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Marine ecosystems are sensitive to stochastic environmental vari-
ability, with higher-amplitude, lower-frequency––i.e., “redder”––
variability posing a greater threat of triggering large ecosystem
changes. Here we show that fluctuations in the Pacific Decadal
Oscillation (PDO) index have slowed down markedly over the ob-
servational record (1900–present), as indicated by a robust in-
crease in autocorrelation. This “reddening” of the spectrum of
climate variability is also found in regionally averaged North Pa-
cific sea surface temperatures (SSTs), and can be at least partly
explained by observed deepening of the ocean mixed layer. The
progressive reddening of North Pacific climate variability has im-
portant implications for marine ecosystems. Ecosystem variables
that respond linearly to climate forcing will have become prone to
much larger variations over the observational record, whereas
ecosystem variables that respond nonlinearly to climate forcing
will have become prone to more frequent “regime shifts.” Thus,
slowing down of North Pacific climate variability can help explain
the large magnitude and potentially the quick succession of well-
known abrupt changes in North Pacific ecosystems in 1977 and
1989. When looking ahead, despite model limitations in simulating
mixed layer depth (MLD) in the North Pacific, global warming is
robustly expected to decrease MLD. This could potentially reverse
the observed trend of slowing down of North Pacific climate var-
iability and its effects on marine ecosystems.
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Sea surface temperature (SST) fluctuations are well known to
exhibit “red” spectra––with increased power at lower fre-

quencies––even when forced by purely “white” noise from the
atmosphere (1, 2). Individual realizations of a stationary red
noise process will typically drift one side of the mean and later
switch over, resembling an irregular oscillation. One such “os-
cillation,” the Pacific Decadal Oscillation (PDO) index (3, 4), is
described by the variation of the dominant spatial pattern of
SSTs >20°N in the Pacific over time, having removed the sea-
sonal cycle and an overall warming trend. Shifts in the PDO
between its positive and negative phases––especially around
1977 and 1989––have been linked to abrupt changes in salmon
productivity (3, 5), drought regimes in the United States (6),
changes in Indian summer monsoon rainfall (7), and a host of
other ecological and climatic time series (4). Whereas some
early work described the PDO itself as exhibiting regime shifts
(4, 8), implying the existence of alternative climate attractors,
subsequent work has found no evidence for nonlinearity in the
PDO or other North Pacific climate indices (9). Instead, North
Pacific climate variability can be characterized as a linear, sto-
chastic, red noise process (10). North Pacific marine ecosystems
have also been widely described as exhibiting regime shifts be-
tween alternative attractors in response to stochastic fluctua-
tions in the physical climate system (9). Whereas there is
evidence for nonlinearity in some North Pacific ecosystem time
series (9, 11), other populations appear to linearly track the
climate forcing, especially if their generation time matches the
damping timescale of the forcing (11). Thus, one “double-
integration” model for the overall behavior is that SSTs (and

indices derived from them such as the PDO) integrate white noise
forcing from the atmosphere to produce red noise (1), and ecosys-
tems further integrate this red noise to create time series that are
even redder (12). The redder the ocean climate variability, the more
closely a marine ecosystem will track it (13), making the ecosystem
more prone to large changes driven by the climate variability (13).
Here we consider whether North Pacific climate variability has

changed over the observational record. A simple generic model
for SST fluctuations (10) is the first-order linear autoregressive
process:

xt = αxt-1 + σηt [1]

where the subscript t denotes time, x is the time series, α is the
lag-1 autocorrelation [AR(1)] coefficient (0 < α < 1, for red
noise), and ηt is Gaussian white noise of amplitude σ. Existing
work has used a constant value of α = 0.95 (corresponding to a
decorrelation timescale of 20 mo) to mimic the PDO index (10).
If, however, there has been a change in the spectrum of SST
variability we expect this to manifest as a change in α, with an
accompanying change in variance (14, 15). Hence, for each of a
series of North Pacific datasets [the PDO index (3), HadISST
(16), ERSST v3 (17), and HadSST3 (18) detailed below], we
estimated the AR(1) coefficient (α) and calculated the variance,
in a sliding window moved through the dataset, to look for any
trends (Methods). In each case, the results were tested against a
null model for North Pacific SST fluctuations, with fixed α = 0.95
(10), which was used to generate 10,000 realizations of a series of
the same length as the time series being tested (Methods)––the
idea being that a relatively short realization of such a stationary
red noise process can display a wide range in trends of lag-1
autocorrelation and variance.

Significance

Sea surface temperature (SST) variations in the North Pacific have
triggered past abrupt changes in fisheries and other ecosystems.
We have discovered that over the last century, fluctuations of
North Pacific SSTs have become less frequent and longer-lived.
This “reddening” behavior can also be seen in the dominant
pattern of climate variability in the region, known as the Pacific
Decadal Oscillation index. This fundamental change in climate
variability has important implications for ecosystems in the
region. It implies that over the last century, ecosystems have
become prone to undergoing larger climate-triggered abrupt
shifts. Hence our discovery of changing climate variability
could have contributed to the large magnitude of well-known
abrupt changes in North Pacific ecosystems in 1977 and 1989.
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Slowing down of fluctuations is visible in the original PDO
index (Fig. 1A), with a strongly increasing trend in the AR(1)
coefficient (Kendall τ = 0.941, Methods), from an estimated α =
0.57 to α = 0.95 over the 112.5-y record (Fig. 1B, Methods).
Variance also generally increases (Fig. 1C), but not as strongly
across the whole record (τ = 0.599), due to a downturn in recent
decades. The observed trend in AR(1) in the PDO index lies
outside the distribution resulting from 10,000 realizations of the
null model (Fig. 1D). Hence we can reject with high confidence
(P < 0.0001) the null hypothesis that the observed trend in au-
tocorrelation in the PDO index is the result of a red noise pro-
cess with fixed α. The increasing trend in variance in the PDO
index (τ = 0.599) is less significant and could occur by chance with
P = 0.1411 (Fig. S1A). However, other aspects of North Pacific
climate are showing increases in variance (19), and if we just
consider the data up to 1989 the PDO index shows a strong in-
crease in variance (τ = 0.909), noting that the decrease in variance
appears to begin in 1960 in Fig. 1C because the indicators are
plotted at the midpoint of the window used to calculate them and
at this point data from 1989 enter the sliding window.
Nonstationary behavior can cause autocorrelation to increase;

hence we examined the effect of further detrending the data
before analysis. As the bandwidth is decreased, the lowest fre-
quencies, including the (multi-) decadal “oscillation” itself, are

the first to be removed and the results are limited to ever shorter
timescale fluctuations. As a further sensitivity analysis, we also
varied the sliding window length in which the indicators are
calculated. The positive trend in AR(1) is robust to varying
sliding window length and filtering bandwidth (Kendall τ = 0.77–
0.98, Fig. 1E). The positive trend in variance is also fairly robust
(Fig. 1F), except when using a very short filtering bandwidth for
detrending. This leaves only the highest frequency variability in
the index and its variance decreases (e.g., τ = −0.903 with the
shortest filtering bandwidth). This is consistent with a shift in
power from high to low frequencies, which can also be seen in
the changing power spectrum of the data (Fig. S2A). Comparing to
the null model (also filtered with the shortest bandwidth before
analysis), the decline in variance at high frequencies has P = 0.0006
and we can reject the null model at 5% significance (Fig. S1B).
To establish whether slowing down has anything to do with the

spatial pattern of the PDO we examined the HadISST (16)
dataset. Removing seasonal and overall warming trends and then
simply averaging HadISST over the North Pacific domain 20–
60°N (Methods), slowing down is again visible by eye (Fig. S3A)
and confirmed by a strongly increasing trend in the AR(1) co-
efficient (τ = 0.938, Fig. S3B) with estimated change in α from
0.68 to 0.92 (the 95% confidence interval on the change in α
hardly alters these results, given to two significant figures). There
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Fig. 1. Slowing down observed in the PDO index, 1900–2012. (A) The original PDO index. (B) Estimated increase in AR(1) coefficient, using a window length
of 675 points (half the series), without detrending (Methods), results plotted in the middle of the sliding window. (C) Estimated increase in variance. Trends in
the indicators are expressed as Kendall τ-values. (D) Range in τ-values expected from ensembles of 10,000 realizations of a null model with fixed α = 0.95. Red
vertical line denotes the τ-value found in the PDO index A (P < 0.0001). (E and F) Sensitivity analyses of the AR(1) coefficient estimate and variance respectively
by testing the value of τ for a variety of window lengths and bandwidths.
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is a weaker increasing trend in variance (τ = 0.275, Fig. S3C). For
the trend in AR(1), a null model of fixed α = 0.95 can be rejected
at P < 0.0001 (Fig. S3D), whereas the positive trend in variance is
not significant (P = 0.3518, Fig. S1C), again due to a decline in
variance in recent decades. The positive trend in the AR(1)
coefficient is robust to varying detrending bandwidth and sliding
window length (τ = 0.70–0.95, Fig. S3E). Variance again de-
creases at the highest frequencies (τ = −0.892 for the shortest
filtering bandwidth, Fig. S3F), with P = 0.0007 against the null
model (Fig. S1D), consistent with a shift in power from high to
low frequencies that is seen in the power spectrum (Fig. S2B).
Thus, slowing down of North Pacific SST fluctuations is not
particularly associated with the spatial pattern of PDO variability
and has its own spatial pattern (Fig. S4).
We also analyzed the ERSST v3 dataset (17) and the results

for average North Pacific SSTs also show a positive trend in AR(1)
over time, but there are considerable differences in the early part
of the two datasets and hence the corresponding AR(1) estimates
(Fig. S5). Data sampling was generally sparser in the past; hence,
datasets are subject to more infilling further back in time, which in
turn could affect measures of autocorrelation. Hence, we analyzed
the original HadSST3 dataset (18) without infilling, which has a
coarser spatial resolution than HadISST. We focus on the interval
1950 onward (Fig. 2A) because data collection in the North Pacific

was sparse before that. Despite the much shorter time interval,
we find increasing AR(1) (τ = 0.832, Fig. 2B) with α increasing
from 0.72 to 0.93, accompanied by an increase in variance (τ =
0.816, Fig. 2C). The increase in AR(1) has P = 0.0042 against the
null model (Fig. 2D) and the trend in variance has P = 0.028
(Fig. S1E). Increasing trends in AR(1) and variance are gener-
ally robust to changes in sliding window length and detrending
bandwidth (Fig. 2 E and F) with the exception that variance
declines for bandwidth ∼200 and window length >450. A further
slight decrease in variance at high frequencies (τ = −0.171 for
the shortest filtering bandwidth, Fig. 2F) is not significant (P =
0.4093, Fig. S1F), commensurate with only a slight shift of
power to lower frequencies (Fig. S2C). Nevertheless, slowing
down of North Pacific SST fluctuations has occurred just
since 1950.
A grid-point by grid-point analysis of HadSST3 data was

conducted to determine where the slowing down of SST fluctu-
ations is occurring, revealing that it is widespread but not uni-
versal across the North Pacific domain (Fig. 3 A and B). Strong
slowing down occurs around the basin edge, e.g., off the West
Coast of North America. To try and explain this slowing down
we consider a simple physical mechanism consistent with known
climatic trends, namely deepening of the mixed layer (20). In
the original model of Frankignoul and Hasselmann (2) the key
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Fig. 2. Slowing down in average North Pacific SST raw data, 1950–2006. (A) HadSST3 data detrended and averaged over the North Pacific (Methods).
(B) Estimated increase in AR(1) coefficient, using a window length of 350 points (half the series), without detrending (Methods), results plotted in the middle
of the sliding window. (C) Estimated increase in variance. (D) Range in Kendall τ-values expected from ensembles of 10,000 realizations of a null model with
fixed α = 0.95, with red vertical line denoting τ = 0.832 found in A (P = 0.0042). Sensitivity analyses of (E) the AR(1) coefficient estimate and (F) variance by
testing the value of τ for a variety of window lengths and bandwidths.
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environmental variables affecting α are mixed layer depth (h)
and average wind speed (U):

α= 1− kU=h [2]

We estimate the constant, k (s mo−1), for each grid point using the
mean values of U [from the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/
NCAR) reanalysis (21)], h from observations (20)], and α (from
the midpoint of the fitted trend, Fig. 3B) (Methods). Trends in
reanalysis (21) wind speed (U) across the domain are mixed and
generally small so for simplicity we hold U constant, and consider
the change in h required in Eq. 2 to explain observed trends in α.
We compare this to observed changes in mixed layer depth
(MLD). Due to limited availability of MLD data we start the
analysis in 1960. Due to the large variability in MLD, we use linear
regression to determine the overall trend in MLD and use the
start and end points of the regression line to estimate the change.
In areas where slowing down (increasing α) is observed, the

mixed layer has generally deepened since 1960, typically by 0–20
m (Fig. 3C). However, the changes in MLD required to explain
the slowing down (Fig. 3D) typically exceed those observed (Fig.
3C), with a few striking regions where very large increases in MLD
would be required (outlined in Fig. 3D). This result is robust to

consideration of the uncertainty in MLD changes derived from
the linear regression method (Fig. S6). A caveat here is that the
simple model [2] chosen cannot explain the power spectrum of
SST anomalies in regions strongly influenced by oceanic pro-
cesses (22), including near Japan in the Kuroshio Current.
However, the model [2] is valid (22) in areas of strong slowing
down in the central and northeast North Pacific (Fig. 3D). A fur-
ther caveat is that MLD is closely related (23) to the PDO via
changes in the strength of the Aleutian Low pressure system,
questioning the model assumption that MLD is an independent
forcing parameter. Thus, we can partly explain observed slowing
down of North Pacific SST fluctuations as due to deepening of the
mixed layer (effectively giving the surface ocean a greater heat
capacity), but we leave it to future work to fully explain the signal.
To examine how slowing down of North Pacific SST fluctua-

tions might affect the variability in marine ecosystems, we tested
how two simple models behave when forced by different levels of
red noise, encompassing the range of values of α found from
analysis of the PDO index (Methods). The first is a bistable model
with two alternative attractors, which represents the concept that
some ecosystem time series react nonlinearly to climate forcing and
can exhibit true regime shifts between attractors (9). The specific
model chosen is generic and not based on a specific real-world
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Fig. 3. Spatial analysis of slowing down in SSTs, 1960–2006 and whether it can be explained by increasing MLD. Using individual grid points from HadSST3
(1960–2006) along with MLD and wind speed data in Eq. 2 (see Methods). Analysis of SST time series at individual grid points: (A) Kendall’s τ-values for the
trend in AR(1) coefficient, and (B) the estimated change in AR(1) coefficient (α) from 1960 to 2006 based on fitting a linear trend. For grid points that exhibit
slowing down (increasing α): (C) the observed MLD change (1960–2005), and (D) required MLD change to explain the slowing down signal following Eq. 2.
Observed (E) 1960 and (F) 2006 MLD are shown for each grid point. Observed versus estimated (required) MLD in (G) 1960 and (H) 2006. In H, outliers that are
more than 2 SDs (dash-dotted lines) away from fitting the observed value are shown as red points, and the corresponding spatial locations are outlined in D.
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system. It is set up to have no bias toward either state and to
allow shifts between states to occur when α = 0.55 in the forcing
time series (the lowest value considered). The second model is a
double-integration model which represents the concept that
some ecosystem variables have only one state and linearly track
climate forcing, integrating it with their own characteristic
timescale (11). The model is based on one used elsewhere to
simulate Nyctiphanes simplex (a species of krill) which has a
damping timescale of ∼20 mo (12) (Methods). For forcing these
ecosystem models, we note that although there is an increase in
variance in the climate indices we have analyzed, the increase in
amplitude of variability is very modest compared with that gen-
erated by increasing α in our AR(1) model. Hence, we normalize
(dividing by SD) the amplitude of the different levels of red noise
(generated by different α) used to force the two idealized ecosystem
models. This means that the resulting changes in the ecosystem
models are due to the changing memory in climate forcing alone.
The range of values of α we explore corresponds to damping time-
scales from ∼2.2 mo when α = 0.55, to 20 mo when α = 0.95, there
being an exponential relationship between α and the timescale, and
noting that α = 0.95 is often used to mimic PDO variability (10).
Increasing the autocorrelation in the climate forcing causes

both the nonlinear and linear ecosystem models to become more
correlated with the forcing (Fig. 4 A and B). When forcing the
models with the PDO index, the correlation also increases as α
increases (red lines). This is expected as the timescale of the
ocean is increasing toward the assumed timescale of the eco-
systems. As autocorrelation in driving SSTs increases, the SD of
variations in both the nonlinear and linear ecosystem models
generally increases (Fig. 4 C and D) and this is much more
pronounced in the linear model (Fig. 4D). When using the PDO
index to force the simple models, we again find that increases in
α are generally linked to increases in SD in both ecosystem
models (red lines). Examining some specific instances (Fig. S7),
as autocorrelation in driving SSTs increases (Fig. S7 A–C), re-
gime shifts in the nonlinear system become more frequent (Fig. S7
D–F), and the linear system shows increasing deviations from its
single equilibrium (Fig. S7 G–I). Thus, larger ecosystem changes
are associated with increasing memory in the climate forcing,
especially in the linear ecosystem model, and if the ecosystem
response is nonlinear, then shifts between different regimes be-
come more frequent.
In summary, we detect strong slowing down (reddening) of

North Pacific SST fluctuations, and of the PDO index con-
structed from them, over the observational record. Slowing down
since 1960 can be at least partly explained by observed deepening
of the ocean mixed layer. It represents a systematic change to-
ward lower frequency, somewhat higher amplitude, North Pacific
climate variability. Two of the resulting transitions in the PDO
index, around 1977 and 1989, are well-known to have had sig-
nificant impacts on a diverse range of ecological and climate
systems (3, 4). Marine ecosystems, both those that have non-
linear dynamics (9) and those that linearly track climate forcing
(11, 12), are vulnerable to large and sometimes abrupt changes in
response to the low-frequency variability in the physical ocean
(13). Our results suggest that ecosystem variables that respond
linearly to climate variability became prone to larger changes
over the observational record, as fluctuations in North Pacific
SSTs slowed down. Furthermore, those ecosystem variables that
respond nonlinearly to climate variability became prone to more
frequent abrupt regime shifts. These results may help explain the
well-known abrupt changes that occurred in North Pacific eco-
systems in 1977 and 1989 (3, 4). The large size, especially of the
1977 shift, could be seen as a linear response to slowing down in
climate variability, whereas the two events in relatively quick
succession could be interpreted as a nonlinear response to slowing
down in climate variability that was less likely to have occurred
earlier in the twentieth century.

It is tempting to extrapolate forward and infer that if the trend
toward increasing autocorrelation in the North Pacific ocean
were to continue, the propensity for large ecosystem changes
would increase. Models are generally poor at simulating ob-
served MLD in the North Pacific (24). However, global warming
is robustly expected to drive ocean stratification and a decrease
in MLD over the North Pacific (25), which could potentially
reverse the historical trend of slowing down.

Methods
The PDO index (3) is the time variation of the first empirical orthogonal
function of Pacific SSTs >20°N, derived from the UK MO Historical SST dataset
(26) and Reynolds’ OI SST datasets (27, 28) (V1 and V2) (January 1900–May
2012). We created further indices from the HadISST (16) (January 1870–July
2011), HadSST3 (18) (January 1950–December 2006), and ERSST v3 (17) (January
1900–December 2011) datasets using North Pacific grid points (20–60°N) that
are complete over the corresponding time spans. The average annual cycle of
each grid point was removed, along with a quadratic warming trend (calculated
by a regression model fit). Any further detrending used a Kernal smoother of
fixed bandwidth, with the bandwidth varied as a sensitivity analysis.

For each resulting series, within a sliding window of half the series, the
variance was calculated and the AR(1) coefficient (α) estimated by fitting an
autoregressive model (Eq. 1). The sliding window length was also varied as a
sensitivity analysis. The tendency of an indicator to increase or decrease was
measured with Kendall’s τ-rank correlation coefficient (ranging from 1 to −1).
A positive value indicates an increasing trend in an indicator; the larger the
value, the more robust is that trend. Sensitivity analysis results are given as
contour plots of Kendall’s τ-values.

To determine the significance of our results, we ran bootstrap ensembles
of 10,000 runs of a null model, using Eq. 1 with fixed α = 0.95, to produce
series of identical length to each index. Resulting trends in the null model of
AR(1) coefficient were calculated using the same window length (half the

A B

C D

Fig. 4. Effect of reddening climate forcing on two simple models represent-
ing marine ecosystems (Methods). Correlations between the (A) nonlinear and
(B) linear model time series and the forcing time series for different values of α
are shown with the 5th and 95th percentiles from 1,000 simulations at each
value of α. The mean SDs of the ensemble for the (C) nonlinear and (D) linear
model time series are shownwith the 5th and 95th percentiles. In all four plots,
the red lines show the same analysis when the original PDO index is used to
force the simple models and plotting the α-value from this against the other
statistics when using a moving window (Methods).
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length of each series) used to generate example indicators from the real
PDO index (e.g., Fig. 1 B and C).

We estimated trends in α for each grid point of HadSST3 (18) in the North
Pacific (20–60°N) that is complete from 1950 to 2006. The midpoint value of
α between 1960 and 2006 (based on linear regression), the mean wind speed
from reanalysis (21), and mean MLD from points which are 95% complete
from 1960 to 2006 (20), were used to estimate k in Eq. 2. We use linear
regression to determine the trend in MLD at each grid point, selecting the
end points of the regression line for our analysis.

To determine how marine ecosystems could be affected by slowing down
in the PDO or SST fluctuations, we forced two alternative simple models with
time series of varying red noise.

The first model represents a system with two stable states that will react
nonlinearly to red noise ocean forcing (f):

_y =−y3 +
1
3
y + 0.1f

This model was chosen to allow the system to sample both states under
realistic forcing f, but not too frequently.

The secondmodel, representing the “double-integration hypothesis” (12),
reacts linearly to the forcing and is given by

_y =−
y
20

+ 0.1f

The − y
20 term (a damping timescale of 20 mo) equates to α ∼ 0.95, similar to the

dampening timescale of 24 mo used elsewhere to simulate N. simplex (12).
The forcing time series f are integratedwhite noise representing the ocean time

series and are created using Eq. 1, setting σ = 0.5, with α taking one of six different
values (0.55, 0.65, 0.75, 0.85, 0.9, or 0.95, spanning those found in the PDO index).

Thus, the ecosystem time series are “double integrating” the white noise. x is the
length of the original PDO index (1,350 points). There is a strong relationship
between the variance of the resulting time series and the α-value used to create
them, whereas the increase in amplitude of the climate indices we analyze is more
modest. Hence, we normalized each forcing series by its SD to ensure results found
in the ecosystem time series were independent of this. For each value of α, 1,000
forcing time series were created. These were then applied to our two simple ex-
ample models. We also forced each model with the PDO index.

The models were solved using the Euler method. Correlations between f
and y were calculated using the Pearson product–moment correlation co-
efficient. When using the PDO to force the models, correlation and SD were
calculated in a moving window of 675 mo (as in the preceding analysis). In
these cases, the ecosystem time series are only 675 points long and each is
associated with an α-value of the PDO index (Fig. 4).
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Fig. S1. Assessing the significance of trends observed in (A, C, and E) variance and (B, D, and F) variance at high frequencies (having used a low bandwidth for
detrending the original data), for (A and B) Mantua PDO index, (C and D) HadISST average North Pacific index, and (E and F) HadSST3 average North Pacific
index. The histogram in each case represents 10,000 runs of a null model (described in the main text), the red line is the result from analysis of the corre-
sponding index, and P values for each hypothesis test are shown above each plot.
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Fig. S2. Power spectra of SST variability (log–log plots) for (A) Mantua PDO index, (B) HadISST average North Pacific index, and (C) HadSST3 average North
Pacific index. In each case, power spectra for the first half of the data are shown in gray and the second half in orange. A regression line has been fitted
through each of these (black and red, respectively), showing a shift in power from high to low frequencies in all three time series. There is no overlap between
the 95% confidence intervals on the gradient of the regression lines when using the PDO index (A), an overlap of ∼4% the width of the 95% confidence
intervals for HadISST (B), and an overlap of ∼75% of the width of the confidence intervals for HadSST3 (C).

Fig. S3. Slowing down in average North Pacific reconstructed SSTs,1870–2011. (A) HadISST data detrended and averaged over the North Pacific (Methods).
(B) Estimated increase in AR(1) coefficient, using a window length of 850 points (half the series), without detrending (Methods), results plotted in the middle of
the sliding window. (C) Estimated increase in variance. (D) Range in Kendall τ-values expected from ensembles of 10,000 realizations of a null model with fixed
α = 0.95, with red vertical line denoting τ = 0.938 found in A (P < 0.0001). Sensitivity analyses of (E) the AR(1) coefficient estimate and (F) variance by testing
the value of τ for a variety of window lengths and bandwidths.
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Fig. S4. Spatial pattern of slowing down in North Pacific SSTs in HadISST data when the mean annual cycle and a quadratic warming trend have been re-
moved from each grid point. (A) Kendall τ-values are shown as well as (B) the change in α over the data set using the start and end points of a linear regression
fitted to each AR(1) time series. The same analysis is carried out on HadSST3 to create Fig. 3 A and B.
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Fig. S5. Time series of average North Pacific SSTs from (A) HadISST and (B) ERSST v3 (1900 onward, with the average annual cycle and quadratic warming
trend removed). (C) Estimates of the AR(1) coefficient for each time series using a window length of 675 points (approximately half the time series), plotted at
the middle of the time window it is calculated on. A regression line is fitted through each of these AR(1) estimates (dotted line), and Kendall τ-values for the
trends in AR(1) are given.
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Fig. S6. Uncertainty in linear regression used to estimate trends in observed MLDs. SEs were used to determine the 5% and 95% confidence limits. Lower
confidence limits for (A) 1960 and (B) 2006 MLDs are plotted against the estimated MLDs required to explain the slowing down signals in the grid point by grid
point analysis (described in the main text). Likewise, upper limits for (C) 1960 and (D) 2006 MLDs are also plotted against the estimated MLDs. The dash-dotted
lines refer to 2 SDs away from fitting the data. These plots are comparable to Fig. 3 G and H, where the mean values from the linear regression analysis of the
observed MLDs are used.
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Fig. S7. Example ensemble members from the forcing of two simple model ecosystems with different levels of climatic red noise by altering the value of α
(Methods). Forcing series A–C, generated from α values of 0.65, 0.85, and 0.95, respectively, are applied to the nonlinear model, creating time series D–F, and
the linear model, creating time series G–I.
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