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Abstract 27 

Fluxes of NH4
+ (acid) and HCO3

- (base), and whole body calcium content were 28 

measured in European lobster (Homarus gammarus) during intermoult (megalopae 29 

stage), and during the first 24 h for postmoult juveniles under control (~2000 µeq/L) 30 

and low seawater alkalinity (~830 µeq/L). Immediately after moulting, animals lost 31 

45% of the total body calcium via the shed exoskeleton (exuvia), and only 11% was 32 

retained in the uncalcified body. At 24 h postmoult, exoskeleton calcium increased to 33 
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~46% of the intermoult stage. Ammonia excretion was not affected by seawater 34 

alkalinity. After moulting bicarbonate excretion was immediately reversed from 35 

excretion to uptake (~4-6 fold higher rates than intermoult) over the whole 24 h 36 

postmoult period, peaking at 3-6 h. These data suggest that exoskeleton calcification is 37 

not completed by 24 h postmoult. Low seawater alkalinity reduced postmoult 38 

bicarbonate uptake by 29 % on average. Net acid-base flux (equivalent to net base 39 

uptake) followed the same pattern as HCO3
- fluxes, and was 22 % lower in low 40 

alkalinity seawater over the whole 24 h postmoult period. The common occurrence of 41 

low alkalinity in intensive aquaculture systems may slow postmoult calcification in 42 

juvenile H. gammarus, increasing the risk of mortalities through cannibalism.  43 

Keywords: ammonia excretion, bicarbonate excretion, calcification, carbonate, 44 

crustacean, exuvia, moult cycle  45 

 46 

1. Introduction 47 

Around 80% of the total body calcium present in calcifying marine organisms is 48 

located in the exoskeleton as calcium carbonates (Wheatly et al., 2002) and 49 

environmental availability of Ca2+ ions and HCO3
- equivalents (HCO3

- and/or CO3
2-) is 50 

critical to postmoult shell hardening. Internal Ca2+ stores are also important during 51 

moulting, mainly for terrestrial and freshwater crustaceans (Li and Cheng, 2012; 52 

Zanotto and Wheatly, 2003), but only of minor importance during postmoult 53 

calcification in marine crustaceans. For example, the amount of reabsorbed and 54 

internally stored calcium varies greatly from ~65% in the freshwater/land crab 55 

Holthuisana transversa (Sparkes and Greenaway, 1984) to <10% in the marine 56 

European shore crab, Carcinus maenas (Robertson, 1937). 57 
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During moulting, a major portion of total body Ca2+ is lost via the shed exoskeleton 58 

(exuvia) or excreted to the surrounding medium while smaller portions can be stored 59 

internally (e.g. in gastroliths, hepatopancreas, and haemolymph) (Ahearn et al., 2004; 60 

Greenaway, 1985, 1988; Hecht, 1914; Wheatly and Ayers, 1995; Zanotto and Wheatly, 61 

2003). Postmoult, the external seawater, internal stores, and ingested material 62 

(especially shed exuvia) are collectively critical components required to achieve re-63 

calcification of the exoskeleton. 64 

Calcium ions and HCO3
- equivalents can become limiting factors in the natural 65 

environment and in aquaculture facilities (e.g. due to changes in salinity and alkalinity). 66 

In freshwater environments the level of the cation Ca2+ varies by more than 100-fold 67 

from <50 µM to >5 mM (depending on factors such as underlying geology and rainfall), 68 

whereas in marine environments Ca2+ levels are far higher and more stable, typically 69 

being ~10 mM (Greenaway, 1985). Therefore, calcium availability is not normally a 70 

limiting factor in either natural marine environments or aquaculture facilities. However, 71 

in seawater recirculating aquaculture systems (RAS) the availability of HCO3
- 72 

equivalents is often much lower than in natural environments. In RAS, where calcifying 73 

crustaceans are cultured at high densities and moult frequently (e.g. European lobster, 74 

H. gammarus; Middlemiss et al., 2015a), this occurs partly due to the consumption of 75 

alkalinity during the calcification process, described by the net reaction that 76 

encompasses all the relevant acid-base changes occurring (Hofmann et al., 2010): 77 

 Ca2+ + 2HCO3
-     CaCO3 + CO2 + H2O  78 

However, in RAS the microbially-mediated nitrification (conversion of ammonia to 79 

nitrate) that occurs within the biofiltration systems, also consumes significant amounts 80 

of HCO3
- ions (Eshchar et al., 2006). As a result, the alkalinity of seawater in RAS 81 

declines over time if seawater replacement rates are insufficient. The alkalinity and Ca2+ 82 
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in seawater has been shown to directly affect the rate of postmoult calcification in 83 

crustacean exoskeletons and subsequent growth and survival rates in adults (Cameron 84 

and Wood, 1985; Greenaway, 1983; Whiteley, 2011). Slowing of the postmoult 85 

calcification process in marine crustaceans can be detrimental not only to natural 86 

populations, but also to aquaculture productivity by a) prolonging the period when the 87 

soft-bodied postmoult animal is more vulnerable to cannibalism (Borisov et al., 2007), 88 

or b) disease (Cawthorn, 1997; Scolding et al., 2012), and c) extending the sensitive 89 

period when they lack hardened mouthparts which allow feeding to resume postmoult 90 

(Whiteley, 2011).  91 

As with many intensively harvested marine species, European lobster have experienced 92 

a general population decline. A more recent 4-fold increase in UK capture rates in 2013 93 

compared to the 1950’s (FAO, 2014), has been attributed to conservation measures. 94 

These include the hatchery-based culturing of pelagic larval stages through to early 95 

benthic juvenile stages for release into coastal waters as part of stock enhancement 96 

programmes (Daniels et al., 2010; Tully, 2004). However, cannibalism and mortalities 97 

of the early life stages, exacerbated during moulting and by an elevated moult frequency 98 

(e.g. 4 moults in around 30 days at 17-19 °C in European lobster; Middlemiss et al., 99 

2015a), is a major limitation for crustacean aquaculture (Hecht and Appelbaum, 1988; 100 

Marshall et al., 2005; Middlemiss et al., 2015b). Currently there is no knowledge of 101 

how low alkalinity seawater that commonly occurs in RAS, may influence the moulting 102 

success, survival, particularly of the early life stages, and overall productivity of the 103 

culture of European lobster. 104 

The aim of the current study was to investigate the effects of low alkalinity seawater on 105 

the moulting and exoskeleton hardening in juvenile European lobster (megalopae to 106 

juveniles). Specifically, this study assessed the change in body calcium stores, and the 107 
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fluxes of acid-base relevant ions (HCO3
- and NH4

+) into and out of the body (uptake and 108 

excretion), at different times in the moult cycle, between megalopae and juvenile stages. 109 

We hypothesized that calcification of the new postmoult exoskeleton will be slowed 110 

down under low alkalinity conditions.  111 

2. Methods 112 

2.1 Animals  113 

Animals were reared at the National Lobster Hatchery (NLH; Padstow, North 114 

Cornwall, UK) until they reached the 5 day old megalopae (stage IV), at which point 115 

120 individuals were transferred to the University of Exeter (Devon, UK) and held in 116 

the Aquatic Resource Centre within the Biosciences department. Larvae were left 117 

undisturbed for a 4 day period before experimental work started, to allow recovery from 118 

any disturbance during transportation. Animals were fed a diet of NLH formulated 119 

pellet feed once daily and housed in individual cells within a closed recirculation 120 

seawater system. Water temperature was maintained at 21.5 °C and at a salinity of 35 121 

ppt. Photoperiod (12L:12D) was set at 08:00 hours (dawn) and 20:00 hours (dusk). The 122 

moult cycle was approximately 16 days between megalopa (stage IV) and juvenile 123 

(stage V). Intermoult megalopae were sampled 8 days post metamorphosis. Postmoult 124 

sampling was conducted over a 24 h period commencing immediately after moulting to 125 

first juvenile (stage V). 126 

2.2 Experimental setup 127 

For measuring the flux of acid-base relevant ions between lobsters and the 128 

ambient seawater, individual animals were transferred into 40 mL aerated chambers that 129 

were partially submerged in a water bath maintained at 21.5 °C.  130 
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Flux measurements were carried out over a 24 h period in seawater with one of two 131 

different total alkalinity (TA) treatments; TA = 2007 ± 3 µeq/L, pH 8.153 ± 0.015, 132 

pCO2 371 ± 15 µatm (control; N = 18) or, TA = 833 ± 4 µeq/L, pH 7.794 ± 0.004, pCO2 133 

381 ± 3 µatm (low alkalinity; N = 19). Note that pCO2 was almost identical between 134 

treatments because both were equilibrated with atmospheric air by continuous aeration 135 

(see below). All other water chemistry parameters were maintained identical between 136 

treatments, as detailed in Table 1. Each treatment was formulated from an artificial sea 137 

salt mix (Tropic Marin; TMC, UK) dissolved in deionised water. To achieve the desired 138 

total alkalinity and pH values for the two treatments, firstly the alkalinity of freshly 139 

made up seawater was measured (see below). Sufficient hydrochloric acid (1 M) was 140 

then added to each seawater treatment to achieve the desired alkalinity (either ~2,000 or 141 

~830 µeq/L) following vigorous overnight aeration to ensure equilibration with 142 

atmospheric CO2 for both treatments. Flux measurements in the intermoult animals 143 

(mean wet weight ~63 mg ± 1.4 SE) were measured for 24 hours (n=15) in control 144 

seawater only (TA ~2000 µeq/L). 145 

Table 1 insert here 146 

Table 1 Water chemistry parameters maintained throughout H. gammarus moult cycle during 147 

measurement of calcium and acid-base regulation in intermoult megalopae and postmoult 148 

juvenile stages for both control and low alkalinity seawater treatment groups. Alkalinity and pH 149 

of both treatments are stated in the Methods text (Section 2.2) 150 

 

Parameter Mean ± SE 

Temperature (°C) 21.0 ± 0.5 
Salinity (%) 35.0 ± 1.0   
Na+ (mM) 518.1 ± 13.0  
Ca2+ (mM) 7.56 ± 0.17 
K+ (mM) 10.1 ± 0.4 
Mg2+ (mM) 49.7 ± 1.4 

  151 
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Using a separate group of lobsters from the same batch, and therefore undergoing the 152 

same moult cycle, samples were taken for measuring the calcium (as carbonate) content 153 

of the whole animal. These included samples for: 1) whole body during intermoult 154 

(n=15); 2) whole body at ~0.5 h postmoult (n=8), 3) exuvia at ~0.5 h postmoult (n=8); 155 

and 4) whole body at 24 hour postmoult (n=10). Animals were placed in a -80 °C 156 

freezer to euthanase. They were blotted dry, weighed, then dried at 40 °C in an oven for 157 

~48 hours in pre-dried and weighed centrifuge tubes. Following drying, all 4 sample 158 

groups, as detailed above, were weighed and placed in 1.5 mL of 5% (w/v) sodium 159 

hypochlorite (NaOCl), until organic components were digested leaving only the 160 

remaining white calcium (as carbonate) stores (primarily exoskeleton and gastroliths if 161 

present). This treatment has no discernible effect on carbonate mineralogy and causes 162 

no detectable dissolution (Gaffey and Bronnimann, 1993). Samples were then rapidly 163 

rinsed in deionised water three times to remove traces of the hypochlorite (centrifuging 164 

and decanting the supernatant between rinses). They were then dried (as above), 165 

weighed, and digested in a volume of 1 M HCl (40 µL acid per mg of sample; Walther 166 

et al., 2011), for later calcium analysis (see below).  167 

To assess the ion flux rates, seawater samples were taken at the beginning and at the end 168 

of the 0-3, 3-6, and 6-24 h flux periods, representing the initial and final conditions 169 

within each chamber for each flux period. Seawater samples were preserved and stored 170 

at 4 °C for titratable alkalinity analysis (see below), a subsample frozen at -20 °C for 171 

total ammonia analysis, and another subsample immediately diluted (see below) and 172 

stored at -20 °C for ion analysis. Postmoult experiments were carried out on newly 173 

moulted animals (n=10) within 30 minutes of moulting. Animals moulted naturally and 174 

at different times over a period of 2 days, and they were distributed alternately to 175 

chambers containing either control or low alkalinity seawater. This was achieved by 176 

checking the holding trays every 30 min during two days, thus ensuring an equal 177 
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number of animals exposed to each treatment, and limiting any bias associated with 178 

time of moult. At the start of each flux, animals were rinsed (using seawater from their 179 

allocated treatment), and transferred to their chamber containing clean seawater of the 180 

relevant alkalinity.  181 

2.3 Ion analysis 182 

Seawater samples for measuring titratable alkalinity were preserved by adding 4 183 

µl of 4% (w/v) mercuric chloride per 10 mL of seawater (Dickson et al., 2007), and 184 

stored at 4 C until analysis by double titration using a Metrohm autotitrator (815 185 

Robotic USB Sample Processor XL, Switzerland). Alkalinity was measured by titration 186 

of a 20 mL sample to pH 3.89 with 0.02 N HCl whilst gassing with CO2-free nitrogen, 187 

followed by return to the starting pH with 0.02 N NaOH, similar to the method 188 

described by Cooper et al. (2010). Ammonia concentration was measured using a 189 

modified version of the colourimetric method of Verdouw et al., (1978), using a 190 

microplate reader (Infinite® M200 PRO, Tecan, UK). A calibration curve was 191 

constructed using NH4Cl standards made up in the relevant seawater (control or low 192 

alkalinity). Calcium concentrations in the seawater and total body calcium were 193 

measured by ion chromatography (Dionex ICS-1000), and flame photometry (Corning 194 

410), respectively. However, the Dionex was unable to detect the very small changes 195 

over each flux period against the very high background in seawater calcium and 196 

therefore no data are included in this study for calcium fluxes. Acid-digested body 197 

samples for calcium analysis were diluted 201-fold in ultrapure deionised water prior to 198 

analysis and calcium content data were not corrected for individual animal or exuvia 199 

weights. 200 

2.4 Calculations 201 
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Acid-base relevant fluxes (positive values representing uptake and negative 202 

values representing excretion) were calculated (µeq kg-1 h-1) using the following 203 

equation:  204 

JX = [([X]i - [X]f)  V] / (M  t)  205 

as described in Wilson and Grosell, (2003), where V is the volume of water (L); M is 206 

the mass of the lobster (kg); t is the duration of the flux period (h); and [X]i and [X]f are 207 

the ion concentrations in the seawater (µmol L-1) at the beginning and end of the flux 208 

period, respectively. Titratable acid fluxes (JTA) were calculated using the above 209 

equation by reversing initial and final values to achieve acid instead of base fluxes. Net 210 

flux of acid-base equivalents (JH+
net) was then calculated as the sum of JTA (µeq kg-1 h-1) 211 

and ammonia fluxes JAmm (µeq kg-1 h-1) as described by McDonald and Wood (1981). 212 

Seawater pCO2 was calculated using the CO2sys programme (using the constants from 213 

Mehrbach et al. (1973), refitted by Dickson and Millero (1987), and using the KSO4 214 

dissociation constants from Dickson (1990)) following direct measurements of pH 215 

(NBS scale) and total alkalinity. Having data on lobsters held in seawater at different 216 

concentrations of bicarbonate gave us the opportunity to roughly estimate some 217 

characteristics of the bicarbonate uptake transport system. Specifically, the affinity 218 

constant (Km) for external bicarbonate uptake and the maximum rate of uptake once the 219 

transport system was saturated (Vmax). Assuming that the transport system for 220 

bicarbonate in lobsters displays classical Michaelis-Menten kinetics (as it does in other 221 

aquatic animals; Goss et al. (1993)), the Km and Vmax values were determined by 222 

transformation of the data using Lineweaver-Burk and Eadie-Hofstee regression plots 223 

(Perry and Rivero-Lopez. 2012). This analysis was carried out for data collected during 224 

the three flux periods after moulting (0-3 h, 3-6 h, and 6-24 h) from all individual 225 

lobsters for measured bicarbonate flux and measured average bicarbonate concentration 226 
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during the relevant flux period. To visualise the transport characteristic graphically, the 227 

Km and Vmax values were then used to generate kinetics curves for each time period by 228 

substitution into the Michaelis-Menten equation: 229 

 HCO3
- flux rate = (Vmax × [HCO3

-])  / (Km +[HCO3
-]) 230 

 231 

  2.5 Statistical analysis 232 

Analysis was carried out using SigmaPlot V.11.0 (Systat Software Inc., USA) 233 

and data are presented as the mean ± SE. Total body Ca2+ data was log10 transformed to 234 

meet parametric assumptions, and then analysed using a one-way ANOVA. Data for 235 

HCO3
-, NH4

+ and net H+ fluxes were analysed using a two-ways ANOVA (time and 236 

treatment as factors). In order that parametric assumptions of equal variance and normal 237 

distribution were met, NH4
+ data were transformed using square root. When ANOVA 238 

tests were significant, data were subjected to post hoc analysis (Tukey). Differences 239 

were considered significant with P value ≤0.05. 240 

3. Results 241 

  3.1 Exoskeleton and whole animal calcium 242 

Mean total whole animal calcium (as carbonate) in intermoult animals was 24.3 243 

µmol/animal, and immediately after moulting this had significantly declined by ~90% 244 

(Fig. 1, P<0.05). Almost four times as much Ca2+ (as carbonate) was present in the 245 

discarded exuvia compared to the freshly moulted body. Compared to the intermoult 246 

animals, data suggest that 45% of whole animal Ca2+ (as carbonate) was lost in the shed 247 

exoskeleton (exuvia), 11% was retained in the uncalcified body, with the remaining 248 

44% presumably excreted to the seawater during the pre-moult period or maintained in 249 

organic compartments (Fig. 1). After a 24 h period the newly moulted animal had 250 

increased whole animal Ca2+ (as carbonate) content by 4-fold (compared to the 251 
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immediate postmoult whole animal), but this was still less than 50% of the previous 252 

intermoult animal (P<0.001).    253 

Fig. 1 insert here 254 

3.2 Acid-base fluxes  255 

Lobsters exhibited low excretion rates of both NH4
+ and HCO3

- during 256 

intermoult (megalopae) (Fig. 2A, B). Bicarbonate (base) excretion was ~2.7 fold higher 257 

than the NH4
+ (acid) excretion rate, and the difference between these two variables 258 

therefore culminated in a positive net H+ flux during intermoult (representing net base 259 

excretion or acid uptake). In the first 3 hours immediately postmoult, NH4
+ excretion 260 

was ~5-fold higher than the intermoult rate (Fig. 2A). Thereafter, the ammonia 261 

excretion rate steadily declined at each subsequent postmoult flux period, but remained 262 

elevated in relation to the intermoult (still ~1.5 fold higher 24 h postmoult). Ammonia 263 

excretion rate was ~60% lower during the second postmoult flux (3-6 h) compared to 264 

the first (0-3 h; Fig. 2A, P<0.001) and decreased further to ~30% of the 0-3 h period 265 

during the 6-24 h postmoult flux (P=0.014). Low alkalinity had no effect on the net 266 

NH4
+ excretion rate in postmoult animals (P=0.087) (Fig. 2A).   267 

During postmoult periods, HCO3
- fluxes were reversed in comparison to intermoult (i.e. 268 

HCO3
- uptake instead of excretion), and were of much greater magnitude (~6-fold and 269 

4-fold peak increase in control and low alkalinity treatments, respectively, during the 3-270 

6 h postmoult period; Fig. 2B). Under low alkalinity conditions, net bicarbonate uptake 271 

rates were substantially smaller than control alkalinity conditions (Fig. 2B; 37, 29 and 272 

21% respectively for the 0-3, 3-6 and 6-24 h periods). There was no interactive effect 273 

between time and treatment (P=0.942) between the control and low alkalinity HCO3
- 274 

treatment groups. In both the control and low alkalinity treatments, HCO3
- uptake was 275 

significantly higher at 3-6 h than at 0-3 h postmoult (P=0.006 and P=0.003, respectively 276 
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Fig. 2B). At all time points postmoult there was a significantly higher uptake of HCO3
- 277 

in the control alkalinity treatment group than low alkalinity (P=0.007, P=, P=0.012 and 278 

P=0.013 respectively). In both high and low alkalinity treatment groups, HCO3
- showed 279 

an increase between 0-3 and 3-6 h postmoult, and then a decrease at 6-24 h postmoult, 280 

however rates were still higher than at the 0-3 h time point. 281 

Rates of HCO3
- uptake were substantially larger than the amount of NH4

+ excretion, 282 

resulting in HCO3
- having a far greater impact on net H+ fluxes (Fig. 2C). Subsequently, 283 

during postmoult periods, all animals displayed large negative net H+ fluxes (i.e., net 284 

acid excretion rates equivalent to net base uptake). Net base uptake was significantly 285 

higher in the controls than in the low alkalinity seawater treatment group at 0-3 and 3-6 286 

h postmoult (P=0.032, P=0.002, respectively; Fig. 2C). There was no interaction 287 

between factors time and treatment (P=0.436). Within the control treatment, net base 288 

uptake during the 6-24 h postmoult period was significantly lower (P=0.05) than the 289 

previous 3-6 h period (Fig. 2C). In both alkalinity treatment conditions, net H+ fluxes 290 

were highest from 3-6 h postmoult, and then from 6-24 h they decreased to below the 0-291 

3 h rates.  292 

Table 2 shows that the Km values for bicarbonate uptake were almost identical 293 

regardless of the analysis method used (Lineweaver-Burk or Eadie-Hofstee). The Km 294 

values were similar during the first two time points (0-3 and 3-6 h) after the moult 295 

(ranging from 889 to 945 µM), but this was reduced by almost 4-fold by the 6-24 h flux 296 

period (Km values of 270 to 298 µM). 297 

Table 2 insert here 298 

Table 2. The kinetics of HCO3
- uptake in H. gammarus, first juvenile (stage V), during 299 

the first 24 h of moulting in waters of two different alkalinities. Km is the HCO3
- 300 

concentration needed to achieve a half-maximum HCO3
- uptake, and Vmax is the 301 

maximum rate of HCO3
- uptake. Both Km and Vmax were calculated by following both 302 

Lineweaver-Burk (1934) and Hanes-Woolf methods. 303 
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 304 

Fig. 2 insert here 305 

 306 

4. Discussion 307 

The focus of the current study was to examine the effect of low alkalinity 308 

seawater on the ability to take up external (seawater) HCO3
- during the rapid postmoult 309 

calcification of their exoskeleton in H. gammarus. In comparison to the control 310 

treatment, rates of bicarbonate uptake by H. gammarus were significantly reduced in 311 

low alkalinity seawater. This would presumably result in slower calcification rates and a 312 

subsequent increase in time to complete exoskeleton mineralisation. It should be noted 313 

that in early life stages of lobster, Zoeal exoskeletons are not calcified, megalopae are 314 

partially calcified, and full calcification is present from the juvenile stage onwards 315 

(Anger, 2001). Therefore, the differences and effects found in the present study are 316 

expected to be even greater from juveniles to adults.  317 

The availability of HCO3
- ions in seawater is typically ~5 times lower than for Ca2+ ions 318 

and much less stable than Ca2+ in natural marine environments. In the present study 319 

pCO2 was kept constant whilst varying alkalinity to reproduce aquaculture conditions. 320 

As a result, the low alkalinity seawater treatment was also lower pH (~7.8 compared to 321 

~8.1 in the controls). However, it is commonly considered that changes to seawater pH 322 

per se within this range are unlikely to explain the effects we observed on HCO3
- uptake 323 

in marine animals (e.g. Esbaugh et al., 2012). We have therefore assumed that changes 324 

  Lineweaver-Burk Hanes-Woolf 

Flux  
Period (h) 

Km 
(µeq l-1 CO3

-) 
    Vmax 
     (µeq HCO3

-h-1) 

Km 
(µeq l-1  HCO3

-) 
Vmax 
(µeq HCO3

-h-1) 

0-3 923     12201 945 12322 

3-6 889     19419 899 19514 

6-12 270     10339 298 10557 
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in calcification under low alkalinity conditions used here would likely be entirely due to 325 

the 60% reduction in availability of seawater bicarbonate for uptake via the gills.  326 

Alkalinity, pH and pCO2 are inextricably linked, and therefore the resulting 327 

consequence of a change in one parameter is a simultaneous change in either/both of the 328 

others (i.e. changing pH will by default result in subsequent increase/decrease in pCO2 329 

and/or alkalinity; Orr et al. 2005). In the current study, we avoided the issue of pCO2 330 

and focused on the effects of low alkalinity, a common problem in intensive aquaculture 331 

conditions. The experimental design used allowed evaluation of an acute (24 h) 332 

exposure to low alkalinity. Further experiments are needed in order to determine long 333 

term effects of low seawater alkalinity on calcification rates and subsequent impact on 334 

cultured animals.  335 

4.1 Whole animal CaCO3 stores 336 

Immediately after moulting the juvenile H. gammarus had lost around 89% of 337 

their total stores of calcium (as carbonates) either via the exuvia or excreted to the 338 

surrounding water, leaving only 11% in the newly moulted animal. This is similar to 339 

findings by Graf (1978) in Carcinus maenas, supporting the knowledge that marine 340 

crustaceans readily acquire the required amounts of Ca2+ from surrounding water, and 341 

not from internal Ca2+ stores. Also, the combined sum of calcium (carbonates) in the 342 

newly moulted animal and the shed exuvia was ~56% of that present in the intermoult 343 

whole animal, indicating that around 44% of this calcium is lost during the 344 

demineralisation process to the surrounding medium, or stored in organic compartments 345 

(e.g. haemolymph and intracellular stores). It should be noted that the dissolved or 346 

organically-bound component of total body Ca2+ was not measured. Therefore we 347 

cannot distinguish between the amount of Ca2+ transferred from the exoskeleton during 348 

the pre-moult period into either internal organic stores or the surrounding medium. At 349 
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24 h postmoult, the calcium (as carbonate) present in the exoskeleton was still <50% of 350 

intermoult animals showing that quantitatively significant calcification of the new 351 

exoskeleton must continue beyond 24 h postmoult. This corresponds with the continued 352 

high rates of HCO3
- uptake 24 h postmoult as discussed below.  353 

Increased time for calcification results in higher energetic costs, reducing energy 354 

required for other physiological processes such as growth (Keppel et al., 2012).  355 

Results from the current study for juvenile H. gammarus show a reduced rate of 356 

postmoult bicarbonate uptake in low seawater alkalinity (which had simultaneously 357 

lower pH at unchanged CO2 levels). Reduced seawater alkalinity in a recirculating 358 

aquaculture environment could therefore result in delayed hardening of the exoskeleton 359 

and reduced hatchery success (see below). However, the chemistry of seawater in 360 

aquaculture systems can be controlled through management of water quality (i.e. 361 

enrichment of rearing water with calcium, or more likely with bicarbonate as the greater 362 

limiting factor, as previously discussed). Obviously, upon release of cultured lobster 363 

into their natural environment they would then be faced with a number of naturally 364 

occurring environmental pressures. Over the coming centuries this will likely include 365 

ocean acidification, which will not change Ca2+ availability, but will reduce the 366 

concentration of CO3
2- ions, whilst HCO3

- would be largely unchanged (in fact slightly 367 

increased; Zeebe, 2012). Although the exoskeleton of early larvae stages in crustaceans 368 

are not fully mineralized, it is not yet known to what extent such changes would 369 

influence exoskeleton hardening in early life stages of crustaceans in general. Ocean 370 

acidification conditions have been shown to reduce calcification in some marine 371 

calcifiers, including our study species H. gammarus (Arnold et al., 2009), but increase it 372 

in others such as brittlestar (Amphiura filiformis; Wood et al., 2008), so based on our 373 

current understanding it is difficult to predict how crustaceans in general will respond to 374 

future conditions.     375 
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4.2 Acid-base fluxes 376 

Calcification in Homarus species is known to take place rapidly during the first 377 

day or two postmoult (Horne and Tarsitano, 2007). In the current study, low alkalinity 378 

seawater caused a large reduction in the uptake of HCO3
- equivalents via the gills (21-379 

37% across the three flux periods postmoult) which would subsequently slow down the 380 

supply of internal CO3
2- ions for calcification. Net acid-base fluxes (net base uptake in 381 

this case, equivalent to net acid excretion) were also much reduced in low alkalinity 382 

seawater during all three flux periods, in line with decreases in uptake of basic HCO3
– 383 

(whilst acidic NH4
+ excretion was unaffected). These findings, confirm previous results 384 

in Cameron (1985) on adult blue crab (Callinectes sapidus), which showed that reduced 385 

HCO3
- in seawater led to reduced uptake of HCO3

- (and also net base uptake a.k.a. net 386 

acid excretion). This would clearly translate into low alkalinity environments causing a 387 

dramatic increase in the time it takes to complete calcification. This is very likely to be 388 

detrimental for the successful culture of early developmental stages in lobsters and other 389 

crustaceans for two main reasons. Firstly, slow hardening of the mouthparts may delay 390 

the initiation of feeding which would result in metabolically active larval/juvenile 391 

animals quickly depleting energy reserves. Therefore, a quick return to active feeding 392 

will be essential not only for their subsequent survival postmoult, but also to recover 393 

optimal growth rates (desired for aquaculture). Secondly, lobsters are highly 394 

cannibalistic, and larvae that are slower to harden their exoskeletons will be even more 395 

prone to predation by their intermoult peers in intensive aquaculture situations.  396 

 397 

Estimates of the affinity constant (Km) for bicarbonate uptake, whilst tentative, provide 398 

some potential insight into how lobsters may be able to regulate their bicarbonate 399 

transport systems after a moult. The almost 4-fold decrease in Km for the 6-24 h period 400 

compared to the first 6 hours suggests two possibilities. Firstly, it could mean that 401 
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lobsters are genetically programmed to switch to expressing higher affinity bicarbonate 402 

transporters after moulting, for which translation of the relevant genes takes more than 6 403 

hours. This would potentially aid in enhancing bicarbonate uptake at the time of highest 404 

demand, i.e. rapid postmoult calcification of the exoskeleton.  Alternatively, it could be 405 

that the data for lobsters held in low alkalinity seawater are having the major influence 406 

on this Km estimate and that only this group were undergoing any temporal change in 407 

bicarbonate transport kinetics. If this second interpretation is correct, then it raises the 408 

possibility that lobsters already possess the genetic flexibility to acclimate to reduced 409 

alkalinity conditions (e.g. in commercial RAS) in terms of regulating bicarbonate 410 

uptake to provide the needs of postmoult calcification. Either way, this would be an 411 

interesting area for further investigation, to determine the precise physiological and 412 

molecular mechanisms that underlie the postmoult changes in acid-base regulation for 413 

the purposes of exoskeleton hardening. 414 

 415 

5. Conclusion 416 

Crustaceans require significant levels of calcium and bicarbonate equivalents to 417 

harden their new exoskeletons after ecdysis. Prior to and during a moult, most of the 418 

calcium present in the exoskeleton and internal carbonate stores during intermoult 419 

periods is lost either to the shed exuvia or via excretion to the surrounding medium, and 420 

a proportion is moved to internal non-carbonate stores. A 60% reduction in seawater 421 

alkalinity correspondingly reduced the rate of bicarbonate uptake (equivalent to acid 422 

excretion) by 29-42%, which is a major source for the carbonate component of the 423 

exoskeleton. Thus acute exposure (24 h) to low alkalinity seawater is likely to translate 424 

into a similarly slower calcification rate, and hence prolonged time to complete 425 

mineralisation and hardening of the exoskeleton. This could contribute to reduced 426 

feeding and growth rates and enhanced mortality from cannibalism. The current 427 
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research highlights the importance of seawater alkalinity with respect to potential 428 

economic and conservation gains for the crustacean aquaculture industry through 429 

increased survival rates from improved water management techniques.  Future research 430 

should investigate the potential for longer term exposures to low alkalinity seawater 431 

commonly found in aquaculture facilities, to examine whether (and how) lobsters can 432 

acclimate in terms of postmoult calcification rates.  433 

 434 
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Figure Legends 586 

 587 

Fig. 1 Calcium (bound to carbonate) stores in H. gammarus at intermoult (megalopae), exuvia 588 
immediately postmoult and whole animal immediately postmoult and 24 h postmoult (juvenile). 589 
Numbers in parenthesis are sample sizes. Data presented as the mean ± SE. Significant 590 
differences represented by different letters and significance accepted at P ≤ 0.05 591 

 592 

Fig. 2 The NH4
+ flux (A), HCO3

- flux (B) and net acid-base flux (C) in intermoult (megalopae), 593 
and 0-3, 3-6, and 6-24 h postmoult (juvenile) European lobsters in control and low alkalinity 594 
seawater treatments. Numbers in parenthesis represent sample size. Data represent the mean ± 595 
SE. Significant differences between time points in the control and low alkalinity treatment 596 
groups are indicated by different letters and symbols respectively. Significant differences 597 
between treatment groups at each time point are indicated with dotted lines. Significance 598 
accepted at P≤0.05 599 

Figure 1 below 600 

 601 

Figure 2 below 602 
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