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Abstract—A square matrix of size n × n, containing each
of the numbers (1, . . . , n2) in which every row, column and
both diagonals has the same total is referred to as a magic
square. The problem can be formulated as an optimisation
problem where the task is to minimise the deviation from the
magic square constraints and is tackled here by using hyper-
heuristics. Hyper-heuristics have recently attracted the attention
of the artificial intelligence, operations research, engineering
and computer science communities where the aim is to design
and develop high-level strategies as general solvers which are
applicable to a range of different problem domains. There are two
main types of hyper-heuristics in the literature: methodologies to
select and to generate heuristics and both types of approaches
search the space of heuristics rather than solutions. In this
study, we describe a Markov chain selection hyper-heuristic
as an effective solution methodology for optimising constrained
magic squares. The empirical results show that the proposed
hyper-heuristic is able to outperform the current state-of-the-art
method.

I. INTRODUCTION

Search methodologies are at the core of almost all decision
support systems, particularly while dealing with combinatorial
optimisation problems. The state-of-the-art methods are often
tailored for a particular problem by the experts in the area.
Such systems are generally costly to build. Since they are
custom-made, it is almost impossible to reuse them in another
problem domain. Even a slight change in the problem defini-
tion may require expert intervention. Whenever exact methods
cannot be implemented, researchers and practitioners resort
to heuristics which are ‘rule of thumb’ methods for solving
a given problem. There is a growing interest towards more
general, cheaper and intelligent systems that can automate
the heuristic design process. Humans design and provide the
components of such systems while computers either run those
components or use them to build new components while
solving a given problem. Hyper-heuristics are such automated
search methodologies that explore the space of heuristics
for solving computationally difficult optimisation problems
in decision support [1]. Hyper-heuristic research has been
growing since the initial ideas emerged in 1960s [2], [3].
This work focuses on selection hyper-heuristics, which were
initially defined as ‘heuristics to choose heuristics’ [4]. Table I
provides some selected problem domains in which hyper-
heuristics were used as solution methodologies.

The use of a logical interface between the high level
hyper-heuristic and problem domain, referred to as domain
barrier, makes selection hyper-heuristics more general search

TABLE I. SOME SELECTED PROBLEM DOMAINS IN WHICH
HYPER-HEURISTICS WERE USED AS SOLUTION METHODOLOGIES.

Problem Domain [Reference] Problem Domain [Reference]
Channel assignment [5] Job shop scheduling [2]
Component placement sequencing [6] Sales summit scheduling [4]
University course timetabling [7] Space allocation [8]
Packing [13] High school timetabling [10]
Orc quest, logistics domain [11] Vehicle routing problems [12]
Production scheduling [14]

methodologies than the current techniques tailored for a par-
ticular domain. This barrier does not allow a hyper-heuristic
to retrieve any problem domain specific information. Hence,
any selection hyper-heuristic (or its components) can be reused
while solving any given problem, assuming that problem
domain components have already been implemented. The main
components of selection hyper-heuristics are heuristic selection
and move acceptance methods as identified in [15]. Tradition-
ally, heuristic selection selects and applies a heuristic from a
set of low level heuristics to the candidate solution generating
a new solution and a move acceptance method decides whether
to continue with the new solution or the old solution. Recently,
a new field of hyper-heuristic methods embedding sequence-
analysis techniques has been developed [16], [17]. Experiments
on six optimisation problems [16] have shown that selecting
and applying a sequence of heuristics can potentially improve
the quality of solutions more than those that simply select
a single heuristic. The work in [16], [17] utilises a hidden
Markov model at which low level heuristics are represented
as hidden states. Another hyper-heuristic method employing
hidden Markov model exists [18], it represents solutions as
hidden states as opposed to the work proposed in [16]. Similar
to the work presented in [19], this study uses a Markov chain
method as a selection hyper-heuristic aiming to learn good
transitions between low level heuristics.

A magic square of size n×n, containing each of the num-
bers (1, . . . , n2), is a two-dimensional array at which every
row, column and diagonal has a total value of n(n2 + 1)/2.
Constructing a magic square of a given order is considered as
a computationally difficult permutation problem, particularly
when additional constraints are imposed [20], [21]. In this
study, we investigate the performance of a Markov chain
selection hyper-heuristic (MCHH) for optimising constrained
magic squares.

The paper is structured as follows. Section II provides
the background of magic square problem. Section III presents
the description of the problem. Section IV describes the
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method components. Section V presents the empirical results.
Section VI provides the conclusions of the study.

II. BACKGROUND

The history of magic squares dates back to 2200 B.C. [20].
An unusual numerical pattern found by Emperor Yu on a tor-
toise’s shell was the oldest known magic square. The Emperor
decided to call this unique diagram “Lo-Shu”. The Chinese
have used the magic squares in the interpretation of philosophy,
human behaviour, natural phenomena and other areas of study;
and interestingly, some of the porcelain plates in some private
collections and museums in China were decorated with magic
squares. It is thought that the magic squares were transmitted
to the Arabs from the Chinese, probably through India. Magic
squares were then introduced to Europe, then journeyed to
Japan. Magic squares in India were used in applications other
than only in the traditional mathematical context. A sequence
of naı̈ve rules to construct magic squares were made by Islamic
mathematicians. The seventeenth century witnessed a serious
consideration to the study of magic squares when Antoine
de la Loubere, a French aristocrat, studied the theory behind
the construction of magic squares. The extension of magic
squares to 3-dimensions was brought by Adamas Kochansky
in 1686. Recently, the magic squares attracted researchers and
were applied in statistics, combinatorial mathematics, artificial
intelligence, graph theory, industrial arts, experiment designs,
location analytics, electronic circuits among others [22], [20].

An exact solver to construct the magic squares is provided
in [23]. A magic square of an odd order can be generated
using the Siamese method (also known as De la Loubére’s
method). An odd order magic square is of the form n = 2k+1,
where k is an integer greater than 0. In the Siamese method,
the number 1 is written in the middle of the first row. The
remaining numbers are placed in ascending order as an upward
diagonal to the empty right square cells. In case the cell is
already filled, then the cell below the previous number is used
to place the number. A magic square of a doubly even order
can be generated using a cross method. A doubly even order
magic square is of the form n = 4k, where k is an integer
greater than 0. The idea is to draw a cross through every 4x4
sub-square and then fill out all the square cells with all numbers
in ascending order from the top left of the square to the bottom
right. Then, each number, mij , along a diagonal of the cross
is replaced by (n2 + 1) − mij . Finally, a magic square of a
singly even order can be generated using the “LUX” method
which has been proposed by J. H. Conway [24]. A singly
even order magic square is of the form n = 4k+2, where k is
an integer greater than 0. The method starts by creating k+1
rows of L, then 1 row of U followed by k−1 rows of X. Then
replacing the U in the centre with the L above it. The resulted
letters form a square of an odd order 2k+1. Constructing the
singly even order magic square is done by using the Siamese
method and filling out each set of square cells surrounding a
letter sequentially according to the shape of the letter. Other
methods for generating magic squares are reported in [24].

Although there is at most only one distinct magic square
of order less than 4, the number of magic squares of order
4 is 880 as has been known since the seventeenth century.
The exact number of distinct magic squares of order 5 is
275,305,224 [20]. Researchers claimed that determining the

number of distinct magic squares of order 6 and more is a hard
unsolved computational problem [25], [26]. A Monte Carlo
method is used in [26] to predict the number of magic squares
of order 6 and their estimate was (0.17745±0.00016)×1020.

The exact deterministic methods for constructing magic
squares similar to the ones presented above can only produce
a single magic square of a given order. Such methods may fail
when some constraints are imposed. A stochastic constructor
method based on an improved evolutionary algorithm is pro-
posed in [20]. The magic square problem was then the subject
of a competition hosted by SolveIT Software with the goal of
finding the quickest approach [27]. To make the competition
more challenging, a constraint has been imposed such that
a solution must have a contiguous sub-square S in a given
position.

The winner of the competition developed an approach
based on the late acceptance hill climbing algorithm [28]. The
organisers of the competition claimed that the approach was
able to construct a magic square of size 2600x2600 in one
minute. The second and the third approaches were based on the
iterative heuristic improvement of rows and columns and the
multi-step iterative local search, respectively. More details of
these methods are provided in http://www.yuribykov.com/IOC.
The framework of the winning approach is extended in [21]
to enable the use of selection hyper-heuristics for any given
constrained magic square problem. Seven different heuristic
selection methods are combined with six move acceptance
methods producing a total of 42 selection hyper-heuristics are
used for the experiments. The results revealed that the random
permutation selection method and naı̈ve move acceptance
criterion which accepts a worsening solution with a probability
of 0.004% is the fastest in solving the problem and most
successful approach beating the winning approach. The hyper-
heuristic framework manages 9 mutational heuristics for the
small size of the problem and mixes a different two mutational
heuristics for larger instances.

III. PROBLEM DESCRIPTION

Given a square matrix M of order n such that:

M =


m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
...

. . .
...

mn,1 mn,2 · · · mn,n


The matrix is considered magic square if:

1) mi,j ∈ {1, 2, ..., n2}

2) mi,j ̸= mp,q for all i ̸= p and j ̸= q

3)
∑n

i=1 mi,j = n(n2 + 1)/2, j = 1, 2, ..., n

4)
∑n

j=1 mi,j = n(n2 + 1)/2, i = 1, 2, ..., n

5)
∑n

i=1 mi,(n+1−i) = n(n2 + 1)/2

6)
∑n

i=1 mi,i = n(n2 + 1)/2



The problem can be formulated as minimisation problem
at which the goal is to minimise the following equation:

n∑
i=1

∣∣∣∣∣∣
n∑

j=1

mi,j − n(n2 + 1)/2

∣∣∣∣∣∣+
n∑

j=1

∣∣∣∣∣
n∑

i=1

mi,j − n(n2 + 1)/2

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

mi,(n+1−i) − n(n2 + 1)/2

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

mi,i − n(n2 + 1)/2

∣∣∣∣∣
(1)

In this work, a constraint has been imposed such that
a solution must have a contiguous sub-square S in a given
position (i, j), where:

S =

[
1 2 3
4 5 6
7 8 9

]

IV. METHODOLOGY

A Markov chain selection hyper-heuristic is used to con-
struct constrained magic squares. The selection method selects
a heuristics from a set of low level heuristics and applies to
a candidate solution at each decision point. After the chosen
heuristic is applied to a candidate solution generating a new
solution, this solution is either accepted or rejected depending
on the acceptance method. In this work, the proposed selec-
tion hyper-heuristic aims to learn good transitions between
low level heuristics. To accomplish this, the proposed hyper-
heuristic constructs a connected Markov chain in which states
correspond to the low level heuristics (LLHs). Each low
level heuristic (state) in the Markov chain has a transition
probability to move to every other low level heuristic including
itself. The hyper-heuristic moves to and applies the next low
level heuristic to the candidate solution Scurrent, using a
roulette wheel selection method. The probability to move from
LLHk to LLHl is given by: scoreLLHk,l

/
∑

∀j(scoreLLHk,j
).

Initially, all probabilities to move from one state to another
are distributed equally, i.e., scoreLLHi,j = 1 for all i, j. The
associated score of moving from LLHk to LLHl is increased
by one only in the case that applying LLHl to the candidate
solution returned a solution with a quality better than the
best recorded solution in hand. The algorithm is outlined in
Algorithm 1.

The move acceptance method used in this study is naı̈ve
move acceptance criterion as suggested in [21], which accepts
a worsening solution with a given probability.

A candidate solution is in the form of a two dimensional
array. The objective function is calculated using Equation 1.
The constrained magic square is constructed if the imposed
constraint is satisfied and the objective function value is 0. We
divide the problem into two sub-problems as in [27], [21]. The
first sub-problem deals with constructing constrained magic
squares of odd order less than or equal 23, or even order
less than or equal 18. The second sub-problem deals with
constructing constrained magic squares of odd order greater
than 23 or with an even order greater than 18. The proposed
hyper-heuristic is employed to solve the first sub-problem.
In the second sub-problem, the hyper-heuristic and the exact

Algorithm 1: Markov Chain Hyper-heuristic

1 Let LLH = {LLH1, LLH2, . . . , LLHn} represent set
of all low level heuristics;

2 for i← 1, 2, . . . , n do
3 for j ← 1, 2, . . . , n do
4 scoreLLHi,j = 1;
5 end
6 end
7 Scurrent ← Sinitial;
8 Sbest ← Scurrent;
9 LLHcurrent ← SelectRandom(LLH);

10 repeat
11 LLHprevious ← LLHcurrent;
12 LLHcurrent ←

RouletteWheel(score, LLHprevious);
13 Snew ← Apply(LLHcurrent, Scurrent);
14 Scurrent ← MoveAcceptance(Scurrent, Snew);
15 if Scurrent isBetterThan Sbest then
16 Sbest ← Scurrent;
17 scoreLLHprevious,current ++;
18 end
19 until MagicSquareIsConstructed();

solvers presented in Section II are both used to solve the
second sub-problem. The probability of accepting worsening
solutions in the first sub-problem is set to 0.004% as suggested
in [21], while for the second sub-problem the parameter is
fixed with respect to the matrix size 10/n%.

A. First Sub-problem

The initial solution is generated by firstly fixing the con-
tiguous sub-square S in the given position (i, j) of the square
matrix. The remaining cells of the matrix are then randomly
filled with the remaining numbers. Nine low level heuristics,
as in [21], that perturb a given candidate solution in different
ways are used under the problem domain implementation of
the hyper-heuristic framework. All these low level heuristics
are designed such that the imposed constraint is never violated.

• LLH1: Single swap that attempts to satisfy the magic
rule on a selected row, column or diagonal.

• LLH2: Select row, column or diagonal and swap it
with another row, column or diagonal.

• LLH3: Swap the largest element from the largest
(or close to largest) row, column or diagonal (i.e.
the selection of the largest row, column or diagonal
has more probability than the 2nd largest; and the
second largest has more probability to be selected
than the 3rd, and so on) with the smallest element
from the smallest (or close to smallest) row, column
or diagonal.

• LLH4: Several swaps that attempt to satisfy the
magic rule on a selected row, column or diagonal.
The heuristic terminates as long as the magic rule is
satisfied on the selected row, column or diagonal; or
n2 swaps have been performed.



• LLH5: Rectify swap as in [20] by selecting two rows
k and l, then swap two elements on column s if:

n∑
j=1

mk,j − n(n2 + 1)/2 = mk,s −ml,s k ̸= l

n(n2 + 1)/2−
n∑

j=1

ml,j = mk,s −ml,s k ̸= l

Then, apply the same process for elements on row s
of columns k and l, if:

n∑
i=1

mi,k − n(n2 + 1)/2 = ms,k −ms,l k ̸= l

n(n2 + 1)/2−
n∑

i=1

mi,l = ms,k −ms,l k ̸= l

• LLH6: Select two random elements and swap them
only if they are not on row, column or diagonal that
satisfy the magic rule.

• LLH7: Rectify swaps as in [20] by selecting two rows
k and l, then swap two elements on column s and
another two elements on column t where k ̸= l and
s ̸= t, if:
n∑

j=1

mk,j −n(n2 +1)/2 = mk,s−ml,s +mk,t−ml,t

n(n2 + 1)/2−
n∑

j=1

ml,j = mk,s −ml,s +mk,t −ml,t

Then, apply the same process for elements on rows s
and t of columns k and l where k ̸= l and s ̸= t, if:
n∑

i=1

mi,k − n(n2 +1)/2 = ms,k −ms,l +mt,k −mt,l

n(n2 + 1)/2−
n∑

i=1

mi,l = ms,k −ms,l +mt,k −mt,l

• LLH8: Rectify swaps on diagonals as in [20]:
for i = 1, 2, ..., n, j = 1, 2, ..., n and i ̸= j:
swap mi,i with mj,i and mi,j with mj,j if:

mi,i +mi,j = mj,i +mj,j

and

(mi,i+mj,j)−(mi,j+mj,i) =
n∑

i=1

mi,i−n(n2+1)/2

swap mi,j with m(n+1−j),j and mi,(n+1−i) with
m(n+1−j),(n+1−i) if:

mi,j +mi,(n+1−i) = m(n+1−j),j +m(n+1−j),(n+1−i)

and

(mi,(n+1−i)+m(n+1−j),j)−(mi,j+m(n+1−j),(n+1−i))

=

n∑
i=1

m(n+1−i),i − n(n2 + 1)/2

swap row i with row j if:

(mi,i+mj,j)−(mi,j+mj,i) =
n∑

i=1

mi,i−n(n2+1)/2

and

(mi,(n+1−i)+mj,(n+1−j))−(mi,(n+1−j)+mj,(n+1−i))

=
n∑

i=1

m(n+1−i),i − n(n2 + 1)/2

swap column i with column j if:

(mi,i+mj,j)−(mi,j+mj,i) =
n∑

i=1

mi,i−n(n2+1)/2

and

(m(n+1−i),i+m(n+1−j),j)−(m(n+1−j),i+m(n+1−i),j)

=

n∑
i=1

m(n+1−i),i − n(n2 + 1)/2

swap row i with row (n+ 1− i) if:

(mi,i+m(n+1−i),(n+1−i))−(mi,(n+1−i)+m(n+1−i),i)

=
n∑

i=1

mi,i − n(n2 + 1)/2

= n(n2 + 1)/2−
n∑

i=1

m(n+1−i),i

• LLH9: Select the largest (or close to largest) row, and
the smallest (or close to smallest) row; then iterate
from the first column to the last and exchange with
a probability of 0.5. Then, do the same operator for
columns.

B. Second Sub-problem

We employ the same strategy used in [21] which extends
the work in [27]. The matrix of size n×n is recursively divided
into sub-matrices, referred to as magic frames, each with a
size of l × l such that l ≤ n. The non-border elements of
the sub-matrices are filled with zeroes. The sum of numbers
in each border row and border column is l(l2 + 1)/2. The
sum of numbers in each non-border row, column and diagonal
is l × l + 1. Each element xi ≤ l ∗ l/2 has a counterpart
yi = l ∗ l + 1 − xi that is symmetrically placed in the sub-
matrix. Example of sub-matrix of order l = 4:10 15 3 6

1 0 0 16
12 0 0 5
11 2 14 7


The magic square is composed by recursively constructing

the magic frames or by embedding a smaller magic square in-
side the magic frame. Initially, the magic frame is constructed
by placing the necessary set of numbers and their counterparts
randomly. The numbers of the imposed contiguous sub-square
S are fixed in their right locations, if they exist in the frame.
The objective function is the absolute distance of the sum of



the first row to l(l2 + 1)/2, plus the absolute distance of the
sum of the first column to l(l2 + 1)/2. The proposed hyper-
heuristic is employed to construct the magic frames until the
objective function reaches zero.

If the contiguous sub-square S is placed in a position
close to the border of the matrix, then the magic frames
will be constructed from the outer of the overall matrix until
they cover the contiguous sub-square. The inner matrix will
be constructed using the well-known exact methods. If the
contiguous sub-square S is placed in a position too far from
the border of the matrix, then the following strategy can be
employed. Given a rectangle in the matrix with vertices of
V1, V2, V3 and V4, and they are not in the diagonals and
V1+V2=V3+V4, then V1 can be safely swapped with V3 and
V2 can be safely swapped with V4 without violating the magic
rule of the matrix. By applying this property, the constraints
can be moved close to the border and then safely assign them
back into the right locations.

Two low level heuristics are employed for constructing the
magic frames and they are designed such that the imposed
constraint is never violated:

• LLH1: With p = 10% swap randomly selected
element xi with its counterpart l ∗ l + 1 − xi; other-
wise swap randomly selected element xi with another
randomly selected element yi and then swap their
counterparts l ∗ l + 1− xi and l ∗ l + 1− yi.

• LLH2: With p = 5% swap randomly selected element
xi with its counterpart l ∗ l + 1− xi; otherwise swap
randomly selected element xi with another randomly
selected element yi and then swap their counterparts
l ∗ l + 1− xi and l ∗ l + 1− yi.

V. RESULTS

Since the specification of the competition machine is not
known, the experiments have been performed on an i3 CPU
M330 at 2.13GHz having 4GB RAM. The experiments are
performed aiming to detect the running time for construct-
ing constrained magic square with respect to its order n.
For a fair comparison, the same machine has been used to
test the performances of MCHH and the previously known
approaches. The problem-specific information such as the
heuristics and construction of initial solutions methods, were
already implemented in [27], [21]. The differences in the
computing time are, therefore, caused by the differences in
the optimisation methods. Each experiment on a given in-
stance is repeated for fifty trials. A trial is terminated if the
expected solution is achieved. The solvers are tested with
values of n = 10, 11, 13, . . . , 23 for the first-sub problem; and
n = 25, 50, . . . , 400 then progressively larger numbers up to
2600 for the second sub-problem. The value of n = 2600
is the largest order solved by the winning approach of the
magic square competition under a minute as reported by
the organisers. The final experiments are concerned with the
placement of the top-left corner of the contiguous sub-square
S within the complete square. We initially performed the
experimentation by embedding S at the location (1,4). Later
on, a set of experiments are performed by randomly varying
the placement of S.

Table II summarises the performance comparison of
MCHH to the best previously proposed solution methodolo-
gies, late acceptance hill climbing (LAHC) and random per-
mutation hyper-heuristic (RPHH), which are the winner of the
magic square competition and the quickest-known approach,
respectively. The table provides the average execution time
(in milliseconds) to construct the constrained magic square
over 50 trials of each instance, the standard deviation and the
pairwise performance comparison based on Mann-Whitney-
Wilcoxon test at a 95% confidence level. The notation A > (<)
B means that A (B) is better than B (A) and this performance
is statistically significant. The notation A ≥ (≤) B means
that A (B) performs slightly better than B (A) on average
and this performance is not statistically significant. MCHH
performs better than LAHC in all instances of both sub-
problems and this performance is statistically significant. In
the first sub-problem, MCHH and RPHH are comparable with
the exception of only one instance (n = 14) where MCHH
approach performs much better with statistically significant
performance. In the second sub-problem, MCHH performs
better than RPHH in all instances and this performance is
statistically significant in most of the instances.

Due to the stochastic nature of the low level heuristics
makes it extremely difficult to fully assess the complexity
of the overall algorithm. Here, we form a regression model
to estimate the running time complexity considering various
orders of large instances (n=1000 to 2900 with incremental
steps of 100) over 50 trials. Table III provides the expected
execution time (in milliseconds) of the MCHH, LAHC and
RPHH approaches each with an associated Root Mean Square
Error RMSE value to give indication on the goodness of the
fit. All the three methods run in a·n ≈ O(n). However, MCHH
has the smallest constant multiplier (a) and RMSE values. This
indicates that MCHH runs predictably faster than RPHH and
LAHC on constructing constrained magic squares.

TABLE III. EXPECTED RUNNING TIME COMPLEXITY OF MCHH,
LAHC AND RPHH.

Method Model Multiplier RMSE
MCHH a · n a = 1.063 1326
LAHC a · n a = 3.311 4745
RPHH a · n a = 1.359 1523

To analyse the impact of changing the placement of the top-
left corner of the contiguous sub-square S within the magic
square, we generated 100 different randomly selected locations
for n=10, 23 and 25, and 2000 different randomly selected
locations for n=2600. The selected instances are the smallest
and the largest orders of both sub-problems. Figures 1 and
2 provide box plots of execution time and compare the per-
formance of MCHH, LAHC and RPHH approaches for given
instances for the first sub-problem and second sub-problem,
respectively. The figures show that MCHH and RPHH clearly
outperform LAHC method on the selected instances. The
performance of MCHH and RPHH is very similar with the
exception of n = 25 where MCHH appears to perform better.

Figures 3 and 4 provide the average utilisation rate over
50 trials of each low level heuristic considering only the
invocations that improve on the best recorded solution in
hand while constructing constrained magic squares of selected
instances from the first sub-problem and the second sub-
problem, respectively. The figures also provide the average



TABLE II. AVERAGE EXECUTION TIME (AVR.) IN MILLISECOND, STANDARD DEVIATION (S.D.) AND THE PAIRWISE PERFORMANCE COMPARISON (A VS
B) OVER 50 TRIALS. THE BEST AVERAGE VALUES ARE HIGHLIGHTED IN BOLD.

MCHH LAHC RPHH A MCHH MCHH LAHC

n avg. std. avg. std. avg. std. B LAHC RPHH RPHH

First sub-problem

10 181.00 237.00 3825.00 3221.00 250.00 456.00 > ≥ <
11 205.00 199.00 3409.00 4070.00 164.00 142.00 > ≤ <
13 194.00 162.00 4823.00 4595.00 241.00 160.00 > ≥ <
14 314.00 376.00 7841.00 8284.00 327.00 250.00 > > <
15 339.00 326.00 7026.00 5603.00 308.00 231.00 > ≤ <
16 452.00 555.00 8356.00 8106.00 397.00 313.00 > ≤ <
18 741.00 890.00 8268.00 5905.00 684.00 632.00 > ≤ <
19 1023.00 1171.00 11325.00 10572.00 659.00 461.00 > ≤ <
21 1280.00 1752.00 16061.00 12340.00 819.00 657.00 > ≤ <
23 2264.00 2485.00 27399.00 25735.00 1446.00 1256.00 > ≤ <

Second sub-problem

25 7.00 5.00 157.00 26.00 14.00 13.00 > > <
50 37.00 22.00 366.00 252.00 39.00 28.00 > ≥ <
100 36.00 23.00 415.00 351.00 56.00 49.00 > > <
200 73.00 34.00 1249.00 1140.00 113.00 85.00 > > <
400 176.00 105.00 1790.00 1498.00 260.00 188.00 > > <
800 433.00 206.00 3960.00 2722.00 556.00 290.00 > > <
1000 645.00 440.00 4620.00 2775.00 692.00 464.00 > ≥ <
1500 984.00 538.00 5676.00 3957.00 1252.00 649.00 > > <
2000 1617.00 987.00 6161.00 3822.00 2036.00 881.00 > > <
2600 3423.00 1823.00 8142.00 4971.00 3684.00 1559.00 > ≥ <
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Fig. 1. Box plots of execution time for MCHH, LAHC and RPHH methods
for constructing magic squares of the first sub-problem considering different
locations of the contiguous sub-square S for n = 10 and 23.

probabilities of the transitions for each low level heuristic over
50 trials. In the first sub-problem, applying LLH1 followed by
applying LLH4 seems to generate most of the improvements as
compared to other low level heuristics, an interesting finding.
In the second sub-problem, both heuristics (LLH1 and LLH2)
contribute in improving the best recorded solution in hand
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Fig. 2. Box plots of execution time for MCHH, LAHC and RPHH methods
for constructing magic squares of the second sub-problem considering different
locations of the contiguous sub-square S for n = 25 and 2600.

while solving the problem. However, LLH1 achieved slightly
more improvement than LLH2.

VI. CONCLUSION

A goal in hyper-heuristic research is to raise the level of
generality by providing automated hyper-heuristic methodolo-
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Fig. 3. Average transition probabilities and utilisation rate of each low level
heuristic considering moves that improve the best recorded solution in hand
from 50 trials while constructing constrained magic square of the first sub-
problem for n = (a) 10 and (b) 23.
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Fig. 4. Average transition probabilities and utilisation rate of each low level
heuristic considering moves that improve the best recorded solution in hand
from 50 trials while constructing constrained magic square of the second sub-
problem for n = (a) 25 and (b) 2600.

gies that are able to automatically configure themselves on the
fly and applicable to different problem domains without re-
quiring any expert intervention and so additional development
cost. In this study, a Markov chain selection hyper-heuristic is
implemented to solve the constrained magic square problem.
The proposed approach aims to dictate the order in which
low level heuristics are applied. The empirical results show
that the proposed method is an effective search methodology,
running predictably faster than the current state-of-the-art
methods in solving the constrained magic square problem. The
approach adapts itself to learn good transitions between low
level heuristics. As a future work, we plan to apply the method
and test its level of generality on other real-world problem
domains such as the water distribution problem [29].
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