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Surrogate models (SMs) can profitably be employed, often in conjunction with evolutionary algorithms, in optimisation in which
it is expensive to test candidate solutions. The spatial intuition behind SMs makes them naturally suited to continuous problems,
and the only combinatorial problems that have been previously addressed are those with solutions that can be encoded as integer
vectors. We show how radial basis functions can provide a generalised SM for combinatorial problems which have a geometric
solution representation, through the conversion of that representation to a different metric space. This approach allows an SM to
be cast in a natural way for the problem at hand, without ad hoc adaptation to a specific representation. We test this adaptation
process on problems involving binary strings, permutations, and tree-based genetic programs.

1. Introduction

Some optimisation problems have objective functions which
are prohibitively expensive to evaluate [1, 2]. Functions may
bemathematically ill behaved (e.g., discontinuous, nonlinear,
or nonconvex) or even a black boxwith largely unknown cha-
racteristics. Many engineering design problems have func-
tions of this type [3, 4] and require experiments, lengthy
simulations or both, to evaluate the extent towhich the design
objectives are met by a function of parameters controlling
the design. In the jargon of evolutionary computation, these
controlling parameters are the genotype that encodes the
design (i.e., the phenotype) which has to be expressed by
means of an expensive simulation (i.e., a fitness evaluation).

Optimisationmethods based on surrogate models (SMs),
also known as response surface models, can tackle this prob-
lem of expensive objective functions [5–7]. A survey of sur-
rogate model-based optimisation (SMBO) methods can be
found elsewhere [8]. An SM is an easily evaluated mathemat-
ical model that approximates an expensive objective function
as precisely as possible. Inside knowledge of the objective

function is not necessary to construct an SM, which is solely
built from discrete evaluations of the expensive objective
function. We refer to a pair of a candidate solution and its
known objective function value as a data-point. Many simple
problems have solutionswhich are real numbers, and perhaps
the simplest example of an SM is piecewise-linear interpo-
lation, which creates a function from data-points by linking
them with straight-line segments. More useful SMs for sol-
utions on the real line are polynomial interpolants, which
have a continuous differential. These and other methods of
building SMs naturally extend to spatial interpolation and
regression.

The usual SMBO procedure [8] is given in Algorithm 1.
An initial SM is constructed from a few solutions of the
expensive objective function. Further evaluations are applied
to candidate solutionswhich the SMpredicts to be promising.
Subsequently, the processes of searching the SM to obtain an
optimum set of solutions, evaluation of the solutions using
the expensive objective function, and update of the SM with
the new data-points are repeated. An evolutionary algorithm
can be used in the SMBO procedure to infer the location of
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(1) Sample uniformly at random a small set of candidate solutions and evaluate them using the
expensive objective function (initial set of data-points)

(2) while a limit on the number of expensive function evaluations has not been reached do
(3) Construct a new surrogate model (SM) using all data-points available
(4) Determine the optimum value of the SM by search, for example, using an evolutionary algorithm

(this is feasible as the model is cheap to evaluate)
(5) Evaluate the solution which optimises the SM using the expensive objective function

(making an additional data-point available)
(6) end while
(7) Return the best solution found

Algorithm 1: Surrogate model-based optimisation (SMBO).

a promising set of solutions using the SM, rather than having
to evaluate the expensive objective function. This is feasible
because the computational cost of a complete run of the
evolutionary algorithm on the SM is negligible (in the order
of few seconds)with regard to the cost of evaluating a solution
using the expensive objective function of the problem (in
the order of minutes, hours, or even days depending on the
problem).

Virtually all SMs are implicitly or explicitly spatial mod-
els, and the prediction process involves exploiting some
assumed spatial relations (e.g., a smooth curve of surface)
between the values of the objective function at a query point
and those at the known data-points. This makes SMBOs nat-
urally suited to continuous optimisation problems. However
they are not obviously applicable to combinatorial optimisa-
tion problems, except those with solutions which are natu-
rally represented as vectors of integers, when a discretized SM
may be used. When each solution is a vector, an integer, or a
real number, techniques for building SMs from data-points
can be borrowed from statistics (e.g., multivariate regression
[9]) or from machine learning (e.g., supervised learning by
neural networks or support vector machines [10–12]).

There is increasing interest in optimisation problemswith
solutions with complicated representations which also have
expensive objective functions. For example, permutations
and related representations are natural representations of sol-
utions to many scheduling problems. But a candidate sched-
ule may have to be tested by simulating an entire production
process, making the SMBO approach very attractive. How-
ever, although a permutation can be regarded as a special type
of vector, permutations cannot be treated in the same way,
because the information they encode is in the order of the
elements, not their values. This makes the standard SMBO
approach unsuitable.

Variable-length sequences occur in many bioinformatics
problems [13], and an SMBO can be used to select biological
sequences for detailed study or simulation at an atomic level:
an example is the search for proteins with desired properties.

Genetic programming (GP) [14] normally operated on a
tree representation of a problem, and a number of its well-
known applications have expensive objective functions. For
example, genetic programs can be used to encode a robot’s
behavioral controller, whichmay need to be tested repeatedly
in a virtual or real environment to assess how good it is

at controlling the robot in performing a task such as wall-
following or obstacle avoidance [15].

Let us summarize current situation of SM with regard to
solution representations. Evolutionary algorithms and other
search algorithms have been widely used to optimise SMs
for continuous spaces [16]. More recent work [17] has con-
sidered vector solutions. Other studies [18] have approached
applications with expensive objective functions which are
inherently combinatorial problems with structured solutions
(e.g., graphs) by encoding solutions in vector form to allow
the use of standard SMs. Evolutionary algorithms have
also been used to train, rather than search, the SM using the
known data-points [19]; in the approach, GP performs sym-
bolic regression to obtain the vector-input function which
best fits the data-points.

Apart from the recent initial work of the present authors
[20, 21], SMs do not seem to have been defined directly on
more complicated representations than vectors. In order to
use SMs on search problems with structured representations,
the state of the art is to shoe-horn the original representation
into a vector form in a preprocessing phase, known as feature
extraction in the machine learning literature [22]. There are
a number of drawbacks to this approach. For a start, feature
extraction is a very delicate task. Only a carefully chosen
vector of features will be a good representation of the infor-
mation relevant to a learning task. Secondly, the unnatural
encoding of a solution in vector form introduces extra non-
linearity into an already expensive objective function,making
it harder to learn and consequently requiring additional
expensive function evaluations to approximate it well enough
to locate the optimum solution. In addition, the extraction of
features from structured representations such as GP trees is
itself unnatural and hence ineffective. For example, a sym-
bolic regression formula or a Boolean formula would appear
to have no obvious mapping to a fixed-length vector.

The underlying difficulty is that of making a problem fit
the format of current SMs. Surely is it better tomodify the SM
to accommodate the problem? Or is there some way to mod-
ify satisfactory SMs to accept more complicated solution
representations?

We recently [20, 21] answered these questions by gener-
alizing a well-known class of SMs—radial basis function net-
works [23]—using a geometric framework [24–27]which had
previously been used to generalize search algorithms, such
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as particle swarm optimisation and differential evolution,
from continuous spaces to combinatorial spaces. The gener-
alizationmethod is conceptually simple. Firstly, an algorithm
which operated in a continuous space is rewritten in terms of
Euclidean distances between points. Many spatial algorithms
can be rewritten in this way. Then Euclidean distance is
replaced with a generic distance metric, which yields a for-
mally well-defined algorithm.This algorithm can be adapted
to any solution representation by specifying an appropriate
distance metric for that representation.

An algorithm generalised using this geometric method-
ology can readily be adapted to complicated representations
because many types of structured object admit natural rela-
tions of distance or similarity. In particular edit distances are
well suited to structured objects. The edit distance between
two configurations is the minimum number of unit edit
operations required to transform one of them into the other.
For example, hamming distance is an edit distance between
binary strings based on the unit edit of a bit flip. For
permutations, another metric is swap distance, which is the
minimum number of binary exchanges of elements required
to transform one permutation into the other. For variable-
length sequences, Levenshtein distance measures the mini-
mum number of insertions, deletions, or changes of charac-
ters required to transform one sequence into the other.There
are also edit distances defined on trees and graphs, based on
modifications of edges and nodes.

In the remainder of this paper, we first review how radial
basis function networks [23] can be generalised to a range of
solution representations using this geometric methodology.
We will show how the resulting generalised models can
be linked to a target representation using an appropriate
distance metric and then used within an SMBO to optimise
problems on the target representation. We will illustrate the
derivation of SMBOs for three target representations: binary
strings, permutations, and GP trees. All our test problems are
assumed to have costly objective functions. We use hamming
distance as the metric for binary strings and test the resulting
SMBO on the well-known NK-landscapes [28] problem. We
use hamming distance and swap distance with permutations
and test the SMBO on the quadratic assignment problem
[29]. We use a form of tree edit distance with GP trees and
address standard GP benchmarks of symbolic regression and
parity. We should be clear that we are not aiming to show
that a generalised SMBO can replace expensive objective
functions with structured representations in solving practical
problems, but to demonstrate that generalised SMBOs can be
in principle applied to such problems, and that it provides
meaningful results when applied to classic example problems
in simple discrete spaces, which is itself a large conceptual
leap.

2. Radial Basis Function Networks

The machine learning literature [22] contains a number of
approaches to problems of finding a function in a certain class
that best interpolates a set of the data-points which are natu-
rally cast in terms of Euclidean distances, which could readily

be generalised to other metric spaces, by replacing Euclidean
distance with some metric. These methods include nearest-
neighbor regression, inverse distance-weighted interpolation,
radial basis function network interpolation, and Gaussian
process regression (also known as kriging). The first two
methods are relatively simple but they cannot be used as
SMs because the global optimum of the functions created
from the data-points coincides with a data-point used in the
construction of these functions and thesemethods never pro-
vide better solutions than any of the data-points. Gaussian
process regression [30] is a very powerful method with a
solid theoretical foundation, which can not only extrapolate
a global optimum but also give it an interval of confidence.
Radial basis function network interpolation is similar to
Gaussian process regression but conceptually simpler. We
focus on radial basis function networks (RBFNs) and leave
the generalization of Gaussian process regression for future
work.

2.1. Classic RBFNs. A radial basis function (RBF) is a real-
valued function 𝜙 : R𝑛 → R whose value depends only
on the distance from some point c, called its center, so that
𝜙(x) = 𝜙(‖x− c‖). The point c is an argument of the function.
The norm is usually Euclidean, so ‖x−c‖ is Euclidean distance
between c and x, but other norms are possible and have been
used. Commonly used RBFs include Gaussian functions,
multiquadrics, poly-harmonic splines, and thin-plate splines.
Themost frequently used are Gaussian functions of the form:

𝜙 (x) = exp (−𝛽‖x − c‖2) , (1)

where 𝛽 > 0 is the width parameter.
RBFs are typically used to build function approximations

of the form:

𝑦 (x) = 𝑤
0
+
𝑁

∑
𝑖=1

𝑤
𝑖
𝜙 (
x − c𝑖
) . (2)

The approximating function 𝑦(x) is thus the sum of𝑁 RBFs,
each associated with its own center c

𝑖
, width 𝛽

𝑖
, and weighted

by a coefficient 𝑤
𝑖
and there is a bias term 𝑤

0
. Figure 1

shows an example of a function obtained in this way. Any
continuous function can in principle be approximated with
arbitrary accuracy by such a sum, if enough RBFs are used.

In an RBFN, there are three types of parameters that need
to be determined to optimise the fit between 𝑦(x) and the
data: the weights 𝑤

𝑖
, the centers c

𝑖
, and the width parameters

𝛽
𝑖
. The most common way to find these parameters has two

phases. Firstly, unsupervised learning (i.e., clustering) is used
to determine the position of the centers and the widths of the
RBFs. Then, the weights 𝑤

𝑖
that optimise the fit are obtained

by least-squares minimisation.
A simplified procedure for fitting an RBFN, which skips

the unsupervised learning phase, is widely used. The centers
c
𝑖
are first chosen to coincide with the known points x

𝑖
. Then

the widths 𝛽
𝑖
are determined by a heuristic based on the

distance of each center c
𝑖
to the nearest neighbors (local

model) or all widths are set to the same value, which is chosen
in relation to themaximumdistance between any two centers



4 Mathematical Problems in Engineering

Figure 1: Example of a function (solid line) obtained as a weighted
sum of three Gaussian functions (dashed lines) on the real line: the
weighting factors 𝑤

1
, 𝑤
2
, and 𝑤

3
are 0.5, 1, and 1, respectively.

(global model). The bias 𝑤
0
can either be set to the mean of

the function values 𝑏
𝑖
at the known data-points (i.e., training

set), or to 0. The weights 𝑤
𝑖
are then determined by solving

the system of 𝑁 simultaneous linear equations in 𝑤
𝑖
which

express the requirement that the function interpolates the
data-points:

𝑦 (x
𝑖
) = 𝑏
𝑖
, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑁. (3)

Setting 𝑔
𝑖𝑗
= 𝜙(‖x

𝑗
− x
𝑖
‖), the system can be written in

matrix form as 𝐺w = b. The matrix 𝐺 is nonsingular if the
points x

𝑖
are distinct and the family of functions 𝜙 is positive

definite (which is the case for Gaussian functions), and thus
the weights w can be obtained by simple linear algebra:

w = 𝐺−1b. (4)

2.2. Generalization of RBFNs to Arbitrary Representations. To
generalize RBFNs, we need to generalize (i) the class of
functions used to approximate the unknown function, (ii) the
training procedure which finds the function within that class
that best fits the data-points, and (iii) the model query pro-
cedure that predicts the value of the unknown function at a
query point.

Following the geometric methodology of our generaliza-
tion, we first need to rewrite each of the above three elements
as a function of Euclidean distance alone and then substitute a
distance metric which is chosen to suit the target representa-
tion. Finally we rewrite the algorithm in terms of that distance
to obtain an instance of that algorithm specific to the target
representation.

Let M be a metric space associated with a distance
function 𝑑. An RBF 𝜙 : R𝑛 → R whose value depends
only on the distance from some point c ∈ R𝑛, so that 𝜙(x) =
𝜙(‖x−c‖), can be generalised to a function𝜙 : M → Rwhose
value depends only on the distance from some point c ∈ 𝑀
in the metric space, so that 𝜙(x) = 𝜙(𝑑(x, c)). For example,
generalised Gaussian functions can be obtained by replacing
Euclidean distance with the generic metric 𝑑 in the original
definition, so that 𝜙(x) = exp(−𝛽𝑑(x, c)2).

A set of configurations and an associated edit distance
comprise a metric space, as all edit distances meet the metric

axioms [27, 31, 32]. Consequently, a generalised RBF is
well-defined on any set of configurations, making it a
representation-independent function. For example, the set of
binary strings H and hamming distance 𝑑

𝐻
form a metric

space. If hamming distance 𝑑
𝐻
is used as the metric 𝑑, then

generalised Gaussian functions become well-defined func-
tions 𝜙 : H → R, which map binary strings to real numbers.
Note that both c and x are binary strings. Alternatively, if the
swap distance on permutations replaces the metric 𝑑, then
these generalised Gaussian functions become well-defined
functions mapping permutations to real numbers.

The SM 𝑦(x), which is a linear combination of RBFs, can
be generalised to a linear combination of generalised RBFs:
𝑦(x) = 𝑤

0
+∑
𝑁

𝑖=1
𝑤
𝑖
𝜙(𝑑(x, c

𝑖
)). Like its components, the gen-

eralised SM is representation independent and it can be
applied to any solution representation by replacing themetric
𝑑 with a metric appropriate to the target representation. An
SM is generalized in this way of parameterizing many func-
tions on general metric spaces economically in terms of c

𝑖
,

𝑤
𝑖
, and 𝛽

𝑖
. This property is independent of the underlying

representation. When the underlying metric space is finite as
it is in combinatorial optimisation, any function can be
approximated with arbitrary accuracy by a sufficiently large
number of RBFs. In the limit, every point in space would be
associated with an RBF, parameterised to fit the function
value exactly.

The SM is fitted to the known data-points without refer-
ence to their underlying representation but solely in terms of
the distances between data-points and the objective function
values 𝑏

𝑖
. Therefore the fitting process is representation

independent, like the model. In particular, a simplified
model-fitting procedure can obtain the centers, widths, and
weights by least-squares minimisation of the system 𝐺w = b.
However, when the distance function 𝑑 is not embeddable in
Euclidean space, the RBFs are no longer necessarily positive
definite, and neither is the matrix 𝐺, and hence the inverse
matrix𝐺−1 needed to determine theweights𝑤

𝑖
,may not exist.

This difficulty can be overcome by using the pseudoinverse of
𝐺, which always exists, is unique, and corresponds to 𝐺−1
when that exists. It can also be shown that the weights 𝑤

𝑖

determined by solving the system 𝐺w = b using the
pseudoinverse are the same as those obtained by least-squares
minimisation. This way of generalizing RBFNs to structured
representations is related to kernel methods in machine
learning. However, in those methods, the types of distances
to be used between objects can be difficult to design, because
they must be implicitly embedded in a vector space (i.e.,
positive-definite kernels), which is not necessary for our
approach.

3. Experiments on Binary Strings

Binary strings are of course a special type of vector. However,
they can illustrate the application of generalised SMBOs to
combinatorial spaces because their property of being vectors
is not utilised. We experimented with the well-known NK-
Landscape problem [28], which provides a tunable set of
rugged, epistatic landscapes over a space of binary strings,
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and we consider it to have a costly objective function. We
evaluated the SMBO algorithm with landscapes of size 𝑛 =
10, 15, 20, 25, each for 𝑘 = 2, 3, 4, 5.

We used a standard SMBO algorithm (Algorithm 1).
The SM is an RBFN model fitted to the data-points using
the simplified learning procedure presented in the previous
section. The centers c

𝑖
of the RBFs are the data-points. The

widths 𝛽
𝑖
of the RBFs are all set to 1/2𝐷2, where 𝐷 is the

maximum distance between any two centers. Thus each RBF
extends over all the centers, allowing the known function
value at each center to contribute to the prediction of the
function value at any point in the landscape near the given
center. The value of the bias term 𝑤

0
is set to the average of

the function values 𝑏
𝑖
at all the known data-points. Thus the

SM returns this value at any point outside the influence of all
centers. The coefficients 𝑤

𝑖
are determined by least-squares

minimisation, as described in the previous section.
We set other parameters as a function of the problem size
𝑛. Our aim is to find the best solution to this problem with
2𝑛 candidate solutions in quadratic time; that is, we set the
number of allowable expensive function evaluations to 𝑛2.
Initially, 2 data-points are sampled, and 𝑛2 − 2 sample points
are suggested by the SM. To search the SM, we use a standard
generational evolutionary algorithm with tournament selec-
tion with a tournament size of 2, uniform crossover at a rate
of 0.5, and bitwise mutation at a rate of 1/𝑛. The population
size and the number of generations are both set to 10𝑛. If the
predicted value of the best solution found by the SM is better
than the best value at any of the known data-points, then the
model could extrapolate from the data, and that solution is
evaluated using the expensive objective function. Otherwise,
a point is chosen at random and evaluated with the expensive
objective function in an attempt to gather more data about
undersampled regions.

We compared SMBO with random search (RS), a stan-
dard (1 + 1) evolutionary algorithm ((1 + 1) EA), and
a generational evolutionary algorithm (EA), all using the
expensive objective function directly.We expect evolutionary
algorithms to outperform random search, but we include the
latter as it can do well with small samples. We allowed all the
algorithms 𝑛2 evaluations of the expensive objective function.

The (1+1) EA has a population of a single individual and
uses bitwise mutation with a bit-flip probability of 1/𝑛. EA
has a population of 𝑛 individuals, runs for 𝑛 generations, and
uses tournament selection with tournament size 2, bitwise
mutation with a bit-flip probability of 1/𝑛, and uniform
crossover at a rate of 0.5. For each of the 16 combinations of
𝑛 and 𝑘, we generated a single fitness landscape and ran all
for algorithms 50 times each. We also estimated the global
optimumusing an evolutionary algorithmwith 1,000 individ-
uals and 1,000 generations.

Table 1 shows that, for each combination of 𝑛 and 𝑘,
SMBO consistently found the best solution and the best aver-
age solution. Furthermore, in 12 out of 16 cases, SMBO was
able to find the estimated real optimum.As the problem size 𝑛
increases, the differential in favor of SMBO increases. As
expected, as the ruggedness 𝑘 of the problem increases, search
algorithms get less close to the estimated real optimum. As

for the other algorithms in the comparison, the population-
based EA generally did better than (1 + 1) EA and RS, espe-
cially on larger problems. Perhaps surprisingly, RS often did
better than (1 + 1) EA. It seems that (1 + 1) EA can easily get
trapped at local optima, especially when the sample and prob-
lem sizes are large.

4. Experiments on Permutations

This section greatly extends our previous work [21]. Experi-
ments were carried out on six standard quadratic assignment
problems (QAPs), kra30a, kra32, lipa30a, nug30, ste36a, and
tho30 (where the number in the name indicates the problem
size), and on two instances of a unimodal problem on permu-
tations of size 30, inwhich the fitness of the permutation, to be
minimised, is given by its distance to some fixed permutation.
This unimodal problem can be seen as a generalization of the
OneMax problem for binary strings [33], in which the fitness
of a solution is the number of 1𝑠 in the string. This is in turn
equivalent to a problem in which the fitness of a solution is
given by hamming distance from the solution to the string
with all bits set to 1. From the symmetry of hamming space,
this problem is again equivalent to any problem in which a
string with all bits set to one is to be replaced with some
target string. The two instances of the unimodal problem are
obtained by using two different distance functions on permu-
tations, hamming distance (unih30), and swap distance [27]
(unis30). We address this unimodal problem to test the
SMBO on a fitness landscape with an explicit and visible
topography. We will consider the problems in the test-bed as
having costly objective functions and leave as future work
testing the SMBO on real-world problems with expensive
objective functions. Furthermore, using a larger test-bed and
testing the scalability of SMBO with respect to instance size
would be desirable. However, we found that it would take an
excessive amount of time, as the SM is searched every time it
is used to suggest a solution to test in the expensive objective
function. We will also consider a larger test-bed and a
scalability analysis in future work.

The algorithm that uses hamming distance is called
SMBO

𝐻
and the algorithm using Swap distance is called

SMBO
𝑆
. Clearly, the choice of a distance well suited to the

problem at hand is crucial to obtain an SM able to make
meaningful predictions and guide appropriately the search of
the SMBO. In this paper, we limit ourselves to experiment
with these two distances. In future work, we will investigate
other distances and other problems in the attempt to find out
a rule to select a priori a good distance for a given type of
problem.

As in the previous section, that is, binary strings, we used
a standard SMBO algorithm (Algorithm 1) with an RBFN
model which is fitted to the available data-points using the
simplified learning procedure. For SMBO

𝐻
, all the RBFs have

the same widths 𝛽 = 1/2𝐷2, where 𝐷 is the maximum dist-
ance across all centers. However, this setting did not work
well for SMBO

𝑆
, and we found that 𝛽 = 1/(𝐷/5) produced

better results.The value of𝛽 greatly affects the accuracy of the
predictions of the SM. So, it needs to be tuned but might in
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Table 1: Results for SMBO, an evolutionary algorithm (EA), a (1 + 1) evolutionary algorithm ((1 + 1) EA), and random search (RS) on the
NK-landscape benchmark for all combinations of k = 2, 3, 4, 5 and n = 10, 15, 20, 25.

𝑘 (optimum) SMBO EA (1 + 1) EA RS
Best Average Best Average Best Average Best Average

n = 10
2 (0.704) 0.704 0.702 0.704 0.686 0.698 0.675 0.704 0.649
3 (0.794) 0.794 0.775 0.794 0.724 0.745 0.705 0.794 0.724
4 (0.787) 0.787 0.755 0.787 0.725 0.787 0.714 0.787 0.727
5 (0.810) 0.810 0.762 0.727 0.706 0.810 0.729 0.810 0.718

n = 15
2 (0.743) 0.743 0.742 0.714 0.693 0.681 0.628 0.714 0.674
3 (0.738) 0.738 0.718 0.706 0.678 0.706 0.622 0.717 0.677
4 (0.747) 0.747 0.721 0.711 0.685 0.705 0.646 0.710 0.680
5 (0.760) 0.758 0.737 0.749 0.711 0.728 0.672 0.757 0.700

n = 20
2 (0.729) 0.729 0.726 0.718 0.689 0.668 0.613 0.711 0.673
3 (0.777) 0.777 0.767 0.761 0.718 0.639 0.606 0.777 0.706
4 (0.775) 0.775 0.747 0.731 0.708 0.676 0.640 0.707 0.684
5 (0.766) 0.761 0.744 0.745 0.710 0.709 0.637 0.721 0.684

n = 25
2 (0.753) 0.753 0.747 0.727 0.698 0.679 0.590 0.701 0.673
3 (0.798) 0.798 0.781 0.742 0.727 0.666 0.607 0.749 0.698
4 (0.775) 0.762 0.743 0.750 0.714 0.639 0.595 0.695 0.679
5 (0.774) 0.756 0.736 0.751 0.713 0.705 0.622 0.722 0.676
∗The best (maximum) and average values of the best solution found by each algorithm are given for 50 runs.
†Bold numbers are the highest maxima and italic numbers are the second highest maxima.

future be “learnt” from the sampled data-point. The value of
the bias term 𝑤

0
is set to the average 𝑏

𝑖
s of the known data-

points, and coefficients 𝑤
𝑖
of the RBFs are determined by

least-squares minimisation, as in the previous section.
The other settings of the SMBO are as follows. For all

problems, the allowance 𝑛 of expensive function evaluations
is set to 100. Initially, 10 data-points are sampled, and the
number of sample points suggested by the SM is 𝑛 − 10 = 90.
To search the SM, we used a memetic algorithm on permuta-
tions with truncation selection, cycle crossover, swap muta-
tion at a mutation rate of 0.01, and local search based on the
2-opt neighborhood. The population size and the number of
generations were both set to 20, and 10 new offspring were
generated in each generation, allowing an adequate solution
to be obtained from the SM. The solution with the best
predicted objective value is evaluated with the expensive
objective function, provided it has not been sampled before.
If it has, the second-best is sampled provided that it has not
been sampled before. Otherwise the third best is sampled and
so on.

We compared the SMBO algorithms with random search
(RS) and a standard genetic algorithm (GA), both using the
expensive objective function directly.We allowed all the algo-
rithms the same number of evaluations of expensive objective
function.

The GA had a population of 10 individuals ran for 18
generations, with 5 new individuals in each generation. It uses
truncation selection, swapmutationwith a probability of 0.01,

and cycle crossover. We did 50 runs for each algorithm and
problem.

The results, presented in Table 2, consistently rank
SMBO

𝐻
as the most effective algorithm, followed by the GA

and SMBO
𝑆
, and then random search (RS). Clearly, the SM

based on hamming distance is effective and better than swap
distance by a surprising margin, considering that hamming
and swap distance are closely related. SMBO

𝐻
even out-

performs SMBO
𝑆
on the unimodal landscape under Swap

distance (unis30), which we expected to favor SMBO
𝑆
.

We performed further analyses to try to understand the
mechanism of the SMBO algorithms more fully. Firstly, to
make sure that the distance metrics used by the SMBOs
are suitable, we did a static analysis of the predictive power
of the SMs in isolation from the SMBOs. This analysis is
presented in Table 3. Looking at the number of significantly
positive correlations and the average correlation, presented in
Table 3, it is evident that hamming metric always gives better
predictions than swap. Neither metric is deceptive, as there
are no negative correlations. Fitness-distance correlations
[34] of both distancemetrics, given inTable 4, show that swap
distance has higher correlations for theQAP, even though this
is not reflected in its performance. This suggests that static
prediction power gives a better indication whether a distance
metric is appropriate for an SMBO.

Other aspects of the SMmay affect the performance of an
SMBO. For instance, we would obviously prefer to locate the
real optimum of the SM before sampling with the expensive



Mathematical Problems in Engineering 7

Table 2: Results for random search (RS), a genetic algorithm (GA), SMBO
𝐻
, and SMBO

𝑆
on QAP instances (kra30a, kra32, lipa30a, nug30,

ste36a, and tho30) and unimodal instances (unih30 and unis30) of permutation problems.

Instance RS GA SMBO
𝐻

SMBO
𝑆

Best Average SD Best Average SD Best Average SD Best Average SD
kra30a 118730 122777.00 2034.86 115840 123445.80 2642.21 110850 119649.60 3389.70 117270 122027.00 2205.65
kra32 24156 25008.04 434.75 23440 24625.03 586.60 22590 24094.32 616.71 23848 24833.92 452.22
lipa30a 13664 13710.08 16.38 13646 13704.42 22.53 13633 13700.52 21.89 13638 13696.32 22.03
nug30 7350 7618.00 84.60 7296 7558.36 126.65 7276 7500.24 97.36 7328 7563.88 94.38
ste36a 16736 18335.56 602.04 16516 18287.96 841.59 15364 17311.00 922.20 15654 17840.68 889.74
tho30 190256 196662.82 3211.20 180274 194389.91 4414.22 180860 193415.44 4629.03 186172 195231.92 3534.21
unih30 24 25.80 0.78 22 25.04 1.26 17 20.84 1.55 21 25.18 0.95
unis30 19 21.66 0.87 17 20.91 1.29 15 18.48 1.83 19 21.04 0.94
∗The best, average, and standard deviation of the best fitness found by each algorithm are reported for 50 runs.

Table 3: Correlation between predicted and real fitness on a test
set of randomly sampled solutions after the SMs have been trained
on 50 randomly sampled data-points. The columns contain counts
of significantly positive (larger than 0.15) and significantly negative
correlations (less than −0.15), together with average correlation
coefficients.

Instance Hamming model Swap model
Pos. (Ave.) Neg. Pos. (Ave) Neg.

kra30a 50 (0.26) 0 31 (0.20) 0
kra32 46 (0.22) 0 34 (0.20) 0
lipa30a 0 (N/A) 0 0 (N/A) 0
nug30 32 (0.18) 0 21 (0.19) 0
ste36a 50 (0.23) 0 27 (0.18) 0
tho30 12 (0.18) 0 7 (0.16) 0
unih30 50 (0.77) 0 50 (0.43) 0
unis30 47 (0.24) 0 39 (0.19) 0
∗Each test was repeated 50 times.

Table 4: Fitness-distance correlation for permutation problems
using hamming and swap distance.

Instance Hamming Swap
kra30a −0.02 0.31
kra32 −0.11 0.11
lipa30a 0.32 0.41
nug30 0.38 0.44
ste36a 0.07 0.12
tho30 0.46 0.52
unih30 1.00 1.00
unis30 1.00 1.00

objective function and theGAwhichwe actually use to search
the SM provides no guarantee of finding of the optimum or
even a good solution.Howgood are the solutions that it finds?
Table 5 shows fitness-distance correlations for the SMs, after
training with 100 randomly sampled data-points. All these
values are extremely high, suggesting that the GA usually
locates very good solutions.

Another attribute of the SM that may affect the perfor-
mance of an SMBO is the effect of the distancemetric and the

Table 5: Fitness-distance correlation for SMs based on hamming
and swap distance, after training them with 100 randomly sampled
data-points.

Instance Hamming SM Swap SM
kra30a 0.85 0.57
kra32 0.88 0.80
lipa30a 0.93 0.39
nug30 0.88 0.71
ste36a 0.81 0.59
tho30 0.82 0.83
unih30 0.86 0.93
unis30 0.87 0.79

Table 6: Number of solutions of permutation problems obtained
by optimizing the SM by the SMBO algorithm (90 sequential
optimisations) with predicted fitness which is better than or equal
to the fitness of the best previous solution.

Instance SMBO
𝐻

SMBO
𝑆

Better Equal Better Equal
kra30a 22.78 0 0.00 0
kra32 22.28 0 0.00 0
lipa30a 33.80 0 0.04 0
nug30 26.70 0 0.02 0
ste36a 29.66 0 0.04 0
tho30 28.16 0 0.04 0
unih30 4.28 0 0.28 0
unis30 19.64 0 0.04 0
∗The results are averaged over 50 runs.

parameter 𝛽 on the topography of the model. These choices
affect the extrapolative property of the model, which allows
an optimumvalue to be foundwhich is higher than that of any
data-points. Table 6 shows that SMBO

𝐻
can extrapolate

much more often than SMBO
𝑆
. This may well provide any

reason why SMBO
𝐻

outperforms SMBO
𝑆
. However, the

precise merit of hamming distance in this regard remains a
subject for future work.
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5. Experiments on Genetic Programming

Experiments were carried out on standard GP problems,
symbolic regression and parity problems, and a unimodal
problem, in which the fitness of a tree (to be minimised) is
given by its distance to a given tree. This last problem can
again be seen as a generalization of the OneMax problem for
binary strings [33].

We have used structural hamming distance [35] as the
metric of distance between two GP trees: this is a parame-
terless variant of the well-known structural distance for GP
trees [36].

As in previous sections, we used a standard SMBO with
an RBFN model fitted using the simplified learning proce-
dure. The RBFs have the same widths 𝛽 = 1/2𝐷2, where 𝐷 is
themaximumdistance across all centers.The value of the bias
term𝑤

0
is set to the average function value of the knowndata-

points.The coefficients𝑤
𝑖
of the RBFs in the linear model are

determined by least-squares minimisation.
We set other parameters as a function of the maximum

depth md of the trees in the initial population, which is likely
to determine the proportion of the search space that will actu-
ally be visited. The maximum number of nodes in a binary
tree with a maximum depth md is 2md − 1. The number of
expensive function evaluations allowed was 𝑛 = 2md. Thus
our aimwas to get each algorithm to produce the best solution
in a time linearly proportional to the maximum size of the
trees in the initial population. We set the initial sample size
to 2 data-points and the number of points suggested by the
SM to 𝑛 − 2. To search the SM, we use a standard GP with
tournament selection using a tournament size of 2, subtree
crossover at a rate of 0.8, subtree mutation at a rate of 0.17,
and reproduction operator at a rate of 0.03. The population
size and the number of generations were both set to 𝑛, which
we expected to provideGPwith enough trials to locate a good
solution of the SM. If the predicted value of the best solution
found by the SM is better than the best value at any of the
known data-points, then the model could extrapolate from
the data, and that solution is evaluated using the expensive
objective function. Otherwise, a point is chosen at random
and evaluated with the expensive objective function in an
attempt to gather more data about undersampled regions.

We compare the SMBO algorithm with random search
(RS) and a standard GP, both using the expensive objective
function directly. We allowed all the algorithms 𝑛 evalua-
tions of the expensive objective function. The GP used has
a population of approximately √𝑛 individuals and it runs
for approximately √𝑛 generations. For fairness, the exact
values of these two parameters are assigned in a way that
their product is exactly 𝑛. It uses tournament selection with a
tournament of size 2, subtree mutation with a probability of
0.17, subtree crossover at a rate of 0.8, and reproduction
operator at a rate of 0.03. For each problem, we varied the
maximum depth md between 3 and 7 and did 50 runs.

The results given in Table 7make it immediately apparent
that all algorithms get better results as md is increased, as we
would expect. On the unimodal problem, looking at the
average results, SMBO is consistently the best, followed by
RS and finally by GP. The unimodal problem has the best fit-
ness distance correlation with structural Hamming distance,

suggesting that this metric is well suited for applying SMBO
to this problem.This suggests that a good distance metric for
SMBO in general should have good fitness-distance correla-
tion for the problem at hand.

Surprisingly, RS does better than GP, which appears
not to have had enough fitness evaluations available to get
the evolution process properly started, especially when the
sample and problem sizes were large. On the parity problem,
SMBO wins again but with a smaller margin. Again, GP is
worse than RS; however, if it is allowed a larger budget of
expensive evaluations (i.e., md = 7), its performancematches
RS. But more evaluations improve the performance of SMBO
evenmore. On the symbolic regression problem, RS performs
the best and GP the worst, although more evaluations allow
SMBOandGP to outperformRS.This suggests that structural
hamming distance is not particularly suitable for applying the
SMBO to this problem.

There aremany possible distances for parse trees we could
use as basis for the SMBO. In future work, we should select
distances suitable for the problem at hand, that is, that
give rise to smoother/more unimodal landscape. In recent,
Moraglio et al. [37] introduced a distance forGP, the semantic
distance, that turns any GP problems into a unimodal prob-
lem. So for future work it could be interesting to use this
distance as a base for SMBO.

6. Conclusions and Future Work

New applications are opened up by extending surrogate
model-based optimisation (SMBO) tomore complicated rep-
resentations which cannot be naturally mapped to vectors of
features. We have put forward a conceptually simple, formal,
general, and systematic approach to adapting SMBO using
radial basis function (RBF) networks to any target representa-
tion. Any algorithm that can be written in terms of Euclidean
distances between candidate solutions can be generalised by
replacing Euclidean distance function with a generic metric
appropriate to the target representation (e.g., edit distance).
RBF networks can be naturally generalised to encompass any
representations because both the approximating model and
the learning of themodel parameter can be cast completely in
a representation-independent way and rely only on distance
relations between training instances and query instances.

Wehave validated experimentally the framework on three
representations. First, we have considered the binary strings
representation endowed with the hamming distance and
tested the SMBO on the NK-landscapes, obtaining con-
sistently that with the same budget of expensive function
evaluations, the SMBO performs the best in comparison with
other search algorithms. The second representation we have
considered is the permutation representation endowed with
hamming distance and with swap distance and tested the
SMBO on the quadratic assignment problem and on uni-
modal problems, obtaining consistently that with the same
budget of expensive function evaluations, the SMBO with
hamming distance performs the best in comparison with
other search algorithms. Surprisingly, the SMBO based on
swap distance does not work as well as the SMBO based
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Table 7: Results for unimodal, parity, and symbolic regression problems obtained by SMBO, random search (RS), and genetic programming
(GP).

(a) ⟨Unimodal⟩

md SMBO RS GP
Best Average SD Best Average SD Best Average SD

3 0.11 0.47 0.19 0.11 0.43 0.16 0.22 0.50 0.18
4 0.07 0.14 0.05 0.13 0.37 0.13 0.11 0.49 0.25
5 0.04 0.07 0.03 0.08 0.24 0.08 0.05 0.48 0.21
6 0.01 0.04 0.04 0.08 0.14 0.08 0.14 0.46 0.21
7 0.01 0.02 0.04 0.04 0.18 0.04 0.06 0.32 0.20

(b) ⟨4-Odd Parity⟩

md SMBO RS GP
Best Average SD Best Average SD Best Average SD

3 37.50 45.00 6.45 37.50 45.00 6.45 37.50 48.75 3.95
4 37.50 40.00 5.27 37.50 41.25 6.04 37.50 42.50 6.45
5 37.50 37.50 0.00 37.50 37.50 0.00 37.50 47.50 5.27
6 37.50 37.50 0.00 37.50 37.50 0.00 37.50 41.25 6.04
7 25.00 33.75 6.04 37.50 37.50 0.00 37.50 37.50 0.00

(c) ⟨Symbolic Regression⟩

md SMBO RS GP
Best Average SD Best Average SD Best Average SD

3 3.44 4.88 0.82 3.44 4.88 0.78 2.64 5.17 1.35
4 4.46 6.35 1.17 4.27 5.78 1.41 4.46 6.39 1.58
5 3.84 5.58 1.21 3.51 5.18 1.21 4.05 5.39 1.27
6 2.95 3.74 0.73 2.99 3.52 3.48 3.48 4.39 0.57
7 3.45 4.50 0.77 3.81 4.96 0.54 3.71 4.62 0.67
∗The best (minimum) and average fitness values for the best solution found by each algorithm, for md = 3, 4, 5, 6, 7, over 50 runs.

on hamming distance. We have presented an analysis in the
attempt to elucidate the causes of the different performance.
Further investigation is required to pinpoint the structural
difference between Hamming distance and Swap distance
that gives rise to the performance difference. Lastly, as an
experimental validation of the framework on a nontrivial
discrete space and structured representation, we have consid-
ered the genetic programming (GP) trees endowed with the
structural hamming distance and tested the SMBO on a
test-bed of standard GP problems, obtaining that with the
same budget of expensive function evaluations, the SMBO
performs well in a comparison with other search algorithms.
These results suggest that our approach has the potential to
solve real-world combinatorial optimisation problems with
complicated solution representations and nontrivial discrete
search spaces.

Much work remains to be done. Firstly, we plan to look
at further well-known permutation and GP problems and
consider different distancemetrics. For instance, the traveling
salesman problemmay be cast in terms of a distance based on
the 2-opt move. Then we intend to consider problems with
other complicated nonvectorial representations, such as
variable-length sequences. Our eventual aim is to address
some challenging real-world problems in a new way. We will
also experiment with different types of RBF and more

complex learning processes (i.e., learning the centers and the
widths of the RBFs). Lastly, we will attempt the generalization
of more sophisticated interpolation and regression methods,
including Gaussian process regression, which is a state-of-
the-art method in machine learning.
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