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Summary  18 

Plastic debris can contain sorbed persistent and bioaccumulative pollutants. Although animals across 19 

trophic levels ingest micrometer-sized plastic debris (microplastic), it is unknown whether eating 20 

microplastic transfers pollutants to animals. Despite positive correlations reported for concentrations of 21 

ingested plastic and pollutants in tissues of animals, few, if any, controlled experiments have examined 22 

whether ingestion of microplastic transfers pollutants and additives to animals. We exposed lugworms 23 

(Arenicola marina) to polyvinylchloride (PVC; 5%) microplastic with common pollutants (nonylphenol, 24 

phenanthrene) and additive chemicals (Triclosan, PBDE-47) presorbed onto PVC. Ingested microplastic 25 

transferred pollutants and additives into gut-tissues of lugworms, at concentrations causing some 26 

biological effects, although clean sand transferred larger concentrations of pollutants into their tissues. 27 

Uptake of nonylphenol from PVC or sand reduced the ability of coelomocytes to remove pathogenic 28 

bacteria by >60%. Uptake of Triclosan from PVC diminished the ability of worms to engineer 29 

sediments and caused mortality, each by >55%, whilst PVC alone made the worms >30% more 30 

susceptible to oxidative stress. As global microplastic contamination accelerates, our findings that large 31 

concentrations of microplastic and additives can harm ecophysiological functions identify possible 32 

ecological impacts. It, however, remains to be seen whether these problems are significant at smaller 33 

concentrations of pollutants and microplastic. 34 

 35 

Highlights 36 

(i) Ingestion of microplastic by animals can transfer pollutants and additives to their tissues.  37 

(ii) Biochemically clean sand transferred more pollutants into tissues than microplastic.  38 

(iii) Uptake of pollutants, additives and microplastic damaged ecophysiological functions.  39 

 40 
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Results  41 

By 2050, an extra 33 B.tonnes of plastic is anticipated to be added to our planet (1) This will place a 42 

larger burden on inadequate systems of management and policy that are struggling to prevent plastic 43 

waste infiltrating ecosystems [1, 2]. Disintegration into smaller pieces means the abundance of 44 

microplastic in marine habitats has increased [3] and now outnumbers larger debris [2, 4]. Once 45 

ingested by animals, microplastic provides a feasible pathway to transfer sorbed pollutants and additives 46 

into their tissues [7-14].  Here we unravel the hazards of microplastic as a multiple stressor to 47 

sedimentary organisms. Using single-concentration experiments (an approach endorsed by the EPA, 48 

[25]) we examined whether microplastic (PVC) sorbed and then released, pollutants (nonylphenol, 49 

phenanthrene) and additives (Triclosan, PBDE-47) to tissues of lugworms and if so, whether this altered 50 

the ability of lugworms to perform important ecophysiological functions. Animals from sedimentary 51 

habitats are vulnerable because plastic can accumulate concentrations of pollutants a hundred times 52 

greater than sediments [9] and there is 250% more microplastic in habitats that receive sewage [2] or are 53 

down-wind [3].    54 

Surprisingly, the relative importance of ingesting microplastic versus sediments as vectors for pollutants 55 

to the tissues of animals is poorly understood. In vitro experiments simulating guts of lugworms indicate 56 

that pollutants which accumulate from seawater to microplastic would desorb into the gut, with more 57 

transfer from microplastic in sediments with less organic carbon [9]. In contrast, theoretical studies for 58 

fish predict eating microplastic would not increase burdens of pollutants because concentrations of 59 

pollutants will be at equilibrium with their environment [26]. Equilibrium scenarios are, however, 60 

problematic [27] because they assume pollutants and organisms are evenly distributed around the world 61 

and discount the (i) kinetic effects of gastric surfactants, pH and temperature on the desorption of 62 

pollutants from plastic; (ii) transfer and storage of microplastics in tissues of animals. To understand the 63 

actual chemical and biological impacts of microplastic experiments are required [9, 27, 28]. But 64 

experiments have been unable to determine whether microplastic transfers greater concentrations of 65 
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pollutants to tissues than sediments, or if microplastic is capable of transferring large enough 66 

concentrations of pollutants and additives to impair functions of animals that sustain health and 67 

biodiversity.  68 

Transfer of chemicals from microplastic and from sand to the tissues of lugworms. Plastics 69 

discarded into habitats accumulate pollutants, such as nonylphenol and phenanthrene [8, 24] and could 70 

release these by desorption. To reproduce conditions in habitats, pollutants were sorbed separately onto 71 

particles of PVC or sand (Fig 1A-B). PVC was chosen because it comprises >25% of microplastic in 72 

estuaries inhabited by lugworms [3]. Total amounts of plastics and pollutants in treatments were large, 73 

but not without precedent in sedimentary habitats and experiments [28, 30, S1]. Here we show 74 

nonylphenol and phenanthrene desorbed from PVC and transferred into tissues (Figure 1 C-D). This 75 

provides the first conclusive evidence showing transfer from microplastic and supports predictions from 76 

modelling of desorption of phenanthrene that has been pre-sorbed to polyethylene [9, 12, 13]. Despite 77 

particles of PVC containing 135% (nonylphenol) and 5860% (phenanthrene) larger concentrations than 78 

those on sand (Figure 1A, B), worms exposed to sand (with smaller concentrations of pollutants) 79 

accumulated >250% more phenanthrene and nonylphenol in their tissues than when PVC transferred the 80 

pollutants. Each day worms ingested 47-74% of their mass in sediments and gastric concentrations of 81 

pollutants (ingestion) were >180% greater than those found in their body-wall (sorption) irrespective of 82 

whether they ingested contaminated PVC or sand (Figure 1C, D).  83 

Do chemicals used as additives in plastic manufacture transfer from microplastics in a similar way to 84 

pollutants?  To test this, worms were exposed to microplastic with the presorbed PBDE-47 (flame 85 

retardant) and Triclosan (antimicrobial) (Text S1). These chemicals are thought to improve the safety of 86 

plastic articles by reducing the risks of fires and microbial growth, respectively. Quantities of additives 87 

added to plastic were realistic to proportions of PBDE-47 (5-30%; [10]) and Triclosan (0-5%) used by 88 

industry [15]. We did not use a sand-only treatment as we were examining the potential for additives 89 

used in plastic manufacture to transfer from plastics rather than the role of particles of sand or plastic as 90 
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vectors for pollutants. As with pollutants, additives transferred from microplastics into tissues, leading 91 

to consistent patterns of bioconcentration (Figure 2). Again, the main route of uptake for chemicals into 92 

worms was sorption into the gut via ingestion. Relative to concentrations in experimental sediments, the 93 

body-walls of worms accumulated up to 950% greater concentrations, and the gut up to 3500% greater 94 

concentrations, of each additive (Figure 2C-D). 95 

Biological consequences of microplastic and chemical transfer to lugworms. To determine whether 96 

microplastic is capable of transferring large enough concentrations of pollutants and additives to impair 97 

functions of worms that help maintain health and biodiversity, we used established bioassays for 98 

mortality, feeding, immune-function and oxidative status. Previous work showed animals exposed to 99 

nonylphenol and phenanthrene feed/burrow less [32-34] and are more susceptible to oxidative stress, 100 

pathogens and mortality [35-38], whilst additives (e.g. Triclosan) can also be toxic [39-42].  101 

Because lugworms structure faunal assemblages by removing phytoplankton and silt from sediments 102 

[43, 44], we measured feeding and survival to determine if ingestion of microplastic reduced this ability. 103 

Here we show exposure to PVC in clean sand with and without nonylphenol, phenanthrene and 104 

Triclosan, in some cases, disrupted feeding. In treatments containing PVC with Triclosan, over 55% of 105 

worms died (F1,10 = 22.73, P < 0.001***, Figure 3D), but exposure to PVC with nonylphenol or 106 

phenanthrene had no effect (Figure 2A-C). Exposure to PBDE sorbed onto PVC reduced feeding 107 

although not significantly (Figure 3C). Likewise, ingestion of Triclosan from PVC, reduced feeding in 108 

A. marina by >65% (F1,11= 19.94, P < 0.01**) and although not significant, worms ingesting PBDE 109 

from PVC fed 30% less (Figure 4C-D). Exposure to sand and/or microplastic with nonylphenol and 110 

phenanthrene did not reduce feeding (Figure 5A-B).  111 

Previous experimental work had showed lugworms use phagocytosis to clear pathogenic bacteria from 112 

their coelomic fluid [45], so we used an established immunoassay [6] to measure the ability of 113 

coelomycytes to engulf particles of zymosan. Ingesting either sand or microplastic with nonylphenol 114 

reduced the phagocytic activity of coelomocytes by >60% (F1,19= 6.70, P < 0.05*; Figure 5A), similar, 115 
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but non-significant patterns were shown for Triclosan, whilst phenanthrene and PBDE-47 had no effect 116 

(Figure 5B-D).  117 

Because mammalian cells exposed to nanometer-sized plastic produce reactive oxygen species [46, 47] 118 

and lugworms use antioxidants in their tissues to buffer the oxidative damage caused by hydrogen 119 

peroxide that accumulates in tissues during summer low-tides [48, 49], we measured the oxidative status 120 

of lugworms. Here we show the coelomic fluid of lugworms that ingested sediment with PVC had 121 

>30% smaller capacity to deal with oxidative stress (Figure 6B), while exposure to pollutants and 122 

additives through desorption from PVC, had no effect.  123 

Discussion  124 

Here we show pollutants and additives transfer via desorption from both sand and from microplastics to 125 

the tissues of an important bioengineer. This is the first suitably controlled experimental evidence 126 

showing that eating plastics can move pollutants and additives into the tissues of animals.  127 

The principal route by which chemicals transferred was ingestion via the gut, rather than sorption 128 

through the body-wall. In our experiments despite the considerable capacity of plastics to sorb 129 

chemicals and the fact that only 1% of the experimental sediments were ingested during our 130 

experiments, pollutants and additives readily desorbed from microplastic and accumulated in the gut of 131 

worms at concentrations 326-3770% larger than experimental sediments within 10 days. When the 132 

bioavailability of pollutants from sand and PVC were compared, larger concentrations transferred from 133 

the sand to lugworms. Thus the extent and rate of desorption from sand was much greater than from 134 

plastic, which retains more of each pollutant than clean sand. It is, however, premature to conclude that 135 

sediment from habitats is likely to transfer more pollutants into animals upon ingestion. Further 136 

experiments are needed to compare retention in natural sediments with more clay and organic carbon, 137 

with that of smaller-sized polymers. For instance, polyethylene, polypropylene and polystyrene debris in 138 

habitats have larger concentrations of organic pollutants than PVC [24], while smaller (e.g. <10 μm) 139 
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microplastic translocate and accumulate in cells and tissues of animals [6]. Thus certain plastics, at 140 

smaller sizes, could transfer chemicals into the tissues directly, without the need for gastric desorption. 141 

To determine the relative importance of desorption of chemicals from ingested and translocated [6] 142 

debris as vectors for pollutants into animals requires carefully designed experiments underpinned by 143 

better quality information from programmes of monitoring. This includes adequate replication and 144 

quantitation at smaller scales, improved methods of detection (debris <330 μm, dull in colour and/or 145 

granular [2]) and clearly articulated hypotheses. Over time this will provide the necessary information to 146 

design more complex manipulative experiments (field and laboratory) that expose more taxa to the 147 

sizes, types, mixtures and concentrations of microplastic, natural particulates, pollutants and additives 148 

found in habitats. It will also shed light on important factors that influence the distribution and 149 

abundance of microplastic and allow us to estimate the frequency at which sedimentary habitats contain 150 

quantities of microplastic that exceed 5% of the sediments.  151 

For now our short-term experiments with large proportions of PVC (5%) show worms eating 152 

microplastic accumulated large enough concentrations of pollutants or additives to reduce survival 153 

(Triclosan), feeding (Triclosan, PBDE), immunity (nonylphenol) and antioxidant capacity (PVC). 154 

Reductions in the phagocytic activity of coelomocytes were caused by nonylphenol and such pollutant-155 

induced reductions in immunity can reduce resistance to diseases in terrestrial worms [50]. Because 156 

mammalian cells exposed to nanometer-sized plastic also produce reactive oxygen species and less 157 

protein [46, 47], we suggest the smaller capacity of worms to deal with oxidative stress could be 158 

indicative of proteolysis or reductions in synthesis of their antioxidants. For Triclosan, concentrations 159 

were orders of magnitude smaller than those causing mortality in crustaceans [32]. Previously it was 160 

thought that sorbed pollutants are more likely to transfer to tissues of organisms than additives from 161 

plastic [27], however, our findings are consistent with the concerns that some additives may be more 162 

problematic [51]. Our results also agree with correlative evidence from studies in which lugworms 163 

exposed to micrometer-sized polystyrene and polychlorinated biphenyls fed less and lost weight [28]. 164 
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Given that experimental exclusion of lugworms changes the structure and functioning of soft-sediment 165 

habitats [43, 44] our work raises concerns for habitats where plastics in sediments exceed 5% by mass. 166 

Our experimental work advances this field by showing that ingestion of microplastic by organisms can 167 

transfer pollutants and additives to their tissues at concentrations sufficient to disrupt ecophysiological 168 

functions linked to health and biodiversity.  169 
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Figure legends  328 
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 329 

Figure 1. Pre-sorbed concentrations of pollutants nonylphenol (A) or phenanthrene (B) on clean 330 
particles of sand or PVC. Biological uptake of pollutants from either sand or micrometer-sized PVC to 331 
the tissues of lugworms (C, D). Transfer of pollutants from the microplastic PVC is demonstrated 332 
clearly. As expected, sand with pre-sorbed pollutants transported more phenanthrene and nonylphenol 333 
into tissues than microplastic due to the smaller retentive properties of clean sand. Interestingly, more of 334 
each pollutant accumulated in the gut than in the body-wall, irrespective of whether the worms ingested 335 
pollutants from desorption from PVC or sand. Data are means ± S.E. (n=5).   336 

 337 

Figure 2. Bioconcentration of pollutants and additives within the tissues of lugworms from treatments 338 
with pollutants pre-sorbed onto PVC and mixed into clean sand (A-D). The body-walls of worms 339 
accumulated up to 950% greater concentrations, and the gut up to 3500% greater concentrations of each 340 
chemical. Data are means ± S.E. (pollutants n=5, PBDE-47 n = 6, Triclosan = 2-6). Figure 2A-B is 341 
different to Figure 1A-B because it provides the total concentrations of the pollutants that the worms 342 
were exposed to in the experimental sediments, whilst Figure 1A-B provides concentrations on the 343 
particles of sand or PVC alone. 344 

 345 
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 346 

Figure 3. Effect of microplastic, sand, pollutants and additives on the survivorship (A-D), feeding (e-H), 347 
immunological (I-L)and oxidative functions (M-P)of lugworms. Triclosan reduced survival (D), and 348 
PBDE-47 (G) and Triclosan (H) reduced feeding. Ingesting either sand or microplastic with sorbed 349 
nonylphenol reduced the phagocytic activity of coelomocytes (I), similar, but non-significant patterns 350 
were shown for Triclosan (L). The coelomic fluid of worms that ingested sediment with PVC had a 351 
smaller capacity to deal with oxidative stress (M, N), while exposure to pollutants and additives through 352 
desorption from PVC, had no effect (O, P). Data are means ± S.E. Statistical significance at P< 0.05*, 353 
P< 0.01**, P< 0.001*** with n=5 (experiments with pollutants) and n=6 (experiments with additives). 354 
Large numbers of worms died in treatments with Triclosan so there were fewer animals to measure their 355 
phagocytic activity and oxidative status of their coelomic fluid (n=2).  356 
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Supplemental Experimental Procedures 376 
 377 
1. Sorption of chemicals onto microplastic and sand. We produced microplastic with similar 378 

concentrations of nonylphenol and phenanthrene to those found on plastic debris in the environment [8, 379 

56]. 375 g of virgin PVC (230 µm; Goodfellow Cambridge Ltd) or certified clean sand (260 µm quartz 380 

silica sea sand; Fisher Scientific) was added to solutions of phenanthrene (7.524 mg) or nonylphenol 381 

(7.429 mg) dissolved in 400 mL absolute ethanol (Fisher Scientific). Particles of sand were within the 382 

size-range found on shores worldwide (114-697 µm) contaminated with microplastic [2-4]. Ethanol was 383 

evaporated in a fume cupboard and then contaminated PVC or sand was washed three times in Milli-Q-384 

purified water to remove ethanol and unbound pollutants. Preliminary work showed that PVC treated in 385 

this way did not reduce the survival, feeding or immunity of worms (see Pilot study below, Fig. S1). For 386 

experiments with additives (Triclosan or PBDE-47) used in plastic manufacture was sorbed onto PVC 387 

by adding 375g to separate solutions of ethanol (400 mL; Fisher Scientific) with either Triclosan (411.7 388 

mg) or PBDE-47 (60.5 mg), allowed to evaporate in a fume cupboard at room temperature and then 389 

washed as before to remove additives not bound to PVC. Chemical analyses confirmed 98 and 100% of 390 

PBDE-47 and Triclosan sorbed to PVC. Quantities of additives added to plastic were realistic to 391 

proportions of PBDE-47 (5-30%; [10]) and Triclosan (0-5%) used as an antimicrobial by industry [S1]. 392 

Although this does not mimic exactly the manner in which all additives are incorporated during 393 

manufacture, our approach is pragmatic since plastic with known concentrations of additives could not 394 

be sourced from suppliers due to issues of confidentiality. 395 

 396 

 397 

 398 

 399 

 400 

 401 
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Table S1. Concentrations of additives and pollutants on experimental particles (sand and PVC) and in 402 
treatments (sand+PVC), in relation to concentrations found on plastic articles and debris, and sediments 403 
from habitats.  404 

 

Chemical 

Source Experimental 
concentrations (µg g-1) Environmental concentration (µg g-1) 

Additive Pollutant Sand PVC Sand+
PVC 

Plastic 
article 

Plastic 
debris Sewage Sedimen

t 

Nonylphenol Stabilizer Detergents 512.60
±12.86 

692.00
±7.09 

0.69±0
.01 

<500-
3300[S2] 

0.13-
16.00[S3) 

450–
2530(S4] 

0.05-
30[S5] 

Phenanthrene n/a Combustion 1.97 
±0.34 

115.32
±5.53 

0.11±0
.01 n/a ΣPAH 

<1.90[S6] 
0.25-

1.76[S7] 
<0.13 
[S8] 

PBDE-47 Flame 
Retardant n/a n/a 158.11 9.49±1

.94 
50000-

300000[S9] 
0.59-

1.13[S10] 
<0.05-

0.21[S11] n/a 

Triclosan Antimicrobial n/a n/a 1097.8
7 

57.30±
6.01 

1000-
50000[S12] 

0.55-
12.8[S13] 

0.49± 
13.87 
[S14] 

n/a 

   405 

2. Plastic debris from sedimentary habitats.  406 

Five replicate samples of debris were collected from the strandline at Plym Estuary (UK) and placed 407 

into a 500 mL foil containers. Material was separated, dried, identified and mass recorded using 408 

published methods [1] and the amount of plastic ranged from 13-29%. 409 

3. Bioavailability and toxicity experiments.  410 

Model organism. Lugworms were used because (i) they alter the physical and ecological structure of 411 

mud-flats by ingesting sediments [43, 44]; (ii) populations can comprise up to 32% of the biomass in 412 

food webs [52] and they provide food for predatory fish and birds [53, 54]; (iii) suffer large mortalities 413 

[55]; (iv) governments use studies of lugworms to evaluate the bioavailability and toxicity of pollutants 414 

[56, 57]; (v) ingest microplastics [4, 28]; (vi) the physico-chemical properties affecting gastric transfer 415 

pollutants from particulates to tissues are well studied [57, 58]; and (vii) tissues can be dissected [59].  416 

Experiments. Two experiments examined the bioavailability and toxicity of presorbed chemicals from 417 

PVC or sand (Text S2). This first investigated the potential for microplastic to transport phenanthrene 418 

and nonylphenol from the environment to the tissues of worms, using the following replicated 419 
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treatments (n=5): sand only, sand+PVC, sand+contaminant, sand+PVC+contaminant. The second 420 

examined whether ingested microplastic transfers additives (PBDE-47, Triclosan) to tissues with 421 

replicated treatments (n=6) consisting of sand+PVC, sand+PVC+additive (see S3 for more details). 422 

After 10 d worms were transferred into clean glass beakers containing clean seawater, so they could 423 

remove sediment from their guts. On day 11, worms were removed from beakers for bioassays and 424 

chemical analyses. For both experiments, each replicate was prepared in acid washed 2 L Pyrex© 425 

beakers by adding 1500 g of the appropriate sediment mixture. Earlier attempts to quantify the route by 426 

which pollutants transfer from habitats into animals rely on experimental designs that expose infauna to 427 

pollutants with and without sediment [S15], however, maintaining animals without sediment is likely to 428 

stress them confounding the comparison. We fed worms by mixing 750 µL Isochrysis galbana (Reed 429 

Mariculture) into the sand with 500 mL of clean filtered seawater to form homogenous slurry. 430 

Controlled amounts of food were used because animals deprived of food are more sensitive to pollutants 431 

[7]. A further 1 L of seawater was added over a clean steel spoon to avoid disturbing the homogenous 432 

mixture of sediment. Beakers were randomly arranged in the laboratory to remove bias associated with 433 

environmental gradients. Tanks were covered with pre-cleaned (acetone/dichloromethane) ceramic tiles 434 

and aerated, via glass pipettes inserted through a hole in each tile. Treatments were kept at 15 ºC under 435 

12 hr light/dark cycle. Salinity was maintained, via addition of Mili-Q-water to a pre-marked level. For 436 

each replicate, three lugworms were randomly chosen, mass recorded and carefully added to each 437 

beaker. The mass of individual worms for experiments with pollutants was 2.9±0.4 g, whilst for 438 

experiments with additives it was 4.6±0.8 g (mean ± S.D.). Dissolved oxygen, pH and salinity were 439 

measured daily and faecal casts counted and collected each day, freeze-dried and weighed.  440 

Bioassays. Feeding (number of casts, their mass) [56] and mortality were recorded. Coelomic fluid was 441 

used to quantify the phagocytic activity of constituent coelomyctes and the ability of antioxidants to 442 

reduce ferric ions (or "antioxidant power", [6]). This antioxidant assay provided an inexpensive tool for 443 

measuring antioxidant status that did not require an understanding of the genetic and protein 444 
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composition of worms. The FRAP assay determines the antioxidant capacity of coelomic fluid to cope 445 

with oxidative stress, e.g. reactive oxygen species that can reduce survivorship potential. Coelomic fluid 446 

(10 µL) was pipetted in triplicate in microtitreplate wells. Aqueous solutions of known FeII 447 

concentrations in the range of 0-600 µmol L-1, were used for calibration. 200 µL of reagent (300 mM 448 

acetate buffer, TBTZ (2,4,6-tripyridyl-s-triazine) was placed into each well. The plate was incubated at 449 

25 ºC for 10 min and read at 593 nm. The phagocytosis assay [6] measures the ability of coelomocytes 450 

to clear bacteria through phagocytosis of particles of zymosan to give an indication of whether the 451 

immune-function has been damaged. For this haemolymph containing coelomocytes (10 µL) were 452 

transferred in triplicate into a microtitreplate and agitated using a plate shaker (1400 rpm for 60 sec). 453 

The plate was covered with a plate-sealer and incubated at 10 ºC for 50 min. Aliquots (50 µL) of 454 

suspended neutral-red-stained and heat stabilized zymosan suspension (containing 1 x 105 particles mL-1 455 

in phosphate buffer) were added to each well and the plate incubated for 2.5 hr (10 ºC). The cells were 456 

washed to remove residual coelomocytes using 100 µL phosphate buffer (pH 7.4) and a series of 457 

zymosan standards were added. The dye was resolublized via addition of 100 µL of acetic acid in 50 % 458 

ethanol. The microtitreplate was covered with a plate-sealer and incubated for 10 min at 20 ºC, and then 459 

read at 550 nm. 190 µL was removed from each well and series of protein-standards (0, 0.2, 0.6, 1.0, 460 

1.4, 2 g L-1) added. BSA protein reagent (200 µL) was added to each well and left for 20-30 min. 461 

Protein assays were used to determine the number of zymosan particles phagoctyosed per g-462 

1coelomocyte protein [6]. Both assays have been used to measure changes in immune-function and 463 

oxidative stress in experiments with microplastic [6]. For the exposures involving phenanthrene and 464 

nonylphenol, formal comparisons of toxicity were made using two-factor ANOVA, where “toxicant” 465 

had two levels (present and absent) and “sediment” had two levels (sand and PVC). These were treated 466 

as fixed orthogonal factors. Formal comparisons of toxicity for PBDE-47 and Triclosan were made 467 

using one-factor ANOVA. For both Triclosan and PBDE-47 here “toxicant” had two levels (present or 468 

absent). Were necessary data were transformed to achieve Statistical analysis was done using GMAV 469 

(General Models of Analysis of Variance; EICC, University of Sydney, Australia). Post-hoc analysis of 470 
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significant interactions was done using SNK tests. Prior to experiments, worms, sediment and food did 471 

not contain detectable concentrations of the pollutants and additives. Worms were dissected using 472 

published techniques [59] to provide samples of body wall and gut (alimentary tract from pharynx to 473 

anus, including cecum, esophagus, stomachs, intestine, rectum). Coelomic fluids were removed from 474 

body-wall and sediment was removed from gut by rinsing with milipore water. Preliminary histological 475 

work showed microplastic was not attached to tissue samples.  476 

Chemical analysis. Quantities of pollutants and additives in sediments, gut and body-wall were 477 

quantified using GC-MS. This was done using published methods [S17, S18], using nitrogen-dried 478 

extracts of Triclosan and nonylphenol, whilst PDBE-47 and phenanthrenewere done by re-dissolving 479 

samples in 1 mL dichloromethane prior to analysis by GC-MS. The efficiency of the extraction was 480 

>80% and was determined using standards and spiked sediments (Triclosan 95%, PBDE-47 82%, 481 

nonylphenol 90% and phenanthrene 91%).  482 

4. Pilot study. Experimental treatments consisted of either sand+ PVC (control), and sand + PVC which 483 

was treated with ethanol and then washed three times. For both experiments each replicate was prepared 484 

in acid washed 2 L Pyrex© beakers by adding 1500 g of the appropriate sediment mixture. To maintain 485 

the animals throughout the exposure, 750 µL of Isochrysis galbana (4-7 µm; 8% dry mass); was mixed 486 

into the sand with 500 mL of clean filtered seawater to form a homogenous slurry. A further 1000 mL of 487 

seawater was added over a clean stainless steel spoon to avoid disturbing the mixture of sediment. For 488 

each experiment, the spatial arrangement was randomized to remove bias associated with possible 489 

environmental gradients in the temperature-controlled room. Tanks were then covered with pre-cleaned 490 

(acetone/dichloromethane) ceramic tiles and aerated, via a glass pipette inserted through a hole in the 491 

center of each tile. Treatments were kept at 15 ºC under 12 hr light/dark cycle for 10 d. Salinity was 492 

maintained, via addition of Mili-Q-purified water to a pre-marked level. For each replicate, three 493 

lugworms were chosen at random, their mass recorded and carefully added to each beaker. 494 
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 495 

Fig. S2. Pilot study investigating whether treating PVC with ethanol and then washing it three times 496 
affected the survivorship (A) and feeding of worms (B), and the immunological functioning of their 497 
colemocytes (C). Data are means ± S.E. There were no significant differences and n = 5 for each. 498 
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