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Abstract. We derive planar permittivity profiles that do not reflect perpendicularly

exiting radiation of any frequency. The materials obey the Kramers-Kronig relations

and have no regions of gain. Reduction of the Casimir force by means of such materials

is also discussed.

The propagation of electromagnetic waves in inhomogeneous materials remains a

subject of intense interest and activity. This is partly because the challenge is not merely

computational; there is also a need for improved analytical techniques. The issue of

reflection by inhomogeneous materials illustrates the point well. It would be naively

expected that inhomogeneity always causes some reflection and that this becomes very

significant if the refractive index changes appreciably over a wavelength. But there

are many inhomogeneous index profiles that have strictly zero reflection even when

the geometrical-optics approximation is arbitrarily bad. The question of what governs

reflection is subtle and a completely general answer is still elusive [1, 2].

Several infinite classes of reflectionless electromagnetic materials have been

identified. The simplest of these classes from the theoretical viewpoint is provided

by transformation optics, where any coordinate transformation gives a reflectionless

inhomogeneous, anisotropic material with equal permittivity and permeability (εij(r) =

µij(r)) [3, 4, 5]. The requirement for significant magnetic response and negligible

absorption is a significant drawback of this class. There is however a reflectionless class of

isotropic planar permittivity profiles ε(x) in which absorption can be incorporated [6].

The requirement is for the function ε(x), analytically continued to complex position

values, to have no zeros or poles in the upper (or alternatively lower) half-plane [6]. The

permittivity profile will then be reflectionless from one side, for all angles of incidence [6].

The criterion for this class also includes profiles ε(x) with gain instead of loss, or profiles

with regions of loss and gain. There are other reflectionless permittivity classes that

necessarily feature both gain and loss for complex ε(x), but also include purely real

permittivity profiles [7, 8, 9, 10].

All of these classes are usually considered in the context of a monochromatic

incident wave. If the reflectionless property is to be extended to a range of frequencies

one must take account of dispersion and ensure that the material stays within the

reflectionless class as the dielectric functions change with frequency. Particularly in
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the case of the class in [6], where absorption is naturally included, one can envision

engineering zero reflection over a significant frequency range using the recipe for ε(x)

with the parameters frequency dependent. The constraint imposed by Kramers-Kronig

relations does not in principle restrict dispersion engineering over a finite frequency

range, as the behaviour of ε(x) outside the frequency range of interest can ensure that

those relations are satisfied. For most applications only a limited range of frequencies

is relevant, and this may be why there has been little consideration of the extent to

which reflection at all frequencies can be eliminated. There is one application however

where the reflection properties at all frequencies is the determining factor, namely the

Casimir effect [11, 12, 13]. Formulae for Casimir forces contain the reflection properties

of the materials, usually as simple reflection coefficients, and these formulae involve an

integration over all frequencies. In an important sense the Casimir effect is caused by

reflection. The general question of reducing the Casimir force thus requires consideration

of how much reflection can in principle be eliminated using artificial electromagnetic

materials.

In considering reflection at all frequencies we must of course take full account of

the significant constraint imposed by the Kramers-Kronig relations. For this reason a

different approach is necessary compared to previous work on reflectionless materials.

As noted at the outset, the properties that eliminate reflection are not fully understood,

and here we take a rather blunt approach in order to derive some initial results on

reflectionlessness at all frequencies.

We consider planar materials with no magnetic response (the latter offers no

advantage since a significant magnetic permeability is only realistic over narrow

frequency ranges). The material is then described by a permittivity ε(x, ω) that is

a function of one position coordinate and frequency. Physical considerations [14] lead

to the following constraints on the function ε(x, ω):

(i) ε(x, ω) is analytic in the upper-half complex-ω plane (so that the Kramers-Kronig

relations hold).

(ii) ε(x,−ω) = ε∗(x, ω) (the susceptibility is real in the time domain).

(iii) The imaginary part of ε(x, ω) is positive for ω > 0 (no gain materials).

(iv) In the limit of zero frequency, ε(x, ω) ∼ a(x) + b(x)ωn, n ≥ −1.

(v) In the limit of infinite frequency, ε(x, ω) ∼ 1 + c(x)/ω2.

We rule out gain materials by condition (iii), as it is more interesting if effects can be

achieved by passive materials. Conditions (iv) and (v) come from the textbook account

of the behaviour of dielectrics and metals at low and high frequencies [14]. For metals

at low frequencies the standard assumptions have been challenged, with claims that for

Casimir calculations a plasma model permittivity (ε ∼ b/ω2) rather than the Drude

model (ε ∼ b/ω) should be used [15]. This issue turns out to be very important for

eliminating reflection, as will be noted below. The detailed results reported here will be

based on conditions (i)–(v).
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It is presumably impossible, under conditions (i)–(v), to obtain a permittivity

ε(x, ω) that does not reflect waves from one direction for all frequencies and angles

of incidence. The existence of such a permittivity would imply that the Casimir force

can in principle be completely eliminated, since such a slab would experience no Casimir

force from any materials positioned on the side from which it does not reflect. Next in

order of interest would be a permittivity that does not reflect waves from one direction

for all frequencies and for one angle of incidence. The natural choice in considering one

angle is perpendicular incidence and we now restrict attention to this case.

For perpendicular incidence we do not need to distinguish between two independent

polarizations of the wave and we can consider the scalar Helmholtz equation[
d2

dx2
+ k20ε(x, ω)

]
E(x, ω) = 0, k0 =

ω

c
. (1)

A simple method of generating materials that do not reflect from one side (utilized

in [1, 2], for example) is to write down an expression for E(x, ω) that for x → ±∞
becomes a plane wave moving to the right (or left). One then substitutes E(x, ω) into

(1) and solves for the material ε(x, ω). This method will usually fail for our purposes

because the resulting ε(x, ω) will not satisfy conditions (i)–(v). Nevertheless we pursue

it, choosing an E(x, ω) with some degrees of freedom that we hope will allow us to meet

the constraints on ε(x, ω).

Consider the field

E(x, ω) = E0 exp

[
ik0

∫ x

0

dx′ P (x′, ω)

]
, P (x, ω) −→ g±(ω) as x −→ ±∞. (2)

This is a right-going wave that propagates from one homogeneous region to another.

Substitution of (2) into (1) yields

ε(x, ω) = [P (x, ω)]2 − ic

ω

d

dx
P (x, ω). (3)

A choice of P (x, ω) for which (3) satisfies conditions (i), (ii), (iv) and (v) is

P (x, ω) = 1 +
f(x)

(γ − iω)2
, γ > 0, (4)

with real f(x), as can be seen by inspection. As for condition (iii), we note that with

(4) the imaginary part of (3) is

Im [ε(x, ω)] =
4γω2f(x)

[
(γ2 + ω2)

2
+ (γ2 − ω2)f(x)

]
− c(γ2 − ω2) (γ2 + ω2)

2
f ′(x)

ω (γ2 + ω2)4
. (5)

To see how to ensure this is positive for ω > 0, consider the limits ω → 0 and ω →∞:

Im [ε(x, ω)]→ −cf
′(x)

γ2ω
, ω → 0, (6)

Im [ε(x, ω)]→ 4γf(x) + cf ′(x)

ω3
, ω →∞. (7)
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The limit (6) shows that f(x) must monotonically decrease with x (f ′(x) < 0), but

then, from (7), 4γf(x) must exceed |f ′(x)| so in particular f(x) > 0. As long as γ is

not too small these requirements arising from (6) and (7) are met by

f(x) =
Ω2

2
[1 + tanh(−x/a)] , a > 0. (8)

The choice (8) also keeps Im [ε(x, ω)] positive throughout the entire range ω > 0, again

if γ is not too small. Checking this last fact is not too difficult but requires more careful

inspection of (5).
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Figure 1. The permittivity (3) and field (2) as functions of position with c = γ =

Ω = 1. Top: The real (blue) and imaginary (red) parts of the permittivity at three

frequencies, ω = 1 (continuous lines), ω = 2 (dashed lines) and ω = 3 (dotted lines).

Bottom: The real (blue), imaginary (red) and absolute value (brown) of the field of a

right-travelling wave (2) with frequency ω = 2 propagating in the permittivity profile.

Any reflection of the wave would show up as ripples in Abs[E(x)].

With the above choices, the wave (2) propagates from a homogeneous material

region on the far left into vacuum on the far right, without any reflection (see Fig. 1).

Note we cannot make the boundary region in our example arbitrarily thin by taking

a→ 0 in (8) as this would give a diverging permittivity. The requirement that f(x) be
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monotonic has ruled out a solution with vacuum on both sides of the planar material.

Also the solution is not for a wave incident on the material from outside, but rather a

wave that exits the material into vacuum. The former case would be of more interest

as we usually consider the reflection properties of waves incident on objects. Instead we

have derived a planar material that does not reflect waves that exit it perpendicularly,

for all frequencies. It might be thought that the solution above could be modified to

derive a material that does not reflect waves perpendicularly incident from outside, but

this is not possible. Changes such as time reversing the solution, which would work for

that purpose, give a material with gain for all frequencies, violating condition (iii).

Alternatives to (2) for a reflectionless wave in terms of some unknown function(s)

were investigated but interestingly they all led to the same qualitative results. Thus

under conditions (i)–(v) it is not too difficult to find planar materials that do not reflect

perpendicularly exiting waves of any frequency, but it is much more difficult to find

materials that are reflectionless for perpendicularly entering waves of any frequency.

Materials with the latter property are of course not ruled out by our very limited

analysis. But it is not immediately apparent why the method chosen here should single

out solutions of the “exiting” type over those of the “entering” type, if both types exist.

We also mention that if condition (iv) is changed to allow a 1/ω2 divergence of the

permittivity at zero frequency, then solutions of the “entering” type exist and are not

difficult to find using the method above. As the physical requirements for these solutions

cannot be met using ordinary metals and dielectrics, we do not enter into details here

(but see [15] on the possible relevance of the plasma model in the Casimir effect).

It is easy to invert spatially the solution derived above so that the unreflected wave

propagates to the left with homogeneous material on the far right and vacuum on the

far left. We can also cut the material at some finite value of x in the (approximately)

homogeneous material region and attach its mirror image in the plane of the cut. The

resulting material then approaches vacuum on each side and has the property that

waves exiting perpendicularly through the inhomogeneous regions on either side are not

reflected for any frequency (see Fig. 2). The wave in Fig. 2 is that produced by a plane

source in the centre of the slab; the amplitude and phase have been chosen so that

in the homogeneous material region close to the source the wave matches the Green

function −i exp(i
√
εk0|x|)/(2

√
εk0) for equation (1) with constant permittivity. This

material represents an “inverse” of the usual parallel-plate arrangement considered in the

Casimir effect: instead of matter-vacuum-matter we have vacuum-matter-vacuum. The

latter geometry also leads to a Casimir force on the inhomogeneous regions forming the

boundary of the planar slab (in the case of homogeneous slabs with sharp boundaries the

forces act only on the boundary surfaces). The Casimir force in this case is determined

by the reflection coefficients of waves exiting the slab on either side and it will be a

compressing force pushing the boundary regions together [12]. In our case however the

reflection coefficients are zero for all frequencies for waves exiting perpendicular to the

boundary regions, so there is no contribution to the Casimir force from the zero-point

versions of these waves. As the angle of incidence changes from 90 degrees the reflection
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Figure 2. Top: Permittivity of a planar slab formed by cutting the permittivity in

Fig. 1 at x = −8 and joining to its mirror image in the plane of the cut. The plots

correspond to those in Fig. 1. Bottom: Field of frequency ω = 2 produced by a plane

source located at x = −8 in the slab. Waves propagate away from the source in both

directions. There is no reflection of the waves as they exit into vacuum.

coefficients will increase continuously from zero and there will be a non-zero compressing

Casimir force. By considering an effective 1D setup or waveguide it may be possible

to perform a similar analysis to that given here and derive effective 1D electromagnetic

materials that have no compressing Casimir force on their boundaries.
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