1000 2000 3000 4000 5000
MR-RI 5.37e12 1.43e12 7.67e11 4.05e11 2.54e11

MR-KMI 1.60e12 3.56e11 1.45e11 6.44e10 2.00e10
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Fig. 3: SSE Comparison of MR-KM and MR-KM++ on
Different Datasets

6.3 Approximation of MapReduce 𝑘-means++ and
MapReduce 𝑘-means
This section compares the approximation of MapReduce
𝑘-means (MR-KM) and MapReduce 𝑘-means++ (MR-
KM++) on Oxford dataset and synthetic dataset. 𝑘 is set to
5000 and these centers are from the previous experiment.
Both MR-KM and MR-KM++ iterate 5 times in this exper-
iment. The results are summarized in Fig. 3. We also show
the results of the synthetic data in Table 3. As shown in
Fig. 3, 𝑆𝑆𝐸 of both MR-KM and MR-KM++ decreases as
the iteration varies from 1 to 5. It also follows the gradient
descent nature of 𝑘-means. But our algorithm MR-KM++
has a better approximation than MR-KM. For Oxford
dataset (Fig. 3(a)), the maximum 𝑆𝑆𝐸 difference between
MR-KM and MR-KM++ occurs when they iterate once.
It is about 3𝑒10 (1.03𝑒12 vs 1.06𝑒12). With the increase
of iteration, this difference becomes small and tends to
be stable. For example, when iteration is 5, the difference
between them is the smallest (1.7𝑒9). For synthetic dataset
(seeing Fig. 3(b) and Table 3), compared to MR-KM, MR-
KM++ has a huge advantage in approximation to 𝑘-means
and 𝑆𝑆𝐸 of MR-KM is about 10 times bigger than that
of MR-KM++ (iteration=1). When iteration is from 3 to 5,
the 𝑆𝑆𝐸 of MR-KM++ is almost constant (about 1.02𝑒10).
From the above analysis, our MapReduce 𝑘-means++ has
a fast convergence speed.

TABLE 3: SSE of MR-KM and MR-KM++ on Synthetic
Dataset

Iteration 1 2 3 4 5
MR-KM 1.15e11 6.66e10 5.80e10 5.45e10 5.36e10

MR-KM++ 1.13e10 1.03e10 1.024e10 1.023859e10 1.023856e10

With 5 times of iterations, 𝑆𝑆𝐸 of MR-KM++ is stable,
not only on real dataset but also on synthetic dataset.
We use 𝑆𝑆𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛/𝑆𝑆𝐸𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛=5 to evaluate the
approximation of the initialization method to the final
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TABLE 4: The Number of Distance Calculations on Oxford
Dataset

𝑘 = 1000 𝑘 = 3000 𝑘 = 5000
Algorithm map reduce map reduce map reduce
MR-KMI 1.63e10 9.39e7 4.90e10 8.46e8 8.17e10 2.35e9
IMR-KMI 1.56e10 8.24e7 4.23e10 6.89e8 6.64e10 1.82e9

TABLE 5: The Number of Distance Calculations on Syn-
thetic Dataset

𝑘 = 1000 𝑘 = 3000 𝑘 = 5000
Algorithm map reduce map reduce map reduce
MR-KMI 2.00e10 2.24e8 6.00e10 2.02e9 1.00e11 5.60e9
IMR-KMI 9.17e8 1.82e6 2.66e9 6.13e6 4.35e9 1.06e7

solution. They are 1.53 (MR-RI) and 1.41 (MR-KMI) on
Oxford dataset, 47.39 (MR-RI) and 1.96 (MR-KMI) on
synthetic data. So our initialization method has a good
approximation to the final solution.

6.4 Efficiency of MapReduce 𝑘-means++ Initial-
ization and Improved MapReduce 𝑘-means++ Ini-
tialization
Because the point in the dataset we use in our experiments
is 128-dimension and the size of the dataset is very large,
MapReduce 𝑘-means++ initialization takes a long time to
complete, even 𝑘 is small. Therefore, we compare the num-
ber of distance calculations in the MapReduce 𝑘-means++
initialization (MR-KMI) and the improved MapReduce 𝑘-
means++ initialization (IMR-KMI). We consider the num-
ber of distance calculations in Maper phase and Reducer
phase. Table 4 and Table 5 summarize the results of
the experiments on Oxford dataset and synthetic dataset
respectively.

The experimental results indicate that with the Theorem
2 and Corrollary 1 IMR-KMI reduces a lot of distance
computations over MR-KMI on both dataset. It achieves
99% in Reducer phase and 96% in Mapper phase on
synthetic dataset. And this reduction is stable with the
increase of 𝑘. While for Oxford dataset, this reduction is
slighter than synthetic dataset, but the maximum reduction
is up to 18.6% (𝑘 = 5000) in Mapper phase and 22.4%
(𝑘 = 5000) in Reducer phase. More importantly, this
reduction becomes more significant with the increase of
𝑘.

7 CONCLUSIONS
This paper investigates the important problem of clus-
tering and studies 𝑘-means++ algorithm in a very large
data situations. We develop 𝑘-means++ initialization with
MapReduce efficiently and propose the MapReduce 𝑘-
means++ algorithm. The MapReduce initialization algo-
rithm uses only one MapReduce job to choose 𝑘 centers.
The standard 𝑘-means++ initialization and weighted 𝑘-
means++ initialization are applied to the Mapper phase and
Reducer phase, respectively. For the reduction of MapRe-
duce jobs, our algorithm saves a lot of communication and

I/O cost. Furthermore, the proposed algorithm provides an
𝑂(𝛼2) approximation to the optimal solution of 𝑘-means.
Considering the expensive distance computation of our
initialization method, we also propose a pruning strategy
using triangle inequality. Extensive experiments on real and
synthetic data have been conducted. The results indicate
that the proposed MapReduce 𝑘-means++ algorithm is
much efficient and has a good approximation. Meanwhile,
the pruning strategy can further improve the initialization
method.
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