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Bayesian Spectral Analysis with Student-t Noise
Jacqueline Christmas, Member, IEEE

Abstract—We introduce a Bayesian spectral analysis model for
one-dimensional signals where the observation noise is assumed
to be Student-t distributed, for robustness to outliers, and we
estimate the posterior distributions of the Student-t hyperpa-
rameters, as well as the amplitudes and phases of the component
sinusoids. The integrals required for exact Bayesian inference
are intractable, so we use variational approximation. We show
that the approximate phase posteriors are Generalised von Mises
distributions of order 2 and that their spread increases as the
signal to noise ratio decreases. The model is demonstrated against
synthetic data, and real GPS and Wolf’s sunspot data.

Index Terms—Bayesian methods, Fourier series, discrete
Fourier transforms, parameter estimation, amplitude estimation,
phase estimation.

I. INTRODUCTION

We introduce a Bayesian spectral analysis model which
assumes that the observation noise is distributed according to
the heavy-tailed Student-t distribution, to provide robustness
in the presence of outliers (that is, a small fraction of extreme
observations that are unrepresentative of the rest of the sam-
ple), and learns posterior distributions for the noise variables,
as well as the amplitudes and phases of the component
sinusoids. Bayesian modelling allows us to incorporate any
prior knowledge we may have regarding the likely distributions
of the model variables and avoids the overfitting known to
arise in maximum likelihood estimation by evaluating over all
possible values of those variables.

Analysis of periodic data often depends upon spectral
analysis, whereby the set of observations is the decomposed
into a sum of sinusoidal components with varying frequencies,
amplitudes and phases. This transformation from temporal
to frequency space may identify key characteristics of the
underlying periodicity.

Schuster [1] introduces the periodogram as a means of
identifying periodicity in data. The Fourier Transform is a
deterministic method for decomposing a continuous function
into component sinusoids. Where the function is described
only by a number of discrete observations, this decomposition
is referred to as the Discrete Fourier Transform (DFT). The
periodogram is determined by the DFT if the time intervals
between observations are equal. The DFT became a popular
tool with the development of the computationally efficient Fast
discrete Fourier Transform (FFT) [2] technique.

Jaynes [3,4] applies Bayesian inference to the problem,
demonstrating formal support for the periodogram. He as-
sumes that the observations are samples of a continuous
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function with added Gaussian–distributed noise (of known
variance) and that the underlying signal is a single sinusoid
of unknown amplitude, phase and frequency. Bretthorst [5]
extends this analysis to calculate the probability that multiple
frequencies are present in the signal.

Dou and Hodgson [6] introduce a Bayesian model for
estimating the period, phase and amplitude of multiple sinu-
soids, using Markov chain Monte Carlo (MCMC) to avoid
the intractable integrals that commonly arise in Bayesian
inference. Andrieu and Doucet [7] include model order (i.e.
the number of component sinusoids in the signal) as a variable
in their Bayesian model and use Reversible Jump MCMC [8]
to estimate its posterior distribution. This model is extended
to dynamic systems by Nielsen et al [9,10].

Bayesian models that assume the noise to be Gaussian are
known to be badly affected by the presence of outliers. There
are many different methods of dealing with outliers (e.g. [11,
12]); there is a whole field devoted to identifying and removing
them from the data before further processing. In the context of
signal processing, Ruggeri [13] and Zoubir et al [14] review
robustness in Bayesian and non-Bayesian models respectively.

Rather than removing outliers, we accomodate them within
the probabilistic model. Chave et al [15] combine maximum
likelihood estimators with section averaging spectral analysis
techniques to obtain robust models. Ahdesmäki et al [16]
(extending [17]) use a g-statistic combined with multiple
testing to produce a spectral anslysis model that is robust
both to outliers and other commonly occurring problems with
the observations. Roberts and Penny [18] represent the noise
with a finite mixture of Gaussians, enabling the outliers to
be absorbed into one or more Gaussians with high variance.
This leads to improved performance over a Gaussian noise
model, but the tails still decay exponentially and the variance
is always finite. Lange et al [19] show that replacing Gaussian
assumptions with the Student-t provides more robust statistical
inference for a variety of real datasets (see, e.g., [20]). For a
univariate variable, x, the Student-t distribution is defined as:

p(x) = S(x |µ, λ, d) (1)

=
Γ
(

(d+1)
2

)
Γ
(
d
2

) (
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) 1
2
(

1 +
λ(x− µ)2

d

)− d+1
2

(2)

where µ is the mean, λ is known as the precision and d is
the degrees of freedom. As d → ∞ the distribution tends to
a Gaussian, at d = 2 it is the Cauchy and when d < 2 the
variance becomes effectively infinite. An alternative definition
reveals the Student-t as an infinite mixture of Gaussians (N (·))
with a shared mean and precisions sampled from a Gamma
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distribution1 based on the degrees of freedom:

S(x |µ, λ, d) =

∫ ∞
0

N (x |µ, (λz)−1)G(z | d
2
,
d

2
) dz (3)

As an alternative to introducing a variable to represent the
model order, we use the technique of automatic relevance
determination [21,22] to automatically “switch off” compo-
nent sinusoids for which there is no evidence in the data by
constraining their amplitudes to be close to zero.

We treat the amplitudes and phases of the component sinu-
soids, and the precision and degrees of freedom of the Student-
t noise distribution as variables whose posterior distributions
we wish to estimate. The frequencies of the components are
treated as parameters which we specify, as are the timestamps
associated with each of the observations. The integrals re-
quired to perform exact Bayesian inference are intractable,
so we use variational approximation to estimate the posterior
distributions. The posteriors for the phases turn out to be
potentially bimodal and/or asymmetric Generalised von Mises
distributions of order 2 [23,24].

In section II we introduce the model and the variational
Bayesian method for approximating the inference of the pos-
terior distributions. In section II-C we take a closer look at the
Generalised Von Mises distribution. We demonstrate the model
both on synthetic data (III) and on real GPS and sunspots data
(IV). Conclusions are drawn in section V.

II. THE MODEL

We express each observation (of N , one-dimensional data),
yn, as the sum of its C component sinusoids, plus a noise
term εn:

yn = aT cos (φ− ωtn) + εn (4)

where ω, a and φ are the vectors of angular frequencies,
amplitudes and phases of the components respectively, and
tn is the timestamp associated with the nth observation. We
assume that the observation noise is Student-t distributed with
zero mean, precision λ and degrees of freedom d, which leads
to the following likelihood:

p(yn |a,φ, λ, d;ω, tn) = S (yn |aT cos(φ− ωtn), λ, d) (5)

which we may re-express using (3), introducing a new latent
variable, z.

Thus the model consists of two parameters, the C-
dimensional ω and the N -dimensional t, and the variables a
and φ (both C-dimensional), z (N -dimensional), λ and d. For
the variables we aim to calculate their posterior distributions,
which provide us with both estimates of their values and a
measure of the uncertainty in those estimates.

A. Priors

In this simple model we consider the component sinusoids
to be independent of one another. For each amplitude we
assign a Gaussian prior, with precision δc:

p(ac | δc) = N (ac | 0, δ−1
c ) (6)

1defined as G(x | a, b) = ba

Γ(a)
xa−1 exp(−bx)

C

N

yn εn
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−π : π ma = 0

aδ bδ

mε = 0

aλ bλ ad bd

Figure 1 A graphical representation of the model priors.

and we assign δc a conjugate Gamma distribution:

p(δc) = G(δc | aδ, bδ) (7)

This so-called automatic relevance determination prior [21,22]
causes ac to be constrained to be close to zero where there is
no evidence in the data for a contribution at that frequency.

With no prior information about the component phases φc,
we model each of them with a Uniform distribution over the
full range of values, i.e. any 2π range; we choose −π to π:

p(φc) = U(φc | −π, π) (8)

Were prior information available we would instead specify a
von Mises distribution for each phase. The Uniform distribu-
tion is a special case of the von Mises and we use it here to
maintain the clarity of the implementation of the model by
minimising the number of parameters.

The observation noise precision λ is assigned a conjugate
Gamma prior:

p(λ) = G(λ | aλ, bλ) (9)

Using the definition for the Student-t distribution from (3),
we introduce a latent variable, z, with the Gamma prior for
each element defined as

p(zn) = G(zn | d/2, d/2) (10)

and, finally, for the degrees of freedom we also specify a
Gamma prior:

p(d) = G(d | ad, bd) (11)

A graphical representation of the model priors is shown in
figure 1.

B. Posteriors

In an exact Bayesian model we would need to calculate the
evidence by performing the following integration:∫

p(y |a,φ, λ, d) p(a | δ) p(δ) p(φ) p(λ) p(z | d) p(d)

da dδ dφ dλ dz dd (12)

As is often the case, this is intractable, so we resort to an
approximation scheme. Rather than using a computationally
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expensive Monte Carlo method, we use variational approxima-
tion. If Ω is the set of all variables, i.e. Ω = {a, δ,φ, λ, z, d},
and q(Ω) ≈ p(Ω |y) denotes the approximate posterior
distribution of Ω, then the variational Bayesian inference
technique minimises the Kullback-Leibler (KL) divergence
[25,26] between q(Ω) and p(Ω |y) (for tutorials see [27,28]
and [29, chapter 10]). The divergence is greater than or
equal to zero and is zero only where the two distributions
are identical. There is nothing inherently approximate about
variational methods; the approximations come about because
we make assumptions about the factorisation of the posteriors:

q(Ω) =
∏
i

qi(Ωi) (13)

where Ωi is a group of variables (possibly just a single one)
in Ω. Attias [30] (see also [31,32]) exploits the assumed
factorisation to find a general expression for the minimisation
of the KL divergence in a mean field sense:

log

(
q(Ωi)

)
= E/Ωi

[
log

(∏
j

p(y,Ωj)

)]
(14)

where E/x[f(x)] denotes the posterior expectation of f(x)
with respect to all variables except x. If conjugate priors are
chosen for each group, then the approximate posterior turns
out to have the same functional form as the prior [30,33]
and the variational approximations may thus be found by
evaluating (14) for each group in turn. In general the hyper-
parameters for one posterior are dependent on the posterior
hyperparameters of one or more of the other groups. [33] show
that evaluating the each group in turn and then iterating over
the whole set converges to a local minimum.

To maintain the clarity of this paper, we define (13) to be
a full factorisation of the posteriors:[∏

c

q(ac) q(δc) q(φc)

][∏
n

q(zn)

]
q(λ) q(d) (15)

and, for convenience, define

uc,n = cos(φc − ωctn) (16)

We now use the factorised variational approximation technique
for each variable in turn, starting with each ac, the amplitude
of the cth component sinusoid. From (14) and (15):

log(q(ac)) = E/ac [log(p(y | ac, φc, λ, z) p(ac | δc))] + const
(17)

All terms not dependent on ac have been absorbed into the
constant term (const). Expanding this and absorbing further
terms into the constant, we end up with

log(q(ac))

= −1

2

[
a2
c

(
〈δc〉+ 〈λ〉

N∑
n=1

〈zn〉〈u2
c,n〉

)

−2ac

〈λ〉 N∑
n=1

〈zn〉〈uc,n〉
C∑
i=1
i 6=c

(
〈ai〉〈ui,n〉 − yn

)


+ const (18)

where 〈·〉 denotes the posterior expectation. Since this is
quadratic in ac, it can be seen that q(ac) is the Gaussian
q(ac) = N (ac |µc, σ2

c ), where

σ2
c =

(
〈δc〉+ 〈λ〉

N∑
n=1

〈zn〉〈u2
c,n〉
)−1

(19)

µc = σ2
c 〈λ〉

N∑
n=1

〈zn〉〈uc,n〉

 C∑
i=1
i 6=c

〈ai〉〈ui,n〉 − yn

 (20)

Following a similar procedure for the precision of each
amplitude, δc, we obtain the Gamma posterior q(δc) =
G(δc |αδc , βδc), where

αδc = aδ + 1/2 (21)

βδc = bδ + 〈a2
c〉/2 (22)

For each phase we obtain a circular Generalised Von Mises
distribution of order 2, q(φc) = GvM (φc |αc,βc) (see
section II-C), where:

αc,1 = 〈ac〉〈λ〉
N∑
n=1

〈zn〉 cos(ωctn)〈gc,n〉 (23)

βc,1 = 〈ac〉〈λ〉
N∑
n=1

〈zn〉 sin(ωctn)〈gc,n〉 (24)

αc,2 = −〈a
2
c〉

4
〈λ〉

N∑
n=1

〈zn〉 cos(2ωctn) (25)

βc,2 = −〈a
2
n〉
4
〈λ〉

N∑
n=1

〈zn〉 sin(2ωctn) (26)

with
〈gc,n〉 = yn −

C∑
i=1
i 6=c

〈ai〉〈ui,n〉 (27)

For the observation noise precision λ we get the Gamma
q(λ) = G(λ |αλ, βλ), where

αλ = aλ +N/2 (28)

βλ = bλ +
1

2

N∑
n=1

〈zn〉
[
y2
n − 2yn

C∑
c=1

〈ac〉〈uc,n〉

+

C∑
c=1

(
〈a2
c〉〈u2

c,n〉+ 〈ac〉〈uc,n〉
C∑
i=1
i 6=c

〈ai〉〈ui,n〉
)]

(29)

For each latent variable zn we get the Gamma q(zn) =
G(zn |αz, βzn), where

αz = (〈d〉+ 1)/2 (30)

βzn =
1

2

{
〈d〉+ 〈λ〉

[
y2
n − 2yn

C∑
c=1

〈ac〉〈uc,n〉+

C∑
c=1

(
〈a2
c〉〈u2

c,n〉+ 〈ac〉〈uc,n〉
C∑
i=1
i6=c

〈ai〉〈ui,n〉
)]}

(31)
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(a) unimodal, symmetric (b) bimodal, symmetric

(c) unimodal, asymmetric (d) bimodal, asymmetric

Figure 2 Some examples of Generalised von Mises distributions of
order 2. (a) α1 = 10, β1 = 5, α2 = 0, β2 = 0, (b) α1 = 0, β1 = 0,
α2 = 1, β2 = 1, (c) α1 = 0.1689, β1 = 0.4500, α2 = 0.1846,
β2 = 0.0556, (d) α1 = 0.5, β1 = 0, α2 = 0, β2 = 0.5.

and, finally, for the degrees of freedom d we get the Gamma
q(d) = G(d |αd, βd), where

αd = ad +N/2 (32)

βd = bd −
1

2

[
N +

N∑
n=1

(
〈log(zn)〉 − 〈zn〉

)]
(33)

Here we have used Stirling’s approximation2 for the
log(Γ(d/2)) term, as per [20].

Thus we end up with a set of expressions which define
the approximate posteriors for each of the model variables,
but each is dependent on the expected values of one or more
of the other variables. Each of the expressions is reassessed
iteratively until convergence.

The expectations associated with the Gaussian posteriors for
each of the ac and the Gamma posteriors for λ, d and each
of the δc and zn are the standard results:

〈ac〉 = µc 〈a2
c〉 = σ2

c + µ2
c (34)

〈δc〉 = αδc/βδc 〈λ〉 = αλ/βλ (35)
〈zn〉 = αz/βzn 〈log(zn)〉 = ψ(αz)− log(βzn) (36)
〈d〉 = αd/βd (37)

This leaves us with the expectations 〈uc,n〉 and 〈u2
c,n〉 to

consider, for which we need to take a closer look at the
Generalised von Mises distribution.

C. Generalised von Mises distribution

The Generalised von Mises (GvM) distribution of order K
is a circular distribution defined as [23,24]:

p(θ) ∝
K∑
k=1

(
αk cos(kθ) + βk sin(kθ)

)
(38)

The first order distribution is the standard, symmetric, uni-
modal von Mises. If the distribution is of order 2, as it is in
posteriors for the φc, then the result is an asymmetric, bimodal
distribution, or rather one that varies between symmetric and
asymmetric, and unimodal and bimodal according to the values
in αk and βk. Figure 2 shows the shapes of some example
GvM distributions of order 2.

2Stirling’s first order approximation for log(Γ(a)) is (a− 1
2

) log(a)− a

Algorithm 1 Process for estimating the posterior distributions
for each of the model variables.

define the frequencies, ω
define the values of the prior hyperparameters
randomly initialise each ac, φc, δc, zn, λ and d
while not converged do

calculate each 〈cos(φc − ωctn)〉 and 〈cos2(φc − ωctn)〉
(see section II-C)

update the posteriors for each ac using (19–20)
update the posteriors for each δc using (21–22)
update the posteriors for each φc using (23–26)
update the posterior for λ using (28–29)
update the posteriors for each zn using (30–31)
update the posteriors for d using (32–33)

end while
calculate each µc and kc using (41–42)

The potential bimodality of this distribution may be con-
sidered to be problematic. Note that gc,n (27) represents the
magnitude of the contribution of the cth component sinusoid
to the nth observation. If there is no contribution from the
component with angular frequency ωc then 〈gc,n〉 and 〈ac〉
will be approximately zero, the terms in 2ωc will dominate
the GvM and the distribution will, therefore, be bimodal;
but if there is no contribution then the phase is arbitrary.
If, however, there is a contribution from this component then
〈gc,n〉 will have significant magnitude and hence the ωc terms
will dominate, leading to a unimodal distribution that is close
to a standard von Mises:

GvM(φc |αc,βc) ≈M(φc |αc,1, βc,1) (39)

For the iterative procedure we do not need the expectation
〈φc〉, only 〈cos(φc − ωctn)〉 and 〈cos(2φc − 2ωctn)〉, which
we calculate numerically. Once convergence has been achieved
we may calculate 〈φc〉 by rewriting the von Mises in (39) in
its alternative form:

M(φc |αc,1, βc,1) ∝ exp

(
kc cos(φc − µc)

)
(40)

where
µc = atan2(βc,1/αc,1) (41)
kc = αc,1/ cos(µc) (42)

In this form 〈φc〉 = µc and kc is a concentration parameter that
acts like a precision; when kc is large the variable is tightly
distributed around the expected value; as it becomes smaller
the distribution becomes flatter, tending towards the Uniform
distribution U(−π, π) as kc tends to zero.

D. Summary of algorithm

A summary of the algorithm is shown in algorithm 1. With
∆t as the interval between each of the N observations in y,
we calculate integer(N/2) + 1 angular frequencies uniformly
distributed across the range 0 to π/∆t inclusive, giving the
vector ω and the number of components C. The time vector
t is the vector of elapsed time since the first observation. The
expected values of the amplitudes and phases are initialised to
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random values within appropriate ranges and the parameters
of the prior distribution for the observation noise are set. The
process then iteratively recalculates the posterior distributions
for each variable in turn, until they converge. Finally the
mean and concentration parameters for each of the phases are
calculated.

The amplitude distributions are Gaussian, which admits the
possibility of negative values. This is not in itself a problem
as a component with amplitude −a and phase φ is equivalent
to a component with amplitude +a and phase φ+π. However,
amplitudes with small magnitudes may oscillate between neg-
ative and positive values during the iterative process, causing
big jumps in their associated phases and the model does not
converge properly. To prevent this we use the absolute value
of 〈ac〉 in place of 〈ac〉 in each of the posterior expressions.

We have chosen to initialise the variables randomly to
demonstrate that the model converges to a good solution. We
could converge more quickly if we chose to initialise the
amplitudes and phases from the FFT results.

III. ILLUSTRATION: SYNTHETIC DATA

In this section we describe results obtained from synthetic
data for which we know the actual values of each of the
variables. In each case there are 200 observations, at 1 second
intervals, giving the set of 101 Fourier angular frequencies
ω in the range 0 to π. We start with 1,000 signals each
generated from a single sinusoid with added Student-t noise.
Each sinusoid has an amplitude drawn from U(0.1, 10), phase
from U(−π, π) and angular frequency uniformly randomly
selected from ω (to avoid leakage). The noise distribution is
Student-t, with the degrees of freedom drawn from U(1, 10)
and precision fixed at 1. Uninformative priors are used, with

aλ = bλ = aδ = bδ = ad = bd = 10−6 (43)

Figure 3a shows a plot of the actual amplitudes vs residual
amplitudes for the 1,000 tests as grey dots, overlaid with black
crosses where the angular frequencies are 0 or π (the lowest
and highest frequencies in ω). The residuals are generally low;
larger magnitudes are associated with the marked frequencies.
A similar result is obtained for the phases (figure 3b), but
here we can also see the effect of the noise where the true
amplitude is less than the noise standard deviation.

Figure 3c compares the actual and estimated degrees of
freedom; here we can see that where the actual degrees of
freedom are small, and hence there are more likely to be
extreme noise values, the estimated noise distribution is very
heavy-tailed to absorb them. With only 200 observations,
a Student-t distribution with degrees of freedom 5 may be
visually indistinguishable from a Gaussian and we can see
that there is a transition at about the d = 4 mark from heavy-
tailed to Gaussian noise distribution. As Bretthorst points out
[5], with the full set of Fourier frequencies the noise can be
captured either in the noise distribution or in the component
sinusoids (particularly those with high frequencies). It seems
that in this model, with uninformative priors, the outliers are
being absorbed into the noise distribution while the remainder
of the noise is being captured in the sinusoids. It will be shown
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Figure 3 The actual vs estimated (a) amplitudes, (b) phases and (c)
degrees of freedom for 1,000 synthetic datasets; the dashed lines
indicate equality. In (a) and (b) the crosses mark tests where the
frequency is either 0 or π.

in section IV-B that this balance of power can be manipulated
by changing the prior over the δc.

For a second set of 1,000 tests, the amplitudes and phases of
single sinusoids are fixed at 1 and 0 respectively, while the de-
grees of freedom are drawn from U(1, 10) and noise standard
deviations from U(0, 2). There is a linear correlation between
the actual and estimated noise standard deviation (0.56), which
becomes stronger as the noise becomes more Gaussian-like,
but the precions are significantly over-estimated.

The algorithm is easily amended to reflect Gaussian noise
assumptions. One method is to give the degrees of freedom
d a very tight prior around a high mean, since the Student-t
distribution tends to a Gaussian as d tends to infinity. However,
if each zn initialised to 1, and zn and d are not updated, then
the noise model is Gaussian (this has the additional benefit
of faster run times). If the observation noise is Gaussian then
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Figure 4 How phase distribution varies with noise. In (a) the degrees
of freedom are fixed at d = 1.5 (with a = 5, φ = 0, ω = 0.5969) and
the precision λ varied as shown in the legend. In (b) the precision is
fixed at λ = 1/32 (with a = 5, φ = 0, ω = 0.1257) and the degrees
of freedom d varied as shown in the legend. In both cases, as the
noise variance increases, the certainty decreases.

the model produces almost identical results with either noise
assumption. If the observation noise is Student-t (or rather, if
there are significant outliers) then the model with Student-
t noise assumptions absorbs the outliers and gives a truer
representation of the spectrum.

The model is competent at estimated the expected values
of the variables, but the benefit of the Bayesian formula-
tion comes from the quantification of uncertainty in those
estimates. A single sinusoid (amplitude 5, phase 0, angular
frequency 0.2827) is used to generate four signals, with
different Student-t noise distributions. In each case the degrees
of freedom are set to 1.5, and the noise standard deviation is
set respectively to 0.1, 1.0, 1.9 and 2.8. The model is trained
for each of the four resulting signals. Figure 4a compares the
posterior distributions of the phases at the selected frequency;
as expected, as the signal-to-noise ratio decreases, the phase
distribution becomes flatter showing increasing uncertainty. In
a second set of four signals the noise standard deviation is
fixed at 3 and the degrees of freedom set respectively to 1,
2, 3 and 4. Figure 4b shows that as the degrees of freedom
decrease, once again the phase distribution becomes flatter
showing increasing uncertainty.

So far the model has been demonstrated on signals con-
structed from single sinusoids. Figure 5 shows three amplitude
spectra with multiple components. In each case the truth
is shown as grey stems topped with circles, the model’s
expectations from 200 observations with added Student-t noise
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Figure 5 The true (grey stems) and estimated (black stems) amplitude
spectra for three different scenarios (see subcaptions). Figure (a) is
overlaid with the result from FFT (black crosses).

(λ = 1, d = 1.5) as black stems topped with points and,
in the top plot only, the FFT spectrum calculated from the
noise observations as black crosses. Figure 5a shows the result
from using the full set of Fourier frequencies and evenly-
spaced observations. The effect of the noise can be seen in
the FFT estimates, especially where the true amplitude is zero.
The model is much less affected, with the amplitudes for the
zero-components constrained to be at or close to zero. Figure
5b shows the results from training the model on a subset
of the Fourier frequencies and the same noisy observations.
For the selected frequencies the results are very similar, with
the zero-components particularly well estimated. Figure 5c
shows the results obtained using the full set of frequencies,
but with irregular periods between observations. Some zero-
components are completely switched off, but the estimates are
in general poorer than those shown previously. The root mean
squared (RMS) errors of the amplitude spectra are 0.48, 0.91
and 0.67 respectively, while that for FFT is 1.40. Running the
same three tests but using a Gaussian noise model instead of
the Student-t (against the same noisy observations) gives RMS
errors of 1.39, 0.88 and 3.86 respectively.
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Figure 6 GPS data: the observations are shown as grey dashed lines
marked with black circles; the black line is the model’s reconstruction
of the signal. The reconstructed signal is very close to the observa-
tions, except in the region of the spike where the excessive magnitude
has been absorbed into the noise distribution and a more plausible
signal is suggested.
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Figure 7 GPS data: the black stems mark the posterior expected value
of the amplitude; the grey line is the result from FFT. The outliers
have noticeably affected the FFT spectrum, whereas the model has
absorbed them into the noise distribution.

IV. RESULTS: REAL DATA

We demonstrate the model on two sets of real data: Global
Positioning System (GPS) data recorded by a device on board
a ship which was tied up alongside a jetty, and the traditional
Wolf’s sunspot data used by [34] and others.

A. GPS data

The top plot in figure 6 shows observations of latitude
(converted to an offset in metres from some reference point)
recorded by the GPS device at 10 second intervals. Note
the large (and erroneous) spike at observations 107–8. The
margin for error given for GPS in normal operation is 7.8
metres [35, table 3.4-1]; this spike is significantly greater than
that and it is impossible for the device to have made such a
movement within the time interval. The model was trained for
100 iterations using the priors shown in (43) and the signal
reconstructed from the posteriors of the model variables. The
result is shown in the bottom plot of figure 6; the grey dashed
line and black circles mark the observations; the black line
is the reconstruction. The reconstructed signal is very close
to the observations, except in the region of the spike where
the excessive magnitude has been absorbed into the noise
distribution and a more plausible “truth” is suggested.

The amplitude spectra from the model and, for comparison,
from FFT are shown in figure 7. The expected noise precision,
〈λ〉, is 0.616, and the degrees of freedom, 〈d〉, is 5.203.

B. Wolf’s sunspot data

Wolf’s annual sunspot data have been recorded since 1700
and are available from [36] up to and including 2009, giving
310 observations in total. Rather than using uninformative
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Figure 8 Amplitude spectra for Wolf’s annual sunspots data for
frequencies up to 2 rad/year. The grey stems show the FFT spectrum.
The black boxes mark the posterior expected value of the amplitude
and ±2 standard deviations. Using the prior G(δc | 5, 0.1) the model
is constraining all but three components to have zero amplitude.
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Figure 9 Wolf’s monthly sunspot data, with linear trend removed, are
shown as grey points. The black line is the reconstruction from the
model using the G(δc | 5, 0.1) prior over the amplitude precisions.

priors, the model was trained (after removal of the linear trend)
with the prior on the amplitude precisions set to G(δc | 5, 0.1).
This has the effect of providing a small amount of pressure on
the amplitudes to be “switched off”. The resulting amplitude
spectrum is shown in figure 8; the period of the peak amplitude
is 11.07 years which is very close to the 11 years previously
estimated by [34] and all but three frequencies have been
switched off. The posterior distributions for the phases of the
three peaks (not plotted here due to space constraints) have
µc (mean) values of -2.89, -3.09 and 0.03 respectively and kc
(precision) values of 151, 599 and 209 respectively; the model
is most certain about the phase of the main (11.07 year) peak.

Using the same prior over the δc, the model was trained
against the first 1,000 observations (January 1740 to April
1832 inclusive) of the monthly sunspot data. In the resulting
spectrum only 13 frequencies have posterior amplitudes that
are more than two standard deviations away from zero (the
remainder have amplitudes less than 0.26). The effect of this
is shown in figure 9; notice how the model has produced a
smooth reconstruction that appears to identify the underlying
shape of the observations, absorbing the deviations into the
noise distribution (the heavy-tailed Student-t distribution with
〈λ〉 = 0.022 and 〈d〉 = 1.14).
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V. CONCLUSIONS

The iterative procedure required to estimate the model’s
posterior distributions means that it cannot compete with FFT
in terms of speed or computational complexity, being quadratic
in the number of frequencies. However, for data contaminated
with outliers it is effective in separating the outliers from
the underlying signal, and automatic relevance determination
automatically “switches off” component frequencies across
the spectrum. The selection of a subset of frequencies and
the choice of priors cause more of the observed signal to be
absorbed into the noise distribution. For an analysis of the
effects of missing data on this model, see [37].

A similar model is obtained if the observations are multidi-
mensional. In this case the noise precision λ may be assigned
a Wishart prior, Wishart distributions may be assigned to the
amplitude precisions (the δc) and multidimensional von Mises
distributions for the phases.

The connection between the power spectrum and the co-
efficients in an autoregression model has long been recog-
nised [38]. An autoregressive model that corresponds to this
Bayesian, Student-t spectral analysis model has been described
by [20], who also show the utility of automatic relevance
determination to suppress unwarranted coefficients and thus
automatically estimate the model order.
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[17] R. Pearson, H. Lähdesmäki, H. Huttunen, and O. Yli-Harja, “Detecting
periodicity in nonideal datasets,” in Proc of the SIAM International
Conference on Data Mining, San Francisco, CA, USA, 13 May 2003.

[18] S. Roberts and W. Penny, “Variational bayes for generalized autoregres-
sive models,” IEEE Transactions on Signal Processing, vol. 50, no. 9,
pp. 2245–2257, September 2002.

[19] K. Lange, R. Little, and J. Taylor, “Robust statistical modeling using the
t distribution,” Journal of the American Statistical Association, vol. 84,
pp. 881–896, 1989.

[20] J. Christmas and R. Everson, “Robust autoregression: Student-t innova-
tions using variational Bayes,” IEEE Transactions on Signal Processing,
vol. 59, no. 1, pp. 48–57, Jan 2011.

[21] D. Mackay, “Bayesian non-linear modelling for the prediction competi-
tion,” ASHRAE Transactions, vol. 100, no. 2, pp. 1053–1062, 1994.

[22] R. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation,
University of Toronto, Canada, 1995.

[23] V. Maksimov, “Necessary and sufficient statistics for the family of shifts
of probability distributions on continuous bicompact groups,” Theory of
Probability and its Applications, vol. 12, pp. 267–280, 1967, (translated
by A.R. Kraiman).

[24] R. Gatto and S. Jammalamadaka, “The generalized von Mises distribu-
tion,” Statistical Methodology, vol. 4, pp. 341–353, 2007.

[25] S. Kullback and R. Leibler, “On information and sufficiency,” Annals of
Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[26] T. Cover and J. Thomas, Elements of Information Theory. John Wiley
& Sons, Inc, 1991.

[27] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul, “An introduction to
variational methods for graphical models,” Machine Learning, vol. 37,
no. 2, pp. 183–233, 1999.

[28] H. Lappalainen and J. Miskin, “Ensemble learning,” in Advances in
Independent Component Analysis. Berlin: Springer-Verlag, 2000, pp.
75–92.

[29] C. Bishop, Pattern Recognition and Machine Learning. New York:
Springer, 2006.

[30] H. Attias, “A variational Bayesian framework for graphical models,”
Advances in Neural Information Processing Systems, vol. 12, pp. 209–
215, 2000.

[31] M. Beal and Z. Ghahramani, “The variational Bayesian EM algorithm
for incomplete data: with application to scoring graphical model struc-
tures,” in Bayesian Statistics, vol. 7. Oxford University Press, 2002,
pp. 453–464.

[32] M. Beal, “Variational algorithms for approximate Bayesian inference,”
Ph.D. dissertation, University College London, 2003.

[33] Z. Ghahramani and M. Beal, “Propagation algorithms for variational
Bayesian learning,” in Advances in Neural Information Processing
Systems, vol. 13. MIT Press, 2001, pp. 507–513.

[34] G. Bretthorst, “Bayesian analysis. I. Parameter estimation using quadra-
ture NMR models,” Journal of Magnetic Resonance, vol. 88, pp. 533–
551, 1990.

[35] “Global Positioning System standard positioning service performance
standard,” U.S. DoD, Tech. Rep. 4th edition, September 2008.

[36] National Geophysical Data Center, http://www.ngdc.noaa.gov/nndc/
struts/results?t=102827&s=5&d=8,430,9, last accessed 22 Mar 2013.

[37] J. Christmas, “The effect of missing data on robust Bayesian spectral
analysis,” in Proceedings of the IEEE International Workshop on Ma-
chine Learning for Signal Processing (MLSP), Southampton, UK, 2013.

[38] H. Akaike, “Power spectrum estimation through autoregressive model
fitting,” Annals of the Institute of Statistical Mathematics, vol. 21, no. 1,
pp. 407–419, December 1969.

Jacqueline Christmas received a BSc in Computer
Science from the University of Exeter in 1987.
After many years in industry, she returned to Exeter
where she was awarded an MSc in Applied Artificial
Intelligence in 2007 and a PhD in the field of
statistical pattern recognition in 2011. She worked
on statistical models for tracking insects in noisy
videos and is now involved in modelling sea waves.
Current research interests are statistical modelling,
pattern recognition and video object tracking.


