
Making geometrical optics exact

T. G. Philbin∗
Physics and Astronomy Department, University of Exeter, Stocker Road, Exeter EX4 4QL, UK

Geometrical optics (GO) is widely used in studies of electromagnetic materials because of its ease of use
compared to full-wave numerical simulations. Exact solutions for waves can, however, differ significantly from
the GO approximation. In particular, effects that are “perfect” for waves cannot usually be derived using GO.
Here we give a method for designing materials in which GO is exact for some waves. This enables us to find
interesting analytical solutions for exact wave propagation in inhomogeneous media. Two examples of the
technique are given: a material in which two point sources do not interfere, and a perfect isotropic cloak for
waves from a point source. We also give the form of material response required for GO to be exact for all waves.

I. INTRODUCTION

The development of numerical solvers has enabled physi-
cists and engineers to predict with great accuracy the propa-
gation of electromagnetic waves in the most complex media,
provided the effective medium picture holds. These numeri-
cal tools enable the optimisation of device designs in advance
of their experimental implementation. It is doubtful, how-
ever, if numerics alone has ever revealed interesting effects
in electromagnetic materials. The space of all possible in-
homogeneous, anisotropic materials is simply too vast to ex-
plore numerically. When progress is made, the initial insight
invariably comes from other theoretical sources, usually in-
tuition supported by approximate analytical calculation. The
need for guidance by analytical techniques is illustrated by the
development of metamaterials [1–3], in which the search for
applications and novel effects has been heavily influenced by
transformation optics [4]. One of the remarkable features of
transformation optics is its ability to generate exact analytical
results for wave propagation in inhomogeneous, anisotropic
media. The tools of transformation optics deal with a very
limited set of materials, however, and analytical results on the
optics of inhomogeneous media have mostly been based on
geometrical optics (GO). A great deal of information can be
deduced using GO but the regime in which the GO approxi-
mation breaks down is also interesting. For example, the dis-
tinction between GO and exact wave optics has been central in
understanding the limitations and possibilities of electromag-
netic cloaking devices [5–8].

GO is not just ray tracing; it is approximate wave optics.
The ray trajectories of GO are orthogonal to the wave fronts
as they appear in the GO approximation, and the spacing be-
tween the GO wavefronts is obtained from the eikonal equa-
tion [9]. The exact wave fronts (in general) differ from those
of GO and their derivation is usually vastly more difficult than
ray tracing and solving the eikonal equation. Working within
the GO approximation allows design ideas to be developed far
more easily, and if methods can be found to make GO solu-
tions exact then designing interesting solutions for exact wave
propagation becomes more feasible. The question of whether
GO is exact is dependent on the optical medium and on the
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spatial form of the amplitude of the wave (see section II). Fa-
miliar examples of waves in homogeneous media for which
GO is exact are plane waves and scalar spherical waves, but
GO is not exact for simple wave forms such as vector spher-
ical waves and (scalar or vector) cylindrical waves. In this
paper we describe a method for finding medium/wave com-
binations for which GO is exact. To simplify the discussion
we restrict the analysis to scalar waves obeying the Helmholtz
equation; a similar theory can be developed for vector waves.
In section II we recall the GO approximation and section III
describes the method for deriving wave solutions for which
GO is exact. Two examples of the method are presented in
section IV. Our method generates refractive-index profiles in
which GO is exact for a particular wave; the type of material
response required for GO to be exact for all waves is discussed
in section V.

II. GEOMETRICAL OPTICS FOR SCALAR WAVES

We consider monochromatic scalar waves in an isotropic,
inhomogeneous medium, satisfying the Helmholtz equation[

∇2 +
ω2

c2
n2(r, ω)

]
ψ(r, ω) = 0. (1)

A similar analysis to what follows can be performed for vec-
tor waves using the derivation of the GO approximation from
Maxwell’s equations [9]. If the frequency-domain, complex
wave ψ(r, ω) is written in terms of its amplitude and phase,

ψ(r, ω) = R(r)eiS(r), (2)

where R(r) and S(r) are real, then (1) gives the two real
equations

(∇S)2 − ∇
2R

R
− ω2

c2
n2(r, ω) = 0, (3)

∇ · (R2∇S) = 0. (4)

The GO approximation corresponds to neglecting the second
term in (3), which then reduces to the eikonal equation of
GO [9]:

(∇S)2 − ω2

c2
n2(r, ω) = 0. (5)
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Comparing (3) with (5), we see that GO gives an approximate
solution for the phase S(r) of the wave. The ray trajectories of
GO lie on the gradients∇S of this approximate phase and are
therefore not (in general) orthogonal to the exact phase fronts
of the wave. Even in those cases where the GO ray trajectories
are orthogonal to the exact phase fronts, the GO approximate
phase S(r) may not give the exact phase accumulation along
the ray (cylindrical waves provide a simple example of this).
The exact phase S(r) is coupled to the amplitude R(r) via
the non-linear equations (3) and (4), which are very difficult
to solve analytically except in a few simple cases. It is the
decoupling of the phase from the amplitude in (5) compared
to (3) that makes GO more tractable mathematically; once the
GO phase is found from (5) the amplitude is separately deter-
mined by (4).

It is curious that the optics community has not given a name
to the term ∇2R/R in (3), despite the fact that this term is
responsible for the difference between exact wave optics and
GO. In quantum mechanics, on the other hand, there is a name
for this term—it is called the quantum potential [10–12]. The
Helmholtz equation (1) is the time-independent Schrödinger
equation and the quantum potential∇2R/R in (3) is the main
reason why the predictions of quantum mechanics differ from
those of classical mechanics (the other reason is the require-
ment for ψ to be single valued) [10–12]. The term ∇2R/R
is just as significant in optics as it is in mechanics; given the
lack of an optical designation for this term we will refer to it
here as the quantum potential.

III. METHOD

If the quantum potential vanishes, i.e. if the amplitudeR(r)
of the wave satisfies

∇2R

R
= 0, (6)

then GO is exact and the solution of (5) gives the exact phase
S(r) and therefore the exact wave fronts. The amplitudeR(r)
can then be found by solving (4). Equation (6) holds for plane
waves and spherical waves, for example, and GO is therefore
exact for these waves. The relation (6) is not restricted to
r 6= 0 for a spherical wave eikr/r: the amplitudeR(r) for this
wave goes as r−1 and so∇2R/R ∝ r∇2r−1 ∝ rδ(r) = 0,
for all r. But the spherical wave has a point source at r = 0 so
that the Helmholtz equation (1) is not valid at r = 0 (a delta-
function source term is required on the right-hand side). Equa-
tion (6) does not hold for cylindrical waves so GO is not exact
in this case. A cylindrical wave is proportional to a Hankel
function whereas the GO solution is proportional to eikr/

√
r,

the asymptotic limit of the Hankel function. As noted above,
the cylindrical wave provides an example where the GO rays
are orthogonal to the exact phase fronts but the GO phase dif-
fers from the exact phase.

Note that if

S(r) ∝ 1

R(r)
(7)

then the exact wave equation (4) becomes

∇2R = 0, (8)

which gives (6) (barring any zeros in amplitude), and this in
turn implies (5). We can therefore generate a wave solution
in a refractive index profile for which GO is exact as fol-
lows. Choose a solution of the Laplace equation (8) for the
amplitude R(r) and choose the phase S(r) to be inversely
proportional to R(r). Then one part of the exact wave equa-
tion, namely (4), is automatically satisfied and the second part,
equation (3), reduces to the eikonal equation (5) which can be
solved for n(r, ω) since S(r) is known. The derived wave
is by design exactly described by GO; for other waves in the
derived index profile, GO will not be exact.

IV. EXAMPLES

A. Waves without interference

Consider two point sources in vacuum, located at positions
(0, Y, 0) and (0,−Y, 0). These sources separately produce
spherical waves with amplitudes

R1(r) = −
1

4π
√
x2 + (y − Y )2 + z2

, (9)

R2(r) = −
1

4π
√
x2 + (y + Y )2 + z2

, (10)

respectively. The two spherical waves interfere as shown in
Fig. 1. Applying the technique described in the previous sec-
tion we choose the amplitude R(r) and phase S(r) of a new
wave to be

R(r) =
1

2
(R1(r) +R2(r)) , S(r) = − ω

4πcR(r)
. (11)

The amplitude R(r) satisfies Laplace’s equation because

FIG. 1: Waves from two point sources in vacuum. The plot shows the
amplitude of the wave in a two-dimensional slice through the point
sources.
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R1(r) and R2(r) are solutions of this equation; the wave (11)
therefore meets the conditions, described in the previous sec-
tion, for GO to be exact. The refractive index in which this
wave propagates is given by substituting the phase S(r) into
the eikonal equation (5). As the amplitude R(r) in (11) is
chosen to be the average of the two point-source amplitudes,
there is no interference in the resulting wave R(r)eiS(r). The
wave propagation and refractive index profile in a 2D slice
through the sources are shown in Fig. 2. The lack of any
interference or scattering off the index profile is here an ex-
act result, independent of the gradient of the refractive index
compared to the wave-vector. It is relatively easy to design
index profiles in which the GO ray trajectories for two point
sources will be qualitatively the same as in the index profile
in Fig. 2, but such profiles will give scattering of the wave off
the inhomogeneous material when the GO approximation is
invalid. In contrast, the wave solution in Fig. 2 is exact in the
index profile shown. The refractive index ranges from 2 at the
sources to zero at one point midway between them; the index
approaches 1 at large distances from the sources. As the zero
in the index occurs at an isolated point, it can be removed by
the transmutation procedure of transformation optics [4, 13]
at the cost of introducing some anisotropy in the transmuted
region.

B. Cloaking of waves with an isotropic material

Consider a point charge located at (0, 0, z0), outside a zero-
permittivity ball of radius b centred on the origin. The electric-
field lines from the charge are guided around the ball in much
the same way as rays are guided around a cloaked region.
Guiding of magnetic-field lines around zero-permeability (su-
perconducting) objects is more familiar, but here we wish to
have a point source for the field so we consider an electro-
static example of such field exclusion. Using the standard
boundary-value methods of electrostatics [14], it is straight-
forward to show that the electric potential outside the ball is
(for unit charge and with ε0 = 1)

φ(r) =
1

4π

[
1√

x2 + y2 + (z − z0)2

+

∞∑
l=0

lb2l+1

(l + 1)(z0r)l+1
Pl

(z
r

)]
, r > b, (12)

where r =
√
x2 + y2 + z2. We choose the amplitude R(r)

and phase S(r) of our wave to be

R(r) = −φ(r), S(r) = − ω

4πcR(r)
. (13)

Since the potential φ(r) satisfies Laplace’s equation, the wave
(13) meets the conditions of section III for GO to be exact.
The wave propagation and the refractive-index profile, in a 2D
slice through the source and the centre of the cloaked region,
are shown in Fig. 3. The wave is guided around the spherical
region r < b which is cloaked. Far from the cloaked region

0
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1.5

FIG. 2: Wave from two point sources (top) in an inhomogeneous re-
fractive index profile (bottom), both shown for a 2D slice through
the position of the sources. The wave shows no interference or scat-
tering, regardless of whether the index changes significantly over a
wavelength. The refractive index ranges from 2 at the source posi-
tions to 0 at one point midway between the sources.

the wave approaches that of a point source in vacuum. The
maximum refractive-index value is 1.5, at two isolated points
on the boundary of the cloaked region lying on a line orthog-
onal to the direction to the source. The minimum index value
is 0, at two isolated points on the boundary of the cloaked re-
gion lying on a line through the centre of the cloaked region
and the source. The two zeros of the refractive index can be
removed by transmutation [4, 13]. Note that this index profile
only cloaks the region r < b when a point source is placed at
(0, 0, z0); waves from other sources in this index profile will
not be cloaked. This is in line with a general theorem that
shows the impossibility of cloaking waves from all directions
using an isotropic material [15].

As in the previous example, it is not difficult to design in-
dex profiles in which the GO rays have the same qualitative
behaviour as in the index profile of Fig. 3. Guiding of GO
rays around some region is in fact the only feasible method
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FIG. 3: Wave from a point source (top) in an inhomogeneous in-
dex profile (bottom). The plots show the wave and index profile in
the xz− or yz-plane. The wave is guided around a cloaked spheri-
cal region and at large distances is indistinguishable from the wave
produced by a point source in vacuum.

for broadband omnidirectional electromagnetic cloaks, since
perfect omnidirectional cloaking of waves is not strictly pos-
sible [5–8]. The example derived here is different because
GO is exact: there is no scattering of the wave off the inho-
mogeneous index profile, even if the wavelength is such that
the gradient of the refractive index is comparable to the wave-
vector. There is however a matching issue at the boundary
of the cloaked region. In the omnidirectional perfect wave
cloak [6], the cloaked region is electromagnetically cut off
from the exterior by a surface of zero refractive index (this
surface of zero index cannot be transmuted away [4, 13], ren-
dering the perfect omnidirectional cloak impossible in prac-
tice). In the example derived here there is no such cut off,
which means the wave can evanescently probe the cloaked re-
gion. This may degrade the cloaking effect compared to the
ideal perfect cloaking in Fig. 3.

V. MATERIAL RESPONSE FOR EXACT GEOMETRICAL
OPTICS

The method of section III constructs a particular wave solu-
tion in a refractive-index profile such that GO is exact for the
wave. An obvious question is whether there exists a material
in which GO is exact for all waves. In terms of a refractive-
index profile the answer to this question is negative, but if we
allow for a material response not describable solely by a re-
fractive index, then there exists a wave equation for which GO
is exact for all waves. Consider the following modification of
the Helmholtz equation:[

∇2 +
ω2

c2
n2(r, ω)

]
ψ − ∇

2|ψ|
|ψ|

ψ = 0. (14)

If we again write the complex wave ψ(r, ω) in terms of its
amplitude and phase, as in (2), then (14) is equivalent to the
two real equations

(∇S)2 − ω2

c2
n2(r, ω) = 0, ∇ · (R2∇S) = 0, (15)

which are exactly the equations of GO. The material response
described by the last term in (14) is very unusual: it is not a
nonlinear response because it scales linearly with the ampli-
tude of the wave. The factor∇2|ψ|/|ψ| describes an effective
refractive index that depends on the factional spatial varia-
tion of the wave amplitude. It would be of great interest if a
physical system could be found in which (14) describes wave
propagation—since GO would be exact for such waves, they
would exhibit no interference effects. For example, a two-slit
interference experiment would show an intensity pattern with
no fringes; the classic demonstration of the wave nature of
light would in this case fail to show any wave behaviour.

As noted in section II, the Helmholtz equation is the time-
independent Schrödinger equation and we have seen that mod-
ifying the latter to read (14) corresponds to zero quantum po-
tential for all waves. Vanishing quantum potential is the re-
quirement for the predictions of quantum mechanics to be ex-
actly classical [10–12]. It was noted long ago that addition
of a term −ψ∇2|ψ|/|ψ| to the Schrödinger equation removes
all quantum effects [11, 16]. As with the significance of the
quantum potential generally, these insights are not often trans-
lated into optical language where they illuminate the relation
between exact wave optics and GO.

VI. CONCLUSIONS

In situations where GO is exact the problem of wave prop-
agation simplifies enormously and exact analytical solutions
are greatly facilitated. We have developed a method for gener-
ating wave solutions in inhomogeneous refractive-index pro-
files for which GO is exact. The method allows the explo-
ration of exact wave propagation in inhomogeneous media
without resorting to full-wave numerical simulations. Two
examples of the technique were given (i) an index profile in
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which two point sources at specified positions do not inter-
fere, and (ii) an index profile that cloaks the wave from a point
source at one position. We have also pointed out the kind of
material response required for GO to be exact for all waves.
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