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ABSTRACT 

Urban tree planting initiatives are being actively promoted as a planning 

tool to enable urban areas to adapt to and mitigate against climate 

change, enhance urban sustainability and improve human health and well-

being. However, opportunities for creating new areas of green space 

within cities are often limited, and from an urban planning perspective, 

tree planting initiatives in central urban areas may be constrained to 

kerbside locations. At this scale, the net impact of trees on human health 

and the local environment is less clear, and generalised approaches for 

evaluating their impact are not well developed.  

In this review, we use an urban ecosystems services framework to 

evaluate the direct, and locally-generated, ecosystems services and 

disservices provided by street trees. We focus our review on the services 

of major importance to human health and well-being which include 

‘climate regulation’, ‘air quality regulation’ and ‘aesthetics and cultural 

services’. These are themes that are commonly used to justify new street 

tree or street tree retention initiatives. We argue that current scientific 

understanding of the impact of street trees on human health and the 

urban environment has been limited by predominantly regional-scale 

reductionist approaches which consider vegetation generally and/or single 

out an individual service or impact without considering the wider 

synergistic impacts of street trees on biophysical and health aspects of 

urban ecosystems. This can lead planners and policymakers towards 

decision making based on single parameter optimisation strategies which 

may be problematic when a single intervention offers different outcomes 

and has multiple effects and potential trade-offs in different places. 

We suggest that a holistic approach is required to evaluate the services 

and disservices provided by street trees at a range of different scales. We 

provide information to guide decision makers and planners in their 

attempts to evaluate the value of vegetation in their local setting. We 

show that by ensuring that the specific aim of the intervention, the scale 

of the desired biophysical effect and an awareness of a range of impacts 

guide the choice of i) tree species, ii) location and iii) density of tree 

placement, street trees can be an important tool for urban planners and 

designers in developing resilient and resourceful cities in an era of climatic 

change.  
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1) Introduction 1 

Urban tree planting initiatives are being actively promoted as an urban 2 

planning solution to reduce the environmental degradation caused by 3 

urbanization, enhance urban sustainability, mitigate and adapt to climate 4 

change and to improve human health and well-being [1,2]. The public 5 

perception of the value of green spaces and green infrastructure 6 

(especially trees) within cities has prompted a number of initiatives to 7 

promote the ‘greening’ of cities through urban reforestation and protection 8 

programs to increase the percentage of tree canopy cover, such as the 9 

New York City ‘Million Trees’ program [3], or the City of Melbourne’s 40% 10 

tree canopy cover target. Such projects have stemmed from a wide range 11 

of different organisational bodies encompassing local to international-scale 12 

governance, community based, charitable and regulatory approaches. 13 

Here, the broader arguments for increased tree density stem from benefits 14 

for public health and quality of life, and the sustainability and resilience of 15 

cities in light of climate change [4].  16 

However, two issues immediately arise. First, opportunities for urban 17 

greening remain limited in cities. Land is expensive and trees require 18 

economic and environmental resources to survive as assets in the harsh 19 

environmental conditions characteristic of urban areas. Careful thought 20 

needs to be put into considering their placement, their beneficiaries, viable 21 

alternatives, who is responsible for ongoing costs and maintenance, and 22 

potential co-benefits with urban planning objectives at multiple scales. 23 

Second, urban trees do not provide ubiquitous ‘good’ for all actors in all 24 

contexts. The complex physiology and ecological functioning of trees mean 25 

that efforts to optimise for one ‘good’ (such as less leaf litter or shade) can 26 

produce undesirable effects (such as increased aero-allergens) for 27 

different sites, scales and social groups. Thus, key questions remain in 28 

urban design and planning as to how to invest in green urban 29 

infrastructure in ways which incorporate the large body of scientific 30 

understanding of multiple biophysical and social processes in ways 31 

relevant to human decision making. 32 

The application of urban climate, environmental and social sciences in this 33 

field is in its infancy, and few studies have sought to integrate 34 

understanding of the physical world with the social and cultural contexts of 35 

urban environments. Given the heterogeneity and complexity of the 36 

processes which determine the environmental and social impacts of urban 37 

vegetation, it is not surprising that there have been few attempts to 38 

synthesise the current knowledge about the net impact of trees on the 39 

physical, public health and cultural aspects of the urban ecosystem. 40 

Current research in this field often emphasises a singular benefit and 41 

direct planners towards a single-variable optimisation strategy. This 42 

becomes problematic when a single-variable intervention offers different 43 
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outcomes and has multiple effects and potential trade-offs. For example, 44 

current preference for male over female trees of the same species in many 45 

North American and European cities to reduce mess from seeds and fruit 46 

can result in higher pollen loads in the atmosphere [5].  47 

There is a pressing need for holistic assessments of the health impacts of 48 

climate change mitigation/adaptation policies such as the promotion of 49 

street trees. Vegetation provides shade and humidity thereby reducing 50 

surface and air temperatures at local scales and thus is a potential 51 

adaptation strategy in an era of climate warming. Given that increasing 52 

vegetation density also has the potential for significant co-benefits to be 53 

realised across a range of public health arenas, exploring the two themes 54 

of health and climate enables a broader appreciation of the complexity of 55 

the issues and services realised at different scales in different urban 56 

settings. We focus on trees along streets, as street trees represent a 57 

particular mode of greening urban areas which offer particular services 58 

and functions [6,7]. As such, there is significant interest in the potential of 59 

street trees as a tool in urban design to mitigate against a number of 60 

climate-related urban problems.  61 

This paper provides a critical review of the potential of street trees as an 62 

urban planning (or engineering) solution to improve human health and 63 

well-being through ‘climate regulation’, ‘air quality regulation’ and 64 

‘aesthetics and cultural services’. These are themes that are commonly 65 

used to justify new street trees or street tree retention initiatives. We seek 66 

to match changes in these biophysical processes resulting from street 67 

trees with health impacts (such as physical health, mental health and the 68 

well-being of residents) at relevant scales.  69 

We utilize an urban ‘ecosystem services’ (ESS) framework [8,4] as a 70 

platform through which to synthesize current knowledge, and assess the 71 

holistic value of street trees by thinking through the different processes 72 

and functions that street trees perform which are of human value in the 73 

spheres of climate and health. While most ESS typologies often present 74 

the potential climate, air quality and cultural-aesthetic benefits of trees in 75 

a ‘list’ fashion, these are rarely discussed in sufficient detail to highlight 76 

contradictions and the place-specific context of results. We identify the 77 

limitations of promoting investment rationales for street trees drawn from 78 

single-issue modelling studies that highlight a single benefit or even co-79 

benefit (e.g. Jim and Chen [9]). This leads us to propose some 80 

methodological recommendations about how the impact of street trees on 81 

urban ESS could be approached differently, and how future analyses might 82 

be oriented to facilitate dialogue about the diverse meanings of trees and 83 

green space in urban environments. 84 

2) An urban ecosystem services approach (ESS) 85 
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 86 

Much research and advocacy has focussed on documenting the human 87 

benefits arising from integrating various forms of ecological restoration 88 

(such as urban tree-planting) into urban design and planning [10,11]. The 89 

‘ecosystem services’ approach is increasingly being utilized by researchers, 90 

advocates and policy makers to highlight and evaluate the human benefits 91 

received through the ecological functioning provided by urban trees and 92 

other such ‘ecological infrastructure’ [4,10,12]. Ecosystem services refer 93 

to the subset of ecological functions that are directly or indirectly linked to 94 

human benefits or well-being [13]. What is crucial about the ecosystem 95 

services framework is that it analyses the relationships between specific 96 

ecological processes and attributes, and specific outcomes of value to 97 

humans. Analytically, this means focussing on identifying, quantifying and 98 

modelling the human benefits (and costs) of ecological and biophysical 99 

processes relating to urban green infrastructure. 100 

What constitutes ‘best practice’ in identifying and classifying ecosystem 101 

services (ESS) has been debated, contested and refined over the years for 102 

various purposes [14,15]. In mainstream ESS thought, a four-part 103 

typology of services distinguishes: provisioning services (direct outputs of 104 

human value, such as food), regulating services (maintenance of valuable 105 

processes, such as water purification by wetlands), supporting services 106 

(processes indirectly valued, such as pollination) and cultural services 107 

(providing valued social and spiritual meanings) [16]. Some scholars have 108 

developed more specific classifications of ESS for urban environments. 109 

One study [12] provided an early and simple categorization of ESS unique 110 

to urban ecosystems and environments, highlighting how urban green 111 

infrastructure provides benefits to human health in the forms of micro-112 

climate regulation, air filtration, noise reduction, rainwater drainage, 113 

sewage treatment and cultural values. Another [10] expanded this 114 

typology and situated a range of urban ESS underneath each of the four 115 

major classes used in the Millennium Ecosystem Assessment (see Table 116 

1).  117 

  118 
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Table 1. Urban ecosystem services relevant to human health. Classification 119 

adapted from [8]. 120 

Service class Specific services 

Provisioning services Food supply, water supply 

Regulating services 

and related health 

benefits 

Urban temperature regulation, noise reduction, air 

quality improvement, moderation of climate 

extremes, runoff mitigation, waste treatment, 

pollination, pest regulation, seed dispersal, global 

climate regulation 

Supporting (habitat) 

services 

Habitat for biodiversity 

Cultural services Recreation, aesthetic benefits, cognitive 

development, place values and social cohesion 

 121 

While urban ESS classifications and lists of the environmental services and 122 

disservices provided by street trees (provided in reviews elsewhere [2]) 123 

provide useful heuristics for highlighting the potential services provided by 124 

urban ecological infrastructure, detailed reviews are needed to assess the 125 

weight of evidence, contextual variability and robustness of the 126 

relationships that have been documented linking specific urban design 127 

elements to specific human benefits in particular urban contexts.  128 

This review embraces the ESS framework to critically review the literature 129 

pertaining to the potential benefits of street trees for urban design and 130 

human well-being. We view street trees as a specific ‘ecosystem 131 

component’ involved in the delivery of services [17]. As noted in the 132 

Introduction, street trees are increasingly viewed as a planning solution to 133 

urban problems; they are being included as integral components for 134 

climate sensitive urban design, for urban liveability and environmental 135 

justice [6]. By critically reviewing the scientific literature for a range of 136 

often-proposed ESS for street trees, we aim to inform and advance 137 

dialogue in urban planning about the role/s that street trees might play in 138 

pursuing a range of societal objectives. 139 

We use the ESS framework to organize our review around the services 140 

(and disservices) provided by street trees, emphasising the regulating and 141 

supporting services identified by Gomez-Baggethun et al. [10] which are 142 

relevant at local scales to climate mitigation and human health. However, 143 

the framework also brings into focus three further points. First, it has been 144 

well acknowledged that much ESS work is reductionist, in that it focusses 145 

on one or two elements or services (such as climate regulation provided 146 
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by trees) ignoring other functions or processes of potential value to 147 

humans. It has been argued that ESS has become a ‘complexity blinder’ 148 

[18] that conceals as much as it reveals about which ecological processes 149 

(should) matter to humans. Second, while we take street trees as a useful 150 

starting unit for analysis, the ESS literature sensitizes us to the scale-151 

dependent provision of services [1]. That is, the benefits provided by a 152 

unit of street trees may be dependent upon whether street trees and/or 153 

other related green infrastructure are providing similar services nearby. 154 

Third, and relatedly, the ESS framework highlights how ‘benefits’ are 155 

social constructs that are context specific [19]; what is beneficial in one 156 

context may not be in another, and what is seen as ‘beneficial’ by one 157 

social group may not be seen as beneficial by another. In summary, ESS 158 

analyses need to be grounded in their particular biophysical and social 159 

contexts; our review attends to these insights as relevant for street trees. 160 

We also draw on the cultural ecosystem services literature as a framework 161 

for thinking about the diverse ways in which street trees are meaningful to 162 

human subjects [1]. We approach cultural ecosystem services broadly as 163 

the “contributions of ecosystems (or nature) to human well-being via 164 

nonmaterial connections” [20]. This definition emphasizes the importance 165 

of meaning to human actors (i.e. the ‘nonmaterial connections’). This 166 

aspect is important from a human well-being point of view, but is less 167 

tangibly connected to notions of physical environment. 168 

The following sections provide a discussion of a selection of the relevant 169 

literature to highlight the challenges associated with determining the 170 

impact of street trees both on the local-scale physical processes operating 171 

within urban ecosystems and also the social, cultural and health aspects. 172 

The literature on these topics is vast. We have been very selective in our 173 

use of case studies and examples and do not claim to provide an 174 

exhaustive review or systematic list of all services and disservices (see 175 

Roy and Pickering [2] for this). Rather we are performing a wider 176 

information-organizing function for prospective decision makers to help 177 

make sense of 1) the diversity in ESS for urban street trees, as well as 2) 178 

the importance of tree species, density and location in service provision for 179 

any given location, and 3) the implications and potential health and 180 

societal effects of optimising for a singular service.  181 

 182 

3) The role of street trees in provision of regulating services 183 

3.1) Micro-climate 184 

As a result of the extensive replacement of natural soils and vegetation 185 

with impervious surfaces, cities have warmer drier climates than their 186 

rural counterparts at local, urban and regional scales, especially at night 187 
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[21]. Increasing vegetation cover in urban areas leads to reduced ambient 188 

and surface temperatures and increased evapotranspiration, precipitation 189 

interception and reduced runoff. Increasing the vegetation density is 190 

therefore considered an effective option for mitigating urban heat and 191 

thereby adapting to climate changes caused both by regional-scale 192 

changes in land use and global-scale changes in atmospheric composition 193 

[22]. However, little is known about the general effects of changing the 194 

density of street trees on urban climates at regional or local scales. 195 

Most studies of heat effects on health are undertaken at regional scales 196 

and use mean daily temperature or maximum daily temperature as the 197 

most relevant predictor for mortality or morbidity [23-25]. From a health 198 

perspective, urban residents are particularly at risk of suffering from heat 199 

stress, especially during extreme heat events as locally generated heat 200 

exacerbates the effects of regional scale heatwaves [26]. Typically, urban 201 

climate modelling studies at similar scales employ urban land surface 202 

schemes which categorise vegetation cover generally rather than 203 

specifically street trees. Such studies do show that increased vegetation 204 

cover results in reducing both mean air temperatures [27,28] and extreme 205 

temperatures during heat waves [29]. Some studies have also shown that 206 

the cooling effect of vegetation at a regional scale is more pronounced at 207 

night [29]. This is significant from a health perspective since minimum 208 

temperature has also been strongly associated with mortality due to the 209 

inability of the body to recover from heat stress during the night time 210 

period [30]. 211 

Where predicted temperature changes have been related to changes in 212 

health parameters, simple statistical correlations are often used which 213 

cannot easily be applied in other contexts. For example, it has been found 214 

that a 20% increase in vegetation cover resulted in a 7.18% decrease in 215 

24-h average temperature in Phoenix, Arizona, where hot dry conditions 216 

dominate [31]. This was then projected to reduce average annual heat-217 

related emergency calls by 11% [31].  218 

While such regional-scale research highlights the potential mean 219 

temperature reduction from increasing vegetation, modelling studies 220 

generally employ a resolution of around 1-5 km and are unable to capture 221 

the type of vegetation or exactly where it is placed (e.g. parks or street 222 

trees). This general approach to representing ‘vegetation’ may therefore 223 

bias results and not prove accurate for predicting the local effect of street 224 

trees. In one rare study of the impact of increasing just street trees on 225 

temperatures at these urban to regional-scales [32] showed only a very 226 

small reduction in the average air temperature at 1500h of between 0.2 227 

and 0.5 °C during heat waves in New York City. However, again, the 228 
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results are specific to the local characteristics of urban form and general 229 

climate zone. 230 

To understand the underlying processes which relate changes in tree cover 231 

to changes in climate, local-scale processes need to be characterised and 232 

understood. Trees provide shade, blocking solar radiation from reaching 233 

pedestrians [33] and limit solar heating of impervious surfaces with high 234 

heat capacity and thermal conductivity (such as concrete), reducing heat 235 

storage. Vegetation can increase urban albedo (compared to dark asphalt 236 

surfaces), and vegetated surfaces have lower radiative temperatures than 237 

impervious surfaces with the same albedo [34,35].  238 

At local scales, extensive tree coverage can deliver significant benefits to 239 

outdoor human thermal comfort (a measure of the temperature and 240 

humidity of the environment in relation to the body’s ability to maintain a 241 

comfortable core temperature) and result in lower heat stress levels 242 

[36,37], especially during extreme heat events [38]. At these scales, the 243 

changes in temperature observed from the presence of street trees can be 244 

much larger than regional effects, but are highly variable and difficult to 245 

generalise. For example, in Bangalore, India, an experimental study 246 

showed that afternoon ambient air temperatures were 5.6 °C lower in 247 

roads lined with trees, and road surface temperatures 27.5 °C lower than 248 

those measured in comparable tree-less streets [39]. Observations from a 249 

courtyard in Israel with shade trees and grass showed reduced air 250 

temperatures of up to 2.5 °C [40]. The impact on local climate is 251 

dependent on the prevailing regional climatic context, geographic setting 252 

of the city, urban form, the density and placement of the trees, species 253 

type, age and the health of the tree. 254 

However, even when average air temperature reductions from street trees 255 

are small, the net benefits of trees from shading effects for human 256 

thermal comfort can be substantial. Shading is critical for improving 257 

human thermal comfort, particularly via reductions in mean radiant 258 

temperature which is the dominant influence on outdoor human thermal 259 

comfort under warm, sunny conditions [40,41]. Shashua-Bar and Hoffman 260 

[34] also note that within the urban canyon, as much as 80% of cooling 261 

from trees comes from shading.  262 

The presence of street trees can also modify indoor temperatures by 263 

shading buildings and significantly reducing the risk of indoor overheating) 264 

[42]. This can benefit human health where economic resources are 265 

unavailable to cool buildings or could provide further co-benefits by 266 

reducing energy demands for building cooling [43]. One study shows that 267 

tree shade can reduce wall temperatures by 9oC and air temperatures by 268 

up to 1oC [44]. It also argues that it is very difficult to generalise the 269 
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impact of trees on building thermal performance as there is very limited 270 

data available and the impacts are dependent on materials, architecture 271 

and design, geometry, tree species, aspect and season.  272 

However, the positive summertime effects of street trees during the 273 

daytime need to be counter-balanced by their night and wintertime 274 

impacts. At night, although the presence of trees may reduce local-scale 275 

heat storage and hence release at night, street trees trap radiation within 276 

the canyon and reduce ventilation, preventing the dissipation of sensible 277 

heat that has built up during the day. Therefore, while an extensive tree 278 

canopy cover may be beneficial during the day, there is a risk of restricted 279 

nocturnal longwave cooling leading to slightly higher and more 280 

uncomfortable indoor temperatures during the night [38]. It should also 281 

be noted that trees change aerodynamic resistance to heat diffusion, and 282 

may limit the penetration of breezes and cooling of buildings through open 283 

windows at night during summer.  284 

While the health effects of increased heat are damaging, the majority of 285 

deaths caused by temperature in urban areas around the world are 286 

associated with moderately cold weather rather than heat [25,45,46]. 287 

Therefore a drop in ambient temperature during the winter caused by 288 

shading from ever-green street trees could have a negative effect on 289 

health. Reduced light levels in the winter time could also have an impact 290 

on mental health for individuals sensitive to Seasonal Affective Disorder 291 

[47]. Increased shading can also result in lower indoor temperatures, 292 

increasing mould and dampness within buildings and increase energy 293 

consumption for building heating in winter. 294 

There is a synergistic relation between trees and climate. Water has an 295 

important role to play in maintaining full and healthy, actively transpiring 296 

tree canopies. Urban environments can place additional pressures on 297 

street trees [48] that may not be experienced by their rural ‘forest tree’ 298 

counterparts. Elevated urban temperatures, dry air and soils and large 299 

radiative loads (especially on isolated street trees) can lead to a very high 300 

evaporative demand [49,50]. Without alternative irrigation sources to 301 

increase soil moisture and support street trees, as well as to dissipate high 302 

heat loads [51], their health and capacity to cool urban environments can 303 

be impaired. This could be particularly significant in many urban areas 304 

given projected climate change patterns.  305 

Trees generally increase humidity, acting as channels for water loss to the 306 

atmosphere [51] with their roots drawing moisture from deeper layers of 307 

the soil. Water sensitive urban design, storm water harvesting and 308 

recycled water can all provide a means for increasing soil moisture levels 309 

in cities where water availability is an issue. Biofiltration systems and 310 

irrigation from rainwater tanks can deliver substantial increases in 311 
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evapotranspiration as a result of stormwater retention [52]. Such 312 

measures have additional eco-hydrological benefits including reducing run-313 

off (which benefits downstream waterways), and improving soil drainage 314 

and soil erosion control [53]. Street trees intercept and store rainfall, filter 315 

runoff in the canopy and in the root-zone, and draw moisture from the 316 

soil, increasing the soil water storage capacity for rainfall events [54]. 317 

Trees also modify the below-ground environment, improving the 318 

permeability of soils [55]. In these ways, indirect health benefits from 319 

reduced flooding and storm water damage can be achieved. However, 320 

these effects are difficult to quantify [1]. 321 

In summary, there is some evidence to support the notion that increasing 322 

vegetation density in urban areas can lead to positive changes from both 323 

the local climate and health perspectives. However, most studies linking 324 

climate variables to health have been undertaken at regional scales, and 325 

little is known about the underlying biophysical processes or causal 326 

pathways which specifically link street trees to health effects at local 327 

scales. Thus, as demonstrated in the next sections, the evidence for the 328 

direct effect of street trees on health remains poor. Although at local 329 

scales the effects of street trees on climate and hence human health is 330 

context specific, some generic recommendations can be made when just 331 

considering direct climate effects and health. For example, during the day, 332 

street trees tend to be more effective in cooling streets which are exposed 333 

to large amounts of solar radiation (wide open streets of low height-to-334 

width (H:W) ratios [56] and those oriented east-west [57]). As the H:W 335 

ratio increases, the role of building shade and thermal mass begins to 336 

overwhelm the contribution of street trees in cooling [38]. Clustering trees 337 

into lines or small groups [58] interspersed with open areas in a 338 

‘savannah’-type arrangement [59] can help reduce the radiative load [51], 339 

provide shade, and allow longwave cooling at night. Large, wide trees with 340 

dense canopies could be considered for streets with low H:W, while taller 341 

narrower trees could be considered for streets with high H:W. However, 342 

uncertainty remains in the literature, as it has been suggested that the 343 

cooling effects of trees is related mostly to planting density and canopy 344 

coverage [56], while others note that attributes of tree species like leaf 345 

colour and leaf area index can also strongly influence cooling [60]. 346 

3.2) Air quality and noise regulation 347 

The potential impact of street trees on air quality remains one of the most 348 

poorly understood aspects of the studied ecosystem services and benefits 349 

[61]. Street trees have the potential to regulate air quality by absorbing 350 

pollutants and increasing pollutant deposition. They emit pollutants and 351 

pollutant precursors in the form of biogenic volatile organic compounds 352 

and pollen and may also regulate the soundscape of the city. However, the 353 

plethora of processes operating at different scales make it very difficult to 354 
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predict the net effect of street trees on air quality in any given 355 

environment. The ESS framework is important here in assisting with 356 

matching scales of study with outcomes.  357 

 358 

3.2.1) Deposition and dispersion 359 

The health effects of air quality regulation by trees in the urban 360 

environment have mainly been studied at regional scales using modelling 361 

approaches which have not been extensively validated with field trials. 362 

Most studies at regional or city scales show a modest modelled reduction 363 

in pollution concentration of less than 5% resulting from urban vegetation 364 

[62,63]. Trees increase both the surface roughness (slowing air flow thus 365 

enhancing deposition and absorption pollutant removal processes) and the 366 

area of the ground surface that atmospheric pollutants come into contact 367 

with (acting as biological filters, enhanced by the properties of their 368 

surfaces) [64]. Trees absorb CO2 and gaseous pollutants such as O3, NO2, 369 

SO2 primarily by uptake via leaf stomata or surface, and accumulate 370 

airborne particulates (by interception, impaction or sedimentation) more 371 

effectively than other urban surfaces [65-67]. 372 

Estimates of the resulting modelled improvements in air quality from 373 

vegetation are generally extrapolated at regional scales in association with 374 

health metrics using large-scale epidemiological approaches, and few 375 

studies specifically focus on urban greening. For example, it has been 376 

suggested current woodland cover (non-urban) in Great Britain mitigates 377 

between five and seven deaths and four and seven hospital admissions 378 

annually due to reduced PM10 and SO2 concentrations [68]. However, 379 

similar to the pitfalls associated with assigning a monetary value to the 380 

economic benefits of street trees [69,70], such calculations are dependent 381 

on the accuracy of the underlying assumptions used in the methodological 382 

approaches.  383 

At local scales there is little evidence to link air quality regulation from 384 

vegetation with improved health outcomes. Indeed at local scales, studies 385 

are less conclusive as to the direction of the relation between vegetation 386 

and pollution, possibly because the interplay between urban form and 387 

vegetation becomes important. At local scales, the characteristics of the 388 

tree canopy, tree density and proximity to other urban structures influence 389 

the ability of plants to remove pollutants [71,72]. The rate of pollutant 390 

removal is species dependent, and trees with a large leaf surface area can 391 

remove 60 to 70 times more gaseous pollutants a year than small ones 392 

[69]. However, the extent to which particle concentrations can be reduced 393 

via deposition is more controversial, as particles can be washed off and re-394 

suspended [73]. Besides being affected by particle size (see Janhäll [67] 395 

for a comprehensive review), plant species differ in their ability to 396 
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scavenge dust-laden air due to their differing features such as habitus, 397 

canopy height, or position, size, of the morphology (shape, texture, 398 

roughness) of leaves (e .g. 62,72,74,75]). 399 

At local scales, changes to the urban air flow regimes from the tree 400 

canopy may also reduce the horizontal and vertical exchange of both clean 401 

and polluted air between the urban canyon and its surroundings (also 402 

referred to as the ventilation hypothesis [76]). Many depositional studies 403 

do not take this into account and therefore may underestimate the 404 

effective deposition rate.  405 

Similar challenges are associated with attempts to quantify the effect of 406 

street trees on canyon-scale pollutant dispersion processes. This makes it 407 

difficult to generalise the net impact of street trees on local air pollution 408 

concentrations. A plethora of wind tunnel and computational fluid 409 

dynamics (CFD) studies have been performed on idealized urban 410 

geometries with trees to characterise the under-lying processes which 411 

determine local dispersion effects on one (see Moonen et al. [77] and 412 

references therein) or two intersecting street canyons [78-80]. Unlike the 413 

studies which focus on deposition and removal processes, most of these 414 

dispersion-led studies report a localised increase in traffic-related gaseous 415 

pollutant and particulate matter concentrations associated with increased 416 

tree cover. The results remain consistent when scaled up to 417 

neighbourhood areas with one study [81] reporting an increase in average 418 

pollutant concentrations of 1% associated with every 1% increase in tree 419 

crown volume fraction relative to the tree-free situation for occupation 420 

fractions of 4-14%. It is therefore unclear to what extent this impact of 421 

street trees on air quality remains valid for 'real' street canyons. In a 422 

combined modelling and field study, one study concluded that excluding 423 

the effect of vegetation results in non-negligible errors in pollutant 424 

predictions and resisted attempts to generalise the local impacts of trees 425 

on air quality [78]. 426 

A limited number of experimental studies have attempted to quantify the 427 

net change in pollutant concentrations resulting from street trees (e.g. 428 

[76, 82-84]. The results from these studies provide mixed answers as to 429 

whether trees provide a net benefit in regulating air quality, pointing to 430 

local factors as important determinants of the local effects. For example, a 431 

seasonal investigation of six street canyons in residential Shanghai (China) 432 

revealed that in the presence of street trees, the rate of decrease in 433 

concentration of PM2.5 with height was much lower compared to tree-less 434 

streets [85]. In comparison, another study showed that sections of major 435 

highways in Queens New York (USA) which had trees planted 436 

perpendicular to the street had fewer spikes in PM2.5 concentration but 437 

higher mean background concentrations, indicated reduced dispersion 438 

compared to grass-covered sections [86]. But, while trees which form a 439 
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continuous tunnel or canopy within a street promote pollutant storage of 440 

pollutants emitted within the canyon, they can also reduce transport of 441 

pollutants from other locations within the city.  442 

One study has examined experimentally the impact of street trees on 443 

indoor air quality by temporarily installing a line of young trees (silver 444 

birch) outside a row of terraced houses in a heavily trafficked street in 445 

Lancaster (UK) [87]. Their results indicated that rather than increasing 446 

total urban tree cover, single roadside tree lines of a selected, high-447 

deposition-velocity, PM-tolerant species appear to be optimal for PM 448 

removal. However, further experimental research into vegetated streets is 449 

necessary to verify these results [88]. 450 

In summary, it remains challenging to quantify the rate of deposition 451 

using either modelling or measurement approaches. Large uncertainties 452 

remain and the ranges reported vary significantly, especially at local scales 453 

[63]. The rate of deposition also depends on the chemical species in 454 

question. For example, SO2 more readily deposits to surfaces (as do other 455 

acidic gases), whereas PM may be less so (and may actually be 456 

resuspended from the vegetated surface). At local scales, the specific 457 

combination of tree species, canopy volume, canyon geometry, and wind 458 

speed and direction must be accounted for on a case-by-case basis [89].  459 

 460 

3.2.2) Emission of biogenic volatile compounds 461 

Other ecosystem (dis)services associated with street trees include the 462 

direct emission of gases which act as precursors to the formation of 463 

secondary pollutants such as ozone in urban atmospheres. Trees emit 464 

biogenic volatile organic compounds (bVOCs) as a reaction to stress in 465 

their environment, such as high light intensities and/or temperatures or 466 

low water availability [90,91]. Isoprene is the most abundantly emitted 467 

bVOC [92]. In the presence of NOx and sunlight, isoprene contributes to 468 

ozone formation, which may accumulate locally when ventilation is limited 469 

[93,94]. Other types of bVOCs, such as monoterpenes and 470 

sesquiterpenes, are also emitted, but unlike isoprene, these continue to be 471 

emitted at night. In addition to contributing to ozone formation, terpenes 472 

can also contribute to particulate formation (Secondary Organic Aerosol – 473 

SOA) as they chemically degrade in the atmosphere [95]. Due to their 474 

very complex reactions, quantifying their contribution to pollutants is still 475 

an active area of research [96]. 476 

A recent study provides an extensive review on the emission of bVOC by 477 

street trees and their impact on O3 concentrations [94]. They argue that 478 

due to the limited availability of studies at the urban level, a number of 479 

key processes are still poorly understood, including the amount of bVOCs 480 
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emitted by street trees, the interaction between bVOCs and urban 481 

pollution and their influence on O3 formation, and the effects of O3 on the 482 

biochemical reactions and physiological conditions leading to bVOC 483 

emissions. It should also be noted that the production of ozone from bVOC 484 

emissions may be outweighed by the reduction in ozone due to deposition 485 

and uptake by the tree, though this will depend on the specifics of the 486 

scenario. For example bVOCs from street trees may increase ozone 487 

concentrations within trafficked street canyons due to the high 488 

concentrations of NOx, but are less likely to have a significant effect in 489 

areas with low NOx concentrations.  490 

Tree/plant species and environmental stresses (such as drought, heat, and 491 

pest infestation) influence the amount and type of bVOC emission. 492 

Temperature increase has important direct influence on rates of bVOC 493 

emissions, gas-phase chemical reaction rates, and O3 dry deposition, 494 

which could result in higher O3 levels under climate change conditions 495 

[97]. Also, here, a proper selection of tree species is relevant; a recent 496 

study indicates that planting one million low bVOC-emitting trees 497 

compared to, for example, one million English oak trees (high emitters) in 498 

Denver (USA), is equivalent of preventing emissions from as many as 499 

490,000 cars [98]. Donovan et al [99] developed an urban tree air quality 500 

score that ranks trees in order of their potential to improve urban air 501 

quality. Of the species considered, pine, larch, and silver birch have the 502 

greatest potential while oaks, willows, and poplars can worsen downwind 503 

air quality if planted in very large numbers. To summarise, since bVOC 504 

emission (which may lead to ozone production) can vary with species, as 505 

can the effectiveness of pollutant dispersion and/or uptake, the particular 506 

tree species as well as the environment it will be sited in, need to be 507 

considered carefully to balance any benefit in pollution reduction with the 508 

potential for enhanced ozone production and altered dispersion of 509 

pollutants.  510 

More detailed studies are required to specifically link the health effects to 511 

air quality regulation from trees at local scales. Further, although the 512 

importance of the commuter micro-environment is well known in 513 

determining personal exposure, little is known about the role of street 514 

trees in determining personal exposure whilst moving around the city 515 

using any mode of transport. Cyclists, motorcyclists and pedestrians are 516 

most susceptible to exposure to peak concentrations due to a lack of 517 

physical barrier between them and the source [100,101].  518 

3.2.3) Noise attenuation 519 

A further atmospheric service that is often considered alongside air 520 

pollution is noise pollution. Noise in urban areas has been associated with 521 

annoyance, self-reported sleep disturbance and hypertension [102]. Little 522 
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is known about the specific value of street trees in reducing noise pollution 523 

in street canyons, although there is certain evidence that trees can 524 

attenuate traffic noise roadside of open busy streets [103].  525 

More significant is the role that urban trees may play in the masking of 526 

urban noise. Almost universally, people rate the quality of natural sounds 527 

more highly than anthropogenic sources [104]; the source of the sounds is 528 

as important as the actual intensity level. For example, the introduction of 529 

natural sounds, in urban open spaces have been shown to improve the 530 

perception of the quality of the soundscape [105-108]. While much of the 531 

focus has been on the role of water features [107], the introduction of 532 

trees within a street canyon also has the potential to significantly alter the 533 

soundscape by generating sounds associated with the rustling of leaves in 534 

response to wind, and attracting bird wildlife sounds that would be rated 535 

more positively than a street canyon dominated by road traffic noise. 536 

3.2.4) Pollen 537 

Exposure to allergenic pollen from trees is associated with a range of 538 

health effects, including allergic rhinitis, exacerbation of asthma in 539 

susceptible individuals, and eczema. These pollen grains are produced in 540 

the flowers of trees, and the timing of their release varies depending on 541 

the tree species and environmental conditions. Tree pollen is spread by 542 

the wind and its dispersion is dependent on a number of environmental 543 

factors, including the local meteorological conditions. Individuals can be 544 

sensitive to pollen from one or more different species of trees. Estimates 545 

of the levels of tree pollen allergies in the population range from around 546 

5% to over 50% in Europe [109]. As such, it is a significant environmental 547 

health issue. 548 

Some species of trees are more highly allergenic than others. Most of the 549 

allergenic tree pollen in Europe is produced by Betula (birch), and in 550 

Mediterranean regions, Olea eropaea (olive) (found mostly in agriculture 551 

rather than in cities) and Cupressus (cypress) [109]. Despite being highly 552 

allergenic, Betula is popular for ornamental planting in cities and streets 553 

[110]. In Europe, the largest proportion of the population with a positive 554 

skin prick test to Betula allergens was 54%, recorded in Zurich, 555 

Switzerland [109]. In the city of Cordoba, Spain, Cupressaceae pollen 556 

accounts for 30% of the total pollen count during winter and is  557 

responsible for allergic rhinitis at a time when no other allergenic plants 558 

are flowering [109,111]. Cryptomeria japonica (Sugi or Japanese cedars) 559 

has been shown to be highly allergenic with large health effects found in 560 

populations [112,113]. This species can be found planted in cities both in 561 

Asia and in North America. Jianan et al. [114] offer a review of allergenic 562 

planting in urban areas, with a focus on species planted in China.  563 
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The effect of interacting environmental and meteorological conditions on 564 

the production and release of allergenic tree pollen is highly complex. It is 565 

therefore unclear what effect climate change will have on pollen, although 566 

there is some evidence that  it may result in earlier seasonal appearance 567 

of respiratory symptoms and longer duration of exposure to pollen [115]. 568 

The production of tree pollen is dependent not only on the current 569 

meteorological conditions (including day length, temperature, 570 

precipitation, and wind speed/direction), but also on the conditions and 571 

water availability experienced in the year prior during which pollen is 572 

formed [116]. Any changes in these conditions affect the phenology of the 573 

tree and thus the timing of the onset of pollen release, the total volume of 574 

pollen produced, and the length of the flowering season [117]. Several 575 

studies have measured the diurnal cycle of tree pollen, and have found 576 

that different species exhibit different daily cycles.  Ščevková et al. [118] 577 

found that tree pollen tends to peak in the afternoon, with lowest levels 578 

observed throughout the night. Significant variations are observed 579 

between species. However, another found that Betula resulted in peaks 580 

throughout the day and night. It is unclear from the literature how the 581 

urban environment, particularly the light, water and temperature 582 

modification in streets, might affect both the timing of onset of release 583 

and the diurnal pattern of pollen release [119]. 584 

There is also a synergistic effect between pollutant concentrations and the 585 

health response to pollen. People who live in urban areas have been 586 

shown to be more affected by pollen allergies (asthma and allergic rhinitis) 587 

than those who live in rural areas [109,120,121]. Urban streets with high 588 

levels of vehicle emissions have been shown to coincide with increased 589 

pollen-induced respiratory allergies. There is suggestive evidence that 590 

exposure to air pollution prior to pollen exposure can exacerbate 591 

symptoms and lower the threshold of pollen required to trigger symptoms 592 

in allergy sufferers [122,123]. To fully understand and quantify the effect 593 

of exposure to both allergenic tree pollen and traffic-related pollutants, it 594 

is necessary to determine the effect on both the allergenicity (such as 595 

increased allergenicity of pollen which had been exposed to NO2 found by 596 

Cuinica et al. [124]) and the volume of pollen grains released under 597 

increased air pollution. It is also important to consider the health impacts 598 

of all these factors in high co-exposure areas such as traffic-heavy urban 599 

streets. The co-exposure of pollen and air pollutants (ozone, NO2, SO2, 600 

PM2.5 and PM10) is currently an active area of research [125,126]. 601 

In some instances there may also be a tension between the choice of tree 602 

species to mitigate air pollution and pollen production. For example 603 

London Plane Trees (Platanus x acerifolia) are a commonly cited source of 604 

allergy-producing pollen [127,128], however these trees, with their large 605 

leaves, are likely to be very effective at removing pollutants from the air.  606 
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It is also important to note that, as with air quality, there are a number of 607 

feedback loops and synergistic effects which make it very difficult to 608 

predict the net effect of increasing street tree density on pollen production 609 

especially when changing climates are taken into consideration. The local 610 

effect of climate change on pollen production, release timing, transport 611 

and deposition from urban street trees is highly complex, and its impact 612 

on pollen allergies is very uncertain. Plants may release pollen earlier and 613 

for longer periods in warmer climates [122]. Increases in atmospheric CO2 614 

concentration may lead to great pollen release through increased plant 615 

productivity, but plants may also be limited by other factors such as water 616 

stress.  617 

In summary, few studies examine the complex relations between urban 618 

vegetation, urban form and air quality, especially at a local scale [8]. 619 

Thus, the trade-off between increased deposition and removal processes 620 

which act to reduce pollution concentrations against reduced horizontal 621 

and vertical dispersion, and increased biogenic (bVOC) emissions and 622 

pollen, remains poorly understood. To date, the empirical evidence 623 

available is limited in spatial and temporal extent, and is strongly 624 

dependent on case-specific local characteristics, making general 625 

conclusions difficult to justify (see Figure 2 in Jim and Chen [8]). This is 626 

further exacerbated by the fact that street trees affect local air quality in a 627 

number of ways, driven by a complex interplay of physical and chemical 628 

processes and by variable emission sources and prevailing (urban) 629 

meteorological conditions.  630 

4) Cultural values, ecosystem services and the meanings of urban 631 

trees 632 

Urban street trees mean different things to different people. For some, 633 

they might contribute to ‘connecting with nature’, to others, they may be 634 

a nuisance (see Roy et al. [2]). These meanings can be explored 635 

quantitatively and qualitatively, and at different scales, with different 636 

approaches making different assumptions about both the ecosystems and 637 

social groups being studied or represented. We present this section as a 638 

survey of approaches rather than as a comprehensive summary. 639 

4.1) Quantitative approaches 640 

Quantitative approaches to understanding the meanings of urban 641 

ecosystems for human subjects are often targeted at documenting the 642 

psychological, recreational and aesthetic benefits of natural environments 643 

to human health and well-being [20,129,130]. Psychological research on 644 

these topics has focused on relating access to ‘green space’ to proxies of 645 

human well-being such as self-reported levels of stress and workplace 646 

productivity [20]. Whilst the evidence is somewhat mixed, these benefits 647 

are thought to arise through mechanisms including opportunity and 648 
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motivation for physical activity, stress recovery, cognitive restoration and 649 

social contact [131]. Overall, there has been limited work to date that 650 

focuses on street trees in particular (but see Schroeder et al. [132]. 651 

Tzoulas et al. [129] reviewed three dominant quantitative approaches to 652 

evaluating the relationships between urban green space and human 653 

psychological well-being outcomes: observational epidemiological studies, 654 

surveys and experimental trials.  655 

Observational epidemiological studies have been used to examine the 656 

relationships between green infrastructure and social variables (such as 657 

human health indicators and income), using population samples and 658 

statistics to hypothesize causal relationships between them. In this 659 

context, these are often ecological in design, in other words, exposures or 660 

outcomes are aggregated at population or group level. For example, a 661 

recent ecological cross-sectional study using data for London (and 662 

controlling for other confounding variables) suggested that antidepressant 663 

prescribing rates (as an imperfect proxy for depression/anxiety amongst 664 

the local population) were slightly lower in areas with greater street tree 665 

density per length of street [133]. A different study in the Netherlands 666 

was not specifically focused on street trees, but audited ‘streetscape 667 

greenery’, and found positive associations with self-reported general 668 

health, mental health and acute health-related complaints [134]. 669 

Similarly, Lovasi et al [135] found an inverse association between density 670 

of urban trees and the prevalence of childhood asthma (but not with 671 

hospitalisations due to asthma). Although this analysis controlled for 672 

population density, socio-economic characteristics (e.g. proportion of 673 

population living below the poverty line) and proximity to sources of air 674 

pollution, residual confounding in this study, and other observational 675 

studies, remains possible.  676 

Practitioners in health, environmental and social sciences are increasingly 677 

mapping and investigating the spatial relationships between trees and 678 

social groups and practices, generating estimates of environmental 679 

‘exposures’ and supporting new questions and research projects. Foremost 680 

among these could be recent work by political ecologists exploring the 681 

links between street trees and social inequality [6,136].  682 

Experimental studies seek to control how exposures (e.g. to street trees) 683 

are distributed across study participants in order to determine causal 684 

relationships. For example, recent laboratory-based studies exposed 685 

participants to different imagery of street scenes, with results suggesting 686 

that streets with greater tree coverage promote stress-recovery (based on 687 

standard self-report measures), although the association was non-linear 688 

[137]. A similar study suggested that this stress-recovery benefit may be 689 

gender-specific, finding a benefit only amongst men [138]. Bowler et al. 690 

[130] reviewed only experimental studies which sought to link human 691 
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psychological health and the natural environment, and found a small 692 

number of generalizable relationships (e.g. positive effects on activities 693 

such as walking), calling for more rigorous experimental designs [139].  694 

Surveys can be used to understand individuals’ interactions with – and 695 

attitudes towards – urban trees. Avolio et al. [140] surveyed five counties 696 

in California (n: 1029 surveys) about attitudes to and uses of urban trees, 697 

and revealed significant regional differences in desired tree attributes. 698 

Residents living in hotter areas value trees more for shade, and desert 699 

area residents valued trees more than those who live near natural forests. 700 

Surveys can also be used to document preferences for future desired 701 

outcomes. For example, Giergiczny and Kronenberg [7] used an economic 702 

choice modelling survey of urban residents to elicit their willingness to pay 703 

(in the form of a hypothetical tax) for planting trees in different spatial 704 

areas. They found a high willingness to pay for greening the streets in 705 

general, but the strongest preference was for greening those streets which 706 

currently have few or no trees. 707 

A fourth quantitative approach (which we add to the three identified by 708 

Tzoulas et al. [129]) is city- or region-wide valuation studies. These use 709 

meta-data to present an administrative logic for valuing urban trees and 710 

increasing tree density. Many economic studies embrace this approach, 711 

which:  712 

1) treats urban trees as if they produce a series of economically valued 713 

goods, such as carbon dioxide sequestration or air pollution 714 

reduction,  715 

2) estimates prices for these ‘goods’ (e.g. through the cost of 716 

substitutes to do the same function),  717 

3) adds these prices together to provide the total economic ‘benefit’ 718 

provided by trees, and then subtract the costs of producing and 719 

maintaining the urban treescape.  720 

This procedure will produce the ‘net benefit’ of urban trees to a region in 721 

financial terms. Maco and McPherson [141] followed this logic to produce a 722 

benefit-cost ratio of 3.8:1 for urban trees in the city of Davis, California, 723 

concluding that further plantings and rejuvenation of urban treescapes will 724 

produce net societal gains. Soares et al. [142] used a similar approach in 725 

Lisbon on urban street trees, arriving at a benefit-cost ratio of 4.48:1. 726 

4.2) Qualitative approaches 727 

Where quantitative approaches seek to gauge how the ‘magnitude’ of a 728 

specific relationship (e.g. a magnitude of preference for a particular type 729 

of tree) changes across space and across social groups, this requires that 730 

the relationship be specified by the analyst in advance. It assumes that 731 

the analyst knows which relationships are (most) important a priori. 732 



21 
 

Qualitative approaches, in contrast, seek to understand which 733 

relationships and meanings matter to participants, be they urban 734 

residents, policymakers, scientists or activists. Such approaches seek to 735 

understand the personal and historical meanings of urban trees in specific 736 

urban contexts, and can include interviews, textual analysis, focus groups, 737 

participant diaries and open-ended surveys. Two examples provide an 738 

indication of the insight and utility of qualitative approaches. In the first 739 

example, Peckham et al.’s [143] semi-structured yet open ended approach 740 

to the diaries of residents in Halifax and Calgary revealed a diversity of 741 

ways in which urban trees were meaningful to participants. Some went out 742 

of their way in their commutes to walk through urban green space, and 743 

many highlighted the peacefulness of the songs of birds. In a second 744 

example, Heynen et al. [144] demonstrated the socio-economic disparity 745 

in the location and density of urban trees in Milwaukee. Owing in part to 746 

differences in capacities for tree maintenance, residents in poorer areas 747 

found urban trees to be a nuisance and a financial liability. Here, the 748 

ecosystem disservices of trees (such as infrastructure damage, fruit and 749 

leaf waste and attraction of pests, difficulties in navigation or reduced 750 

visibility, or increased economic, energy or water costs with tree 751 

management) assume more significance [144]. Planting trees in these 752 

communities would have further marginalized the views and aspirations of 753 

these communities, and certainly would not have helped lessen the 754 

environmental injustice insofar as justice relies on the disadvantaged 755 

feeling empowered and represented in urban development decisions. In 756 

both of these examples, the value of qualitative methods comes through 757 

their ability to understand the local and social-political meanings of urban 758 

trees.  759 

While studies linking urban nature to human well-being are illuminating 760 

and valuable, care needs to be taken in making generalizations about 761 

these relationships across urban environments and across social and 762 

economic groups. Qualitative and mixed methods research in particular 763 

have demonstrated that assuming ‘positive’ relations between urban street 764 

trees and psychological well-being can be politically problematic and not 765 

just empirically unwarranted. For example, extrapolating the preferences 766 

of white middle-class urbanites to socially and economically marginal 767 

groups (as in the Milwaukee example) could be seen as ethically and 768 

politically irresponsible [144].  769 

Clear links between the underlying processes need to be established in 770 

order to understand apparently contradictory results. For example, 771 

epidemiological cross-sectional studies, such as that of Lovasi et al. [135], 772 

found an inverse association between density of urban trees and the 773 

prevalence of childhood asthma (but not with hospitalisations due to 774 

asthma). Although the analysis controlled for some confounding factors, 775 

perhaps due to the scale of the study, clear physical, environmental or 776 
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psychological mechanisms were not identified. Similarly, Donovan et al.  777 

[145] showed that a loss of trees in the neighbourhood resulted in 778 

increased mortality related to cardiovascular and lower-respiratory-tract 779 

illness, but no mechanism was suggested. Scale can also be important in 780 

interpreting apparently conflicting results in the literature. For example, 781 

regardless of the method, the evidence supporting the value of vegetation 782 

in promoting increased physical activity has produced mixed conclusions 783 

[146]. Understanding the conflict between viewing trees as a beneficial 784 

environmental feature supporting the ‘walkability’ (and hence physical 785 

activity promoting nature) of urban areas [147,148] versus notions of 786 

reduced visibility and fear need to be understood in local neighbourhood 787 

contexts. Furthermore, the local role of environmental factors may be 788 

important as shading from tree canopies may be desirable in warmer 789 

climates but less so in cooler climates or on cold days. 790 

4.3) Implications  791 

What is at stake in these choices about how to model the cultural ESS 792 

produced by street trees? Clearly, the ESS literature does not provide a 793 

‘universal list’ of cultural services, and this review suggests that 794 

practitioners should be sceptical of using one, even if one is proposed. 795 

Rather, these choices about methodological approach are about 796 

connecting ESS analysis to the political contexts and social groups who will 797 

make use of the research. The social meanings of urban trees are not pre-798 

given or non-political; the meanings of urban trees are historical, they are 799 

symbolic, and they are differentiated across social groups. Ignoring the 800 

context of decision making can lead to outcomes that may produce net 801 

costs for many or all involved. Kirkpatrick et al. [149] highlight that 802 

planning for urban trees needs to consider the distribution and dynamics 803 

of residential ownership and regulations upon private property. Any 804 

coherent environmental justice strategy built around equitable access to 805 

urban green space needs to fully consider the dynamics driving the 806 

present and future distribution of environmental outcomes. Wolch et al. 807 

[150] further warn that strategies to increase access to urban green space 808 

for poor neighbourhoods can paradoxically result in higher property values 809 

and gentrification (displacement of poorer residents through higher rents). 810 

It is crucial then to understand the local contexts and meanings of urban 811 

street trees when conducting analyses, rather than assume that such 812 

meanings will follow the quantitative predictions derived from surveys of 813 

narrow social groups and locational contexts. 814 

5) Conclusions and Recommendations  815 

As urban greening initiatives continue to be mobilized into planning 816 

agendas and narratives of liveability, health and well-being, researchers 817 

can support and shape these conversations by undergirding them with 818 
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inter-disciplinary analysis. Our review of ESS provided by street trees 819 

reveals that the relationships between the bio-physical properties of trees 820 

and human benefits are both complex and context-dependent. While some 821 

of the biophysical functions of trees can be summarized and described ‘in 822 

general’, the particular meanings, values and societal implications of street 823 

trees for a particular setting need to be evaluated scientifically and 824 

justified politically in place. Our review did not attempt to compile a 825 

master list of services and disservices for urban and street trees (for this 826 

we refer readers to Roy, et al., [2]). Rather, we have selected a number of 827 

well-known ESS for urban street trees and evaluated the extent to which 828 

these ESS relationships are in fact generalizable. Through reviewing the 829 

evidence for the ESS provided by street trees in the context of climate 830 

change, air quality and cultural ecosystem services, we conclude that the 831 

‘benefits’ produced by street trees are shaped by various scales of 832 

biophysical context, as well as social meanings, histories and inequities 833 

that give street trees meaning to their local communities.  834 

The challenges of translating the (physical and social) science into local 835 

policy are complex. This review demonstrates that over-emphasizing a 836 

single process in justifying urban trees (such as air pollution abatement or 837 

climate change mitigation) can have unintended consequences (such as 838 

increased pollen). The current evidence base also does not allow the 839 

impact of greening interventions to be reliably predicted from general 840 

rules or top-down frameworks. Such frameworks may support the 841 

accumulation of knowledge ‘in general’ but do not prioritise careful place-842 

based understanding of the urban biophysical and social contexts of urban 843 

tree planting initiatives. Single-issue optimization and modelling 844 

approaches that make decisions based on the modelling of individual  845 

‘(dis)services’ of street trees risk 1) benefiting only a small number of 846 

stakeholders, 2) reproducing relationships of power and marginality in the 847 

community, and 3) opening the potential for mal-adaptation.  848 

Our review, in agreement with other papers in the ESS literature (e.g. 849 

Andersson et al. [151]) has also highlighted the importance of scale when 850 

determining the effect of trees on climate and health. Whilst much of the 851 

research to date has focussed on the regional and urban scale effects of 852 

vegetation on climate and health, it is much less clear what the impacts of 853 

street trees are at local scales where the result of the intervention is most 854 

clearly felt. Similarly, the net effect of individual pollutants on population 855 

health has been widely reported at regional scales, but little is known 856 

about the combined direct health effects of air pollution, pollen and 857 

temperature. This makes quantifying the resulting health impacts 858 

particularly challenging. Feedback loops also exist as a result of changes in 859 

energy consumption and carbon sequestration which can exacerbate or 860 

mitigate climate change processes. 861 
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There is a strong practitioner desire for prescriptive universal templates 862 

(which quantify the financial costs and benefits) when it comes to decision 863 

making. Institutions and governmental organisations that manage street 864 

trees often have a limited budget which requires seeking the largest 865 

possible benefit from the trees for the cost of planting, maintenance and 866 

protection of trees. Given the cost of planting initiatives and the potential 867 

lifespan of the trees, consideration also needs to be given to the expected 868 

changes in urban form and function with time and space. Clear aims are 869 

required to ensure success of a given intervention at local scale.  870 

From our review, we argue that decision making frameworks need to be 871 

locally tailored and embedded into bottom-up decision making processes. 872 

This enables communities to articulate what matters to them about urban 873 

trees, and not just have technical scientific meanings used to justify 874 

ecological interventions (e.g. Tadaki et al. [152]). Urban greening 875 

initiatives should be pursued through a process where the multiple 876 

meanings of urban trees (cultural as well as scientific) can be articulated 877 

and deliberated together. A universal list of potential societal benefits 878 

provided by urban trees (such as those listed by Roy, et al. [2]) can 879 

provide a starting point for conversation with affected stakeholders about 880 

how urban trees might become meaningful to the future of a particular 881 

community, but scientific lists and frameworks should not be used instead 882 

of meaningful engagement from diverse community voices and 883 

perspectives. Frameworks such as the ‘Right Tree Right Place’ checklist for 884 

urban trees in London [153] can provide sensitizing questions that draw 885 

on accumulated scientific knowledge, while also requiring and supporting 886 

contextually specific and locally justified responses.   887 

Where modelling is required, systems dynamics approaches could also be 888 

used to capture the complexity and dynamic interactions occurring within 889 

urban systems, and has been used previously to integrate information 890 

from different disciplines and sectors whilst maintaining a health focus. 891 

Other participatory modelling approaches which take account of different 892 

outcome goals and criteria [154,155] (within an urban area or more 893 

widely) allow the assessment of policy options and the priorities of varied 894 

stakeholders to be taken into account. Such approaches provide a 895 

practical resource which local authorities can use to guide how science can 896 

best inform policy for maximising the benefits of street trees, whilst 897 

avoiding potential maladaptation issues. 898 

 899 

There is a clear need for in situ validation of these processes to better 900 

parameterise the underlying effects. However, attempts to seek and claim 901 

a ‘net impact’ of street trees, even for a local context, should be treated 902 

with caution. This approach implies that we know (and know how to value) 903 

all of the different effects in time and space to produce a single ‘net’ value. 904 
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Finally, it is worth remembering that environmental justice concerns 905 

underlie all of these conversations about how and for whom urban 906 

greening should be done. As scientists and citizens, these opportunities to 907 

green our cities can also be seen as opportunities for creating more just 908 

social and environmental places. 909 

This review has intended to sensitize decision makers to concerns and 910 

issues that can help develop place-specific knowledge and strategies. On 911 

the one hand, prescriptive ‘check lists’ are one useful way of accumulating 912 

and organizing knowledge about the ESS of urban trees. There remains a 913 

legitimate scientific project to compile and review accumulated knowledge 914 

about the effects of urban trees at different scales. We need to bring this 915 

knowledge together, evaluate its coherence, and assess the robustness of 916 

generalizable claims. On the other hand, simply applying generalised 917 

checklists is no substitute for meaningful policy development with diverse 918 

stakeholders about future urban environments and their meanings. We 919 

cannot assume that there are or will be robust relations across all 920 

contexts. Rather, as our review has shown, there is a need to develop 921 

reflexivity about how urban trees produce ESS for different social groups 922 

at different scales. 923 
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