
IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 1

Inc-part: Incremental Partitioning for Load
Balancing in Large-Scale Behavioral

Simulations
Yu Zhang, Xiaofei Liao, Member, IEEE, Hai Jin, Senior Member, IEEE, Guang Tan, Member, IEEE,

and Geyong Min, Member, IEEE

Abstract—Large-scale behavioral simulations are widely used to study real-world multi-agent systems. Such programs normally
run in discrete time-steps or ticks, with simulated space decomposed into domains that are distributed over a set of workers
to achieve parallelism. A distinguishing feature of behavioral simulations is their frequent and high-volume group migration, the
phenomenon in which simulated objects traverse domains in groups at massive scale in each tick. This results in continual
and significant load imbalance among domains. To tackle this problem, traditional load balancing approaches either require
excessive load re-profiling and redistribution, which lead to high computation/communication costs, or perform poorly because
their statically partitioned data domains cannot reflect load changes brought by group migration. In this paper, we propose
an effective and low-cost load balancing scheme, named Inc-part, based on a key observation: that an object is unlikely to
move a long distance (across many domains) within a single tick. This localized mobility property allows one to efficiently
estimate a dynamic domain’s load incrementally, based on merely the load changes occurring in its neighborhood. The domains
experiencing significant load changes are then partitioned or merged, and redistributed to redress load imbalance among the
workers. Experiments on a 64-node (1024-core) platform show that Inc-part can attain excellent load balance with dramatically
lowered costs compared with state-of-the-art solutions.
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1 INTRODUCTION

B EHAVIORAL simulations are widely used to model
real-world systems, in which a large number of

autonomous agents interact in complex ways. They
are instrumental in characterizing physical, ecological,
and societal systems, such as fish schools [1], [2], [3],
[4], transportation simulation [5], [6], [7], honeybee
groups [1], [8], [9], [10], and outer space objects [11],
[12], [13], [14]. For example, transportation simula-
tions are used to predict road condition and help
with transportation engineering. This proves to be
very helpful in mitigating traffic congestion, which
costed $12.1 billions and produced 56 billion pounds
of carbon dioxide (CO2) pollution [15] in 2011 alone.

In these simulations, the simulated objects move
in a homogeneous space, and the time is discretized
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into ticks. In each tick, simulated objects concurrently
gather data about the surrounding environment, rea-
son on the data, and update their states for the
next tick [16]. In order to achieve parallelism, the
simulated space is divided into domains, which are
then distributed over a set of workers [16], [17], [18].
An inherent property of behavioral simulations is
the phenomenon of group migration, in which objects
move across the domains in groups, imitating the self-
organization behavior of autonomous agents in the
real world [19], [20], [21]. Group migration occurs
frequently and at large scale, causing continual and
significant load imbalance among the workers. For
example, some workers may well have loads many
times higher than average, yielding so-called strag-
glers, which greatly slow down program execution.

Currently, there are two main approaches to tack-
ling the load imbalance problem. The first approach
partitions data into equally loaded domains (tasks)
by profiling load costs through a user-defined cost
function [17], and then assigns the domains to work-
ers. The second approach uses persistence-based load
balancing (PLB) or retentive work stealing (RWS) [22]
to partition data into fixed domains, and then redis-
tribute the corresponding tasks or migrate stragglers
for load balancing. Applied to behavioral simulations,
the first approach needs to re-profile load cost fre-
quently to account for the changes of load distribu-
tion brought by group migration. Accordingly, the
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entire simulation space needs to be re-decomposed
and a large number of objects be migrated, incurring
prohibitively high computation and communication
costs. The second approach, on the other hand, does
not try to balance load among the tasks, but in-
stead focuses on balanced placement of tasks on the
workers. Such an approach has to rely on historical
information for task load estimation, which easily
becomes outdated and even misleading under group
migration.

To address these challenges, we propose a novel
and efficient method, named Inc-part (Incremental
Partition), to mitigate load imbalance for behavioral
simulation, based on a key observation: that the mo-
bility of objects within a single tick is limited. In
other words, an object is unlikely to move across
many domains within a single tick. This allows one
to estimate a domain’s load cost based on merely the
load changes of its neighboring domains. Moreover,
the load cost recalculation is needed for a domain only
when its neighbor domains experience significant
joins or leaves of objects. With up-to-date load cost
information, those highly overloaded or under-loaded
domains are either partitioned or merged, and then
redistributed to restore load balance among workers.

We have implemented Inc-part in the Piccolo [23]
programming model to support behavioral simula-
tion. Experiments on a 64-machine (1024-core) clus-
ter show that Inc-part attains good load balance
with much lower costs compared with state-of-the-
art schemes. For example, Inc-part produces load
imbalance degree below one fifth of what is achieved
by PLB and RWS [22]. This leads to speedup improve-
ments of 4.08× and 2.95× compared with PBL and
RWS, respectively.

The remainder of this paper is organized as follows:
Section 2 presents the motivation of this work. Section
3 outlines our approach, with implementation details
given in Section 4. Experimental results are shown in
Section 5, followed by a description of related work in
Section 6. Finally, we conclude this paper in Section 7.

2 BACKGROUND AND MOTIVATION

In this section we discuss the performance character-
istics of behavioral simulation and explain why tradi-
tional approaches are inadequate for load balancing.
Four typical examples of behavioral simulation are
introduced in Appendix A.

2.1 Group migration and its impact
Behavioral simulations often run in discrete time-
steps, or ticks. To achieve parallelism, the simulated
space is partitioned into domains, which are then
mapped to tasks and distributed over a set of work-
ers. An important feature of the simulations is the
behavior of group migration, by which objects move
through domains, following the mobility patterns of
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Figure 1. Frequent and high-volume fish migrations
among 16 sub-domains across two ticks in the fish
school simulation.
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Figure 2. The locality property of group migration in
the fish school simulation.

groups of agents in real-world systems. Group migra-
tion exhibits three characteristics: high frequency, high
volume, and locality.

We run a fish school simulation on a 64-machine
(1024-core) cluster to demonstrate the properties of
group migration. (More details of the experimental
methodology are given in Section 5.) A 2D simulated
space comprising 10 million fish is divided into 1024
equal-sized square domains, which are distributed
over the 1024 cores. Furthermore, each domain is di-
vided into 16 sub-domains. Note that the sub-domain
is only used in this section to explain the phenomenon
of group migration. A sub-domain’s load ratio over
the total load of its owning domain is measured by
the percentage of fish it hosts. Figure 1 shows the
16 sub-domains’ load ratios in two consecutive ticks,
50 and 51. It can be seen that the load ratios of the
various sub-domains vary constantly and widely. For
example, 7 out of the 16 sub-domains, namely sub-
domains 2, 3, 4, 5, 9, 11, 13, experience significant
load changes of at least 50% in tick 51 compared with
tick 50. Furthermore, sudden rises and falls of loads
appear to be very common. For example, the sub-
domains 2 and 5 both see a surge of load ratio from
zero to above 20% across tick 50.

The locality property is reflected in Figure 2, where
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a breakdown of the objects’ moved distances in each
tick is shown. We can see that in all cases, less than
20% of the objects move more than one sub-domain in
a tick, indicating that the objects’ movement is largely
localized within a short period of time. This property
will turn out to be very helpful in load balancing.

2.2 Inefficiency of existing solutions
In Figure 1, at tick 50 there are four sub-domains
with load ratios above 18%, while at the same time
ten sub-domains have almost zero loads, suggesting
a high variation of load ratios. Also, the highest
loaded sub-domains, called stragglers, change over
time. In tick 50 for example, the straggler sub-domain
is 6, while in tick 51, the straggler becomes sub-
domain 5. This phenomenon brings great challenges
to the existing load balancing schemes. For example,
the user-defined cost function based approach [17]
attempts to balance load among tasks (sub-domains
in our case). Due to the changes of sub-domain loads,
this approach will have to profile load cost for each
sub-domain at each tick. Furthermore, it needs to
decompose the entire simulated space and migrate
a large number of objects in each tick in order to
create equally loaded sub-domains. Clearly, this will
result in a very high cost in both computation and
communication.

The persistence-based load balancing [22] and re-
tentive work stealing [22] methods represent another
approach to reducing load imbalance. (See details in
Appendix B.) They decompose the simulated space
into equally loaded domains only in the beginning,
and then re-schedule tasks for load re-balancing based
on the profiling of the tasks processed by each worker
and the duration of each task. Unfortunately, the
task rescheduling in a tick is based on an outdated
load profile obtained in the previous ticks. This leads
to misguided rescheduling of tasks, which in turn
generates continual load imbalance in the system.

In summary, the existing solutions cannot cope with
group migration efficiently, thus we need to develop
new techniques to tackle the load imbalance problem.

3 THE INC-PART APPROACH

In this section, we first present an incremental load
cost updating method, and then show how to re-
balance load in behavioral simulations using this
method.

3.1 Main idea
The idea of Inc-part leverages the locality property of
group migration of objects. Since most objects (>80%
in Figure 2) stay in the same domain or move no
more than one domain in a tick, it is possible to
redress the imbalance accumulated in a tick in a more
efficient way. Specifically, we incrementally calculate
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Figure 3. Illustration of main concepts in the cost load
model.

a domain’s load cost from the load changes of its
neighboring domains. This allows us to obtain fairly
accurate estimate of load cost for a domain at a low
cost. After the load cost update, Inc-part identifies
a set of domains that experience most significant
changes of load cost, partition or merge them, and
redistribute them over the workers for load balance.
The selective processing of domains keeps the overall
communication cost low.

3.2 Load cost update rule
Suppose the simulated space is divided into a set of
domains. The load cost of a domain D is the sum of
the load costs of all the objects in it. That is:

cost(D) =
∑
o∈D

cost(o). (1)

In behavioral simulation, objects in close vicinity
have similar load costs. We can then obtain a fast
approximation of cost(D) in the following way. We
first divide D into n fixed, equal-sized rectangular or
cubic pieces, denoted by P , and assume all objects in
P are equally loaded. We pick a random object r(P )
to represent the piece P , then the load cost of P is
cost(P ) = cost(r(P )) × |P |, where |P | is the number
of objects in P . It follows that

cost(D) =
∑
P∈D

cost(r(P ))× |P |. (2)

For the purpose of clarity, the main concepts are
illustrated in Figure 3, and a list of notations is given
in Table 1.

Now let us look at the load cost of a particular
object o. In behavioral simulation, an object can only
interact with its neighbor objects in a local scope,
called its spatial context. In the fish school simulation,
for example, a fish object can only see or move within
a limited scope during a tick. Such a scope is then the
fish object’s context, whose specific size depends on
simulation parameters. Moreover, the processing time
of each interaction between two simulated objects is
almost the same for behavioral simulation. As such,
the load cost of an object can be evaluated with the
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Table 1
List of notations.

Notations Descriptions
cost(D) Load cost of domain D
cost(P ) Load cost of piece P
cost(o) Load cost of object o

r(P ) An arbitrary object in P that represents P
|P | The number of objects in piece P

context(o) The set of pieces that intersect with object o’s
spatial context

number of objects in its spatial context. We use an
approximate measure to represent such a context.
Define the piece context of object o, context(o), as the
set of pieces that intersect with the spatial context of
o, then we have

cost(r(P )) =
∑

Q∈context(r(P ))

|Q|. (3)

Note that P belongs to context(r(P )). Since the
spatial context of a piece P is fixed, context(r(P )) is
also fixed and can be calculated when domains are
partitioned.

The update rule of cost(D) is as follows:



cost(D) = cost(D) +
∑

P∈D ∆cost(P )
∆cost(P ) = ∆1 + ∆2 + ∆3

∆1 = ∆|P | × cost(r(P ))
∆2 = |P | ×∆cost(r(P ))
∆3 = ∆|P | ×∆cost(r(P ))

∆cost(r(P )) =
∑

Q∈context(r(P )) ∆|Q|
(4)

From Equation 4, we can see that a domain only
needs to recalculate load cost for relevant pieces that
experience object joins/leaves.

3.3 Domain management
In this section we present a high-level description
of domain management. The details will be given in
Section 4.

Before the simulation begins, the simulated space is
divided into Nx ×Ny ×Nz equal-sized pieces, where
Nx, Ny , Nz are the number of intervals along the
x, y, z axes and are user-specified parameters. Note
that Nz = 0 for a 2D space. The piece division brings
several benefits. First, the load cost of a piece can
be well approximated and easily calculated, as dis-
cussed in Section 3.2. Second, the division facilitates
partitioning, merging, and redistribution of domains.
Third, it becomes easy to determine the data structure
of a moving object and to update the load costs of
its influenced pieces and domains. Figure 4 shows
an example of how to determine the piece owning
a particular object.

At the end of a tick, some domains may have a
much higher or lower load than average. Upon de-
tecting this, Inc-part attempts to re-balance the loads

<Ox,Oy>
Ny

Nx

Figure 4. An object moving from a piece to another
across a tick. The new location can be obtained from
its coordinates 〈Ox, Oy〉 in the simulated space, given
the side length of a piece.

among domains before the next tick begins. More
specifically, when a domain is found to have load cost
more than a threshold Tmax, it will be partitioned into
multiple spatially connected sub-domains with the
same baseline load cost L (except the last sub-domain).
On the other hand, when a domain has a load cost
smaller than Tmin, Inc-part seeks to merge it with its
neighbor domains. The merging process is repeated,
and stops when a new neighbor domain is going to
make the merger exceed L in load cost, or when no
suitable neighbor domains are available for merging.
Note that the partitioning and merging processes all
use pieces as basic operational units. In this paper,
Let Tmax = α ·L and Tmin = β ·L, where α and β are
used-defined parameters (e.g., α = 2, β = 0.5).

After domain partitioning and merging, all domains
will end up having similar load costs. Inc-part then re-
distributes the domains over workers to maintain load
balance for the next tick. The redistribution process
takes into account domains’ locations and optimizes
for small communication and synchronization costs.

4 IMPLEMENTATION

Inc-part is implemented in the Piccolo [23] program-
ming model. Piccolo assumes a master and multiple
workers. The master coordinates the workers and
monitors their status, and each worker loads a subset
of data elements into its memory for processing.

4.1 Data structure

All data elements on a worker are grouped into units
of pieces and maintained in a local in-memory key-
value state table. Each state table entry corresponds
to a piece P and is indexed by P ’s key. Specifically,
it contains four fields: (1) P ’s key value; (2) the key
values of pieces in P ’s piece context, context(r(P));
(3) the number of objects in P , |P |; and (4) a list of
objects in P . Note that the second and third fields
record the information that is used to calculate load
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Algorithm 1 Domain partitioning algorithm
Require: Domain D1, Threshold Tmax
Ensure: Dset //a set of Domains

1: while D1.load > Tmax do
2: //Get a piece with load under L from D1’s border
3: P1 ← D1.GetBorderPiece()
4: D2.insert(P1)
5: //Get a set of pieces connected to P1 from D1
6: Pset ← P1.GetConnPieces(D1)
7: while Pset is not empty do
8: P2 ← Pset.get()
9: if D2.load+P2.load ≤ L then

10: D1.remove(P2) //also update D1.load
11: D2.insert(P2) //also update D2.load
12: Pset ← Pset

⋃
P2.GetConnPieces(D1)

13: end if
14: Pset.remove(P2)
15: end while
16: Dset.insert(D2)
17: end while
18: return Dset

cost. Inc-part also uses a table to maintain the infor-
mation of domains. Each entry in such a table cor-
responds to a domain, indexed by the domain’s key,
and contains four fields: (1) the domain’s key value;
(2) the domain’s load cost value; (3) the information
of neighboring domains, including their key values
and owning workers, used for domain partitioning,
merging and redistribution; and (4) the key values of
the domain’s pieces.

4.2 Domain management details
After an object o has been processed in a tick, Inc-part
obtains the piece corresponding to o’s new location in
the next tick, and inserts o into that piece. If a piece P
experiences a significant change of |P | that is greater
than a pre-defined threshold T0, Inc-part recalculates
P ’s load cost, and then updates the load cost of pieces
in context(r(P)). Note that in order to reduce the cost
of object inserting operations, Inc-part delays them
until the end of a tick, and processes them all together.
After these updates, some domains may have much
higher loads than others. This will be dealt with by
domain partitioning and merging below.

4.2.1 Domains partitioning and merging
Inc-part tries to achieve rough load balance among
domains by partitioning or merging domains with ab-
normal load costs before the next tick begins. During
this process, the load costs of the influenced domains,
including those partitioned/merged ones and their
neighbors, will be updated according to the changes
of their piece sets. The purpose of this balancing
process is to eliminate huge gaps between domains’s
load costs, which can make subsequent worker-level

load balancing difficult. On the other hand, the de-
sired inter-domain balance need not be perfect for the
sake of lower costs, as moderate imbalance can be
corrected by later domain redistribution.

When a domain’s load cost is greater than a pre-
defined threshold Tmax, it will be partitioned into
several spatially connected domains with equal load
cost L (except the last domain), as shown in Algo-
rithm 1. The threshold Tmax restricts the partitioning
operations to highly overloaded domains (often a
small fraction of all domains), and does not affect
others. In addition, pieces in the same domain are
ensured to be spatially connected with each other to
retain data locality for object processing (Lines 2 to 15
in Algorithm 1).

To partition a target domain D1, Inc-part tries to
extract a sub-domain D2 with connected pieces from
D1 as follows. It first finds a suitable piece from D1’s
boundary, and then repeatedly extracts new pieces
connected to the previously extracted ones from D1,
in order to form a new domain D2, until there are
no more suitable pieces. This process is illustrated in
Algorithm 1 (Lines 7 to 15). Note that the set Pset is
a FIFO list. The new neighboring pieces are always
inserted to the end of Pset. Then through the function
get(), the piece connected to the foremost selected
piece is first processed. In this way, the pieces in the
same domain can be connected with each other more
closely, helping to reduce the communication cost.

When a domain’s load cost is below a lower bound
Tmin, Inc-part tries to merge it with its neighboring
domains, until the merger’s load cost is about to
be greater than L. Its details are provided in Ap-
pendix C.1.

4.2.2 Domains redistribution
Given roughly load balanced domains, Inc-part needs
to redistribute the domains among the workers to
maintain worker-level load balance before the tick
begins. The first consideration for the redistribution is
to preserve data locality. To this end, Inc-part always
seeks chance to diffuse an excess domain to a worker
that hosts domains connected to that excess domain.
In this way, much communication and synchroniza-
tion cost of object processing will be saved in the
next tick. If such an arrangement is not possible,
Inc-part then diffuses an excess domain to the least
loaded worker. The details of domains redistribution
algorithm are given in Appendix C.2.

5 PERFORMANCE EVALUATION

In this section, we present experimental evaluation.
The impact of system parameters are also evaluated
and the results are given in Appendix D.

Platform and benchmarks. The hardware platform
used in our experiments is a cluster with 1024 cores
residing on 64 nodes, which are interconnected by
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a 2-Gigabit Ethernet. Each node is a 2-way octuple-
core with Intel(R) Xeon(R) CPU E5-2670 at 2.60 GHz
CPUs and 64 GB memory, running a Linux operation
system with kernel version 2.6.32. A maximum of
16 workers are spawned for each node to run the
simulations. Data communication is performed using
openmpi version 1.6.3. The program is compiled with
cmake version 2.6.4, gcc version 4.7.2, python version
2.7.6 and protobuf version 2.4.1.

To evaluate the performance, four simulation
benchmarks are used (detailed in Appendix A),
namely the Fish School simulation (FS) [1], the Hon-
eybee Foraging simulation (HF) [1], the N-body sim-
ulation (NB) [14], and the Transportation simulation
(TS) [6]. The data settings are specified in Table 2.
Initially the data are evenly distributed over a 2D
simulated space. By default, Inc-part sets Nx = 2048,
Ny = 2048, Nz = 0, α = 4 and β = 0.25, and a tick
duration of one second.

Table 2
Simulation data sets.

Benchmark Scale
Fish School (FS) #Fish: 1 billion

Honeybee Foraging (HF) #Bees: 1 billion
N-body (NB) #Points: 1 billion

Transportation (TS) #Travelers: 1 billion

Compared schemes. Inc-part is compared against
three schemes:

1) Partition with user-defined cost functions
(PUC) [17], which employs user defined cost
functions to guide the division of simulated
space into equally-loaded data partitions based
on the sample of input data;

2) Persistence-based load balancer (PLB) [22],
which is a hierarchical persistence-based rebal-
ancing algorithm that performs localized incre-
mental rebalancing based on the previous task
distribution;

3) Retentive work stealing (RWS) [22], which is
an active-message-based hierarchical retentive
work stealing algorithm. RWS employs split task
queues and a portion of tasks in the queue can
be randomly stolen by a thief.

PUC represents the approach that focuses on task-
level load balancing. It tries to balance load among
tasks and then distributes them over workers. PLB
and RWS represent the approach that focuses on
worker-level load balancing. In these two schemes,
the input data is divided into a fixed set of tasks at
the beginning, which are then to be redistributed in
response to load changes, for load balancing among
workers. Note that all these schemes are realized in
Piccolo, with the main difference being the balancing
methods used. For PLB and RWS, the simulated space
is divided into equal-sized domains, and each worker
is initially assigned 128 such domains. The sampling

rate of PUC is set to 1% as with SkewReduce [17].
Performance metrics. The performance evaluation

mainly uses three metrics.
1) Load imbalance degree (LID), which reflects the

load difference among workers, and is defined
as

LID = Lmax/Lavg − 1, (5)

where Lmax and Lavg are the maximum and
average loads of all the workers, respectively.

2) Runtime overhead, which includes computation
and communication costs. We measure the pro-
cessing time Pa(i) and the real data processing
time Pr(i) of each worker, as well as the number
of messages C(i) sent by each worker. (Note that
it does not include the communication to process
simulated objects, which is the communication
needed by the behavioral simulation.) Then the
computation overhead is the average of differ-
ence between Pa(i) and Pr(i) over all workers:

P =
∑

i

Pa(i)− Pr(i)
i

, (6)

and the communication overhead is evaluated
by the sum of messages over all workers, that
is,

C =
∑

i

C(i). (7)

3) Speedup, which is measured by the execution
time of a scheme compared against that of a
naive implementation without using any load
balancing method.

5.1 Accuracy of load cost model

We first examine the accuracy of Inc-part’s load cost
evaluation method, defined as

AR = 1− 1
n

n∑
i=1

|Lc(i)− Lt(i)|/Lt(i), (8)

where Lc(i) is the load cost of domain i calculated
using our load cost evaluation model, and Lt(i) is the
true load cost. Figure 5 shows the accuracies of Inc-
part and PUC. (PLB and RWS assume a fixed load cost
of the domains, so the accuracy metric is irrelevant
for them.) It can be seen that Inc-part has an accuracy
of up to 91.2% on the TS benchmark, which is higher
than PUC’s accuracy 85.1%. This is because Inc-part is
not based on data sampling as with PUC. Due to the
skewed distribution of domain loads, the sampling
process is likely to be biased, which negatively affects
PUC’s accuracy of load estimation.

5.2 Load imbalance degree (LID)

We first confirm the necessity of re-balancing loads
every tick by running PUC and measuring the LID
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Figure 7. Load imbalance degree of
PUC without load balancing, mea-
sured at the end of each tick.

at the end of each tick, right before any re-balancing
procedure starts.

To demonstrate whether loads need to be re-
balanced in every time step and whether the asso-
ciated overhead can be amortized by muliple ticks,
the performance of an epoch-based repartitioning
approach with the PUC balancer is evaluated. This
epoch-based method can tradeoff between balanc-
ing overhead and LID through the parameter epoch
length. The results are given in Figure 6. Although
PUC’s runtime overhead is indeed amortized by
multiple ticks in an epoch, the delayed balancing
operation significantly increases load imbalance and
reduces the performance.

Figure 7 shows the LID results for six successive
ticks. It can be seen that the high load imbalance may
still arise at the end of the new tick although it is
redressed by PUC at the end of the previous tick. For
example, for the NB benchmark, the LID is constantly
above 4 and can be up to 6.6. This means that in order
for the task execution to be balanced in the next tick,
load re-balancing must be performed at the end of
each tick. In what follows, we will make Inc-part and
PUC re-partition and re-schedule the domains at the
end of every tick.

Figure 8 shows how much change in domains
contribute to load imbalance degree as described in
Figure 7. The results include the ratio of domains
which have increased load by more than 0.01% of the
total load after a tick and the sum of the increased
load ratio for these domains in this tick, namely

Tc =
∑

i

|La(i)− Lb(i)|, (9)

where La(i) and Lb(i) are the load ratios of domain Di

against the total load of all domains after and before
the finish of a tick, respectively. From this figure, we
can find that in behavioral simulation a small number
of domains may see significant load changes which
result in high load imbalance.

Figure 9 shows the LIDs of the various schemes for
the benchmarks at tick 100. It shows that without load
balancing, the LID can be as high as 18.4 due to some

F S H F N B T S
0
5

1 0
1 5
2 0
2 5
3 0
3 5

Ra
tio

 (%
)

B e n c h m a r k s

 N u m b e r  o f  d o m a i n s  w i t h  l o a d  i n c r e a s e
 S u m  o f  i n c r e a s e d  l o a d  r a t i o

Figure 8. Load changes condition of domains.

FS HF NB TS
0
2
4
6
8

10
12
14
16
18

 B e n c h m a r k s

Lo
ad

 im
bla

nc
e d

eg
ree

 w i t h o u t  L B
 I n c - p a r t
 P U C
 P L B
 R W S

Figure 9. LID of various schemes in tick 100.

very densely populated domains. PLB and RWS also
suffer from serious load imbalance because they only
partition the domains in the very beginning of the
simulation. Due to group migration, the initial balance
will soon be lost and straggler domains arise. Worse
still, the straggler domains are not fixed, but rather
appear unpredictably among the workers, making it
very difficult to balance the loads with PLB and RWS.
In contrast, Inc-part keeps the LID below 0.69, since
it selectively re-profiles and re-balances the domain
loads at the end of every tick. For the same reason,
PUC achieves almost the same LID (though with
much higher overheads, as discussed later).



IEEE TRANSACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013 8

F S
F S

0 2 0 4 0 6 0 8 0 1 0 0

Be
nc

hm
ark

s
 o b j e c t  p r o c e s s i n g
 p a r t i t i o n (  i n c l u d i n g   m e r g i n g  f o r  I n c - p a r t )
 d i s t r i b u t i o n

H F
H F

0 2 0 4 0 6 0 8 0 1 0 0

N B
N B

0 2 0 4 0 6 0 8 0 1 0 0

T S
T S

0 2 0 4 0 6 0 8 0 1 0 0

I n c - p a r t

I n c - p a r t

I n c - p a r t

I n c - p a r t

P U C

P U C

P U C

P U C

R a t i o  ( % )

Figure 10. Runtime breakdown of Inc-part and PUC
for various benchmarks. The object processing, par-
tition, and distribution sections represent the propor-
tions of time spent on real object processing, load cost
profiling and domain partition, and domain balancing
among workers, respectively.

5.3 Runtime overheads

Figure 10 shows the proportions of the total execution
times spent on three tasks, namely real object process-
ing, load cost update and domain partitioning, and
domain distribution, of the various schemes during
a tick. This breakdown reflects how much time a
scheme spends on actual simulation and how much
on load balancing. It can be seen that PUC spends al-
most 71.4% of its time on domain management for TS,
including partitioning and distribution. Furthermore,
it spends 45.7% of its time in the partitioning step on
parallel sampling on workers, finding partition points
and partition planning on workers. Another 25.7% of
its time is spent in the redistribution step on notifying
every worker of its new partitioning results, as well as
on dispatching the new data domains to the workers.
Thanks to the incremental nature of Inc-part’s load
balancing, it spends only 12.9% of its time on load
balancing, including 8.65% on partitioning and 4.27%
on domain redistribution.

Figure 11 shows the computational and communi-
cation overheads of the various schemes divided by
Inc-part’s respective overheads. Inc-part’s computa-
tional overheads per tick are 21.5s, 19.3s, 26.4s and
15.2s for FS, HF, NB and TS, respectively. Also, its
per tick communication overheads are 21.3K, 15.9K,
27.7K and 14.1K messages for FS, HF, NB and TS,
respectively. Note that the overhead of PLB is incurred
at the beginning of a tick, while RWS causes overhead
within a tick. We can see that PUC incurs at least
16 times as much overhead as Inc-part does for the
TS benchmark. This great difference is attributed to
two reasons: (1) PUC has to profile load cost and re-
decompose the entire simulation space at the end of
each tick, in order to eliminate stragglers; (2) PUC
needs to migrate large numbers of objects for load

re-balancing between workers.
In contrast, Inc-part updates the domains’ load cost

incrementally and conservatively, in the sense that
only very dynamic domains update their load costs.
Moreover, the domain partitioning only involves a
small number of domains, so the incurred cost re-
mains low. Because the load cost distribution changes
every tick, the load information profiled from previ-
ous ticks will be largely useless at the new tick. As a
result, as shown in Figure 11, the load balancing of
RWS is rendered ineffective. For the NB benchmark,
RWS’s computational and communication overheads
are as high as 2.72 and 4.13, respectively.

5.4 Speedup

Let the execution time of a simulation without using
any load balancing schemes be Traw. The speedup of
a scheme is defined as Traw divided by its execution
time. Figure 12 shows the speedup of the various
schemes for the four benchmarks. It can be seen that
Inc-part produces a significantly higher speedup than
other schemes. With Inc-part, the per tick’s execution
times for FS, HF, NB and TS are 186.7s, 260.1s, 665.8s
and 117.6s, respectively. The superiority of Inc-part is
due to its efficient utilization of the locality property
of group migration, and its careful actions to preserve
the locality of domains while re-balancing the load
costs. Though PUC also yields a fairly high speedup
of up to 6.8, this comes at a great price of compu-
tational and communication costs, as shown in the
previous section. Notice that the speedups of PLB and
RWS are only 2.28 and 3.16, respectively, because of
their high LID.

For the FS benchmark, Inc-part generates a speedup
of up to 7.34, more than twice higher than that of PUC.
For the TS benchmark, the speedup of PUC is even
lower than those of PLB and RWS.

Figure 13 shows the scalability of Inc-part under the
FS benchmark, measured by the number of processed
fish objects per second. It can be seen that Inc-part
attains good scalability.

Figure 14 shows the impact of the number of do-
mains for the FS benchmark. In this experiment, we
aim to demonstrate that finer grained decomposition
of data does not always mean the better performance
for PLB and RWS. It can be seen from the figure that
the speedup first increases, reaching the maximum at
a certain point before it declines afterwards. Though
more domains help reduce the LID due to more
fine-grained load scheduling, the benefit is gradually
canceled out by the increased cost of managing the
over-segmented domains. For RWS, when the number
of domains grows, stealing operations become more
frequent, and the invalid load information profiled
from the previous ticks will cause a high miss ratio
for the stealing operations, which brings down the
performance. Figure 14 also shows that PLB performs
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Figure 11. Computational and communication overheads of the
various schemes against Inc-part’s respective overheads.
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Figure 12. Speedup of the various
schemes.
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Figure 14. Impact of number of domains on the
speedup of PLB and RWS for the FS benchmark.

worse than RWS because the invalid load information
profiled from the previous ticks leads to ineffective
task redistribution in PLB. In contrast, RWS can mit-
igate this problem to some extent, via task stealing.

6 RELATED WORK

Load balancing is an important problem in behavioral
simulations. Current solutions for this problem either
focus on task-level load balancing, or on worker-level
balancing. The main related works are summarized as
follows. Others are provided in Appendix E.

Task-level load balancing. SkewReduce [17] is a
state-of-the-art solution for reducing load imbalance

among tasks, in view that in some scientific applica-
tions, different partitions (domains) of data take vastly
different amounts of time to run even if they have
an equal size. It proposes to employ the user defined
cost function to guide the division of simulated space
into equal-loaded, rather than equally-sized, data par-
titions.

Worker-level load balancing. Persistence-based
load balancers (PLB) [22] and retentive work stealing
(RWS) [22] represent the approaches to balancing
loads among workers for iterative applications. PLB
redistributes the work to be performed in a given iter-
ation based on measured performance profiled from
previous iterations. RWS is used for applications with
significant load imbalance within individual phases,
or applications with workloads that cannot be easily
profiled. RWS records the task information of pre-
vious iterations for work stealing to achieve higher
efficiency. Both of these two approaches are based
on statically partitioned domains, whose loads tend
to change dramatically over time and exhibit high
imbalance. The load profiling process also fails to
track the load changes. These problems give rise to
stragglers that appear unpredictably in the system,
seriously slowing down the execution of programs.

Other load balancing strategies. On the other ap-
plication domains, force-decomposition and equiva-
lent approaches were proposed to balance load. For
example, NAMD [25] not only employs persistence-
based load balancer but also considers decomposition
of forces rather than particles to achieve greater levels
of strong scaling than allowed by just partitioning
the domain amongst processor cores. Such force de-
composition would be, by definition, balancing the
computation load rather than the number of particles.
Moreover, it also takes into account the distance cut-
off similar to what is employed in our approach as
locality-cognizant costs.

7 CONCLUSION

This paper focuses on the load balancing problem
for large-scale behavioral simulations. Traditional so-
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lutions cannot efficiently balance loads among the
workers because of the group migration phenomenon.
We propose a new approach, Inc-part, that solves the
problem by taking advantage of the effect of localized
mobility found in typical behavioral simulations. Ex-
periments on a 64-node (1024-core) cluster show that
Inc-part can keep load imbalance within a very low
level, with dramatically lower overheads compared
with state-of-the-art approaches.

In the future work, we will investigate how to auto-
matically adjust parameters for Inc-part to obtain the
best performance under general conditions, and will
consider the applicability of incremental partitioning
to other iterative parallel applications. With Inc-part,
large-scale behavioral simulation may suffer from net-
work jitter in the cloud for global synchronization.
It might be helpful to integrate the communication-
avoidance method with our approach in order to
make such applications more efficient in the cloud.
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