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Abstract 

Honeycomb sandwich panels, formed by bonding a core of honeycomb between two 

thin face sheets, are in wide use in aerospace, automotive and marine applications 

due to their well-known excellent density-specific properties. There are many 

technological methods of damping vibrations, including the use of inherently lossy 

materials such as viscoelastic materials, viscous and friction damping and smart 

materials such as piezoelectrics. Some have been applied to damping of vibrations, 

in particular to sandwich panel and honeycomb structures, including viscoelastic 

inserts in the cell voids. Complete filling of the cell with foam, viscoelastic or 

particulate fillers have all been demonstrated to improve damping loss in 

honeycombs. However, the use of an additional damping material inside the core of 

a sandwich panel increases its mass, which is often deleterious and may also lead 

to a significant change in dynamic properties. The work presented in this thesis 

explores the competing demands of vibration damping and minimum additional 

mass in the case of secondary inserts in honeycomb-like structures. 

The problem was tackled by initially characterising the main local deformation 

mechanism of a unit cell within a sandwich panel subjected to vibration. Out-of-plane 

bending deformation of the honeycomb unit cell was shown to be the predominant 

mode of deformation for most of the honeycomb cells within a sandwich panel. The 

out-of-plane bending deformation of the honeycomb cells results in relatively high in-

plane deformation of the cells close to the skins of the sandwich panels. It was also 

highlighted that the magnitude and loading of the honeycomb unit cell are dependent 

on its location within the honeycomb or sandwich panel and the mode shape of the 

panel. 

An optimisation study was carried out on diverse honeycomb unit cell geometries to 

find locations at which the relative displacement between the honeycomb cell walls 

of the void is maximal under in-plane loadings. These locations were shown to be 

dependant of the nature of the loading, i.e. in-plane tension/compression or in-plane 

shear loading of the honeycomb unit cell and the unit cell geometry. 
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Analytical expressions and finite element analyses were used to investigate the 

partial filling of the honeycomb unit cell with a damping material, in this case a 

viscoelastic elastomer, in the target locations identified previously where the relative 

displacement between the honeycomb cell walls is maximal. Damping inserts in the 

form of ligaments partially filling the honeycomb cell void have shown to increase the 

density-specific loss modulus by 26% compared to cells completely filled with 

damping material for in-plane tension/compression loading.  

The form of the damping insert itself was then analysed for enhancement of the 

dissipation provided by the damping material. The shear lap joint (SLJ) damping 

insert placed in the location where the relative displacement between the 

honeycomb cell walls of the void is maximal under in-plane loadings was 

characterised with very significant damping improvements compared to honeycomb 

cells completely filled with viscoelastic material.  

A case study of a cantilever honeycomb sandwich panel with embedded SLJ 

damping inserts demonstrated their efficiency in enhancing the loss factor of the 

structure for minimum added mass and marginal variation of the first modal 

frequency of the structure. Partial filling of the cells of the honeycomb core was 

shown to be the most efficient at increasing damping on a density basis. 
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Chapter 1. Introduction and Literature Review 

1.1 Introduction 

Honeycomb core sandwich panels are formed by bonding two thin face-sheets to a 

low density honeycomb core, the properties of which are determined in the main by 

the geometry of their unit cells [1] [2]. Such sandwich panels are widely used in many 

applications, especially in transport, because of their excellent density-specific 

properties [3] [4]. For instance, these structures are used in airplane construction. 

Figure 1.1 shows the areas where sandwich structures are used in the Airbus A380 

from the nose of the airplane to the turbine engine (Rolls-Royce Trent 900) [5]. 

Sandwich panels are, indeed, widely used in aircraft applications because they 

provide good strength properties and low-density structures, leading to fuel savings. 

 

Figure 1.1: Airbus A380 sandwich applications [5]. 

Hence, in their application in the transport industry, honeycomb sandwich panels are 

used in vibration-rich environments. In aero-engines, for example, each blade is a 

source of excitation onto the fan case. Therefore, multiples of the shaft rotational 
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speeds are a source of excitation for the fan case, which can lead to resonance in 

numerous frequency ranges. Certification requirements and service cost reductions 

require a specific cycle life to be achieved, which is often minimal at the resonant 

frequencies of a system. When seeking to meet the allowable stress limits for a given 

fatigue life, damping can be added to a system. Many studies have sought ways to 

improve the damping properties of honeycombs, using either active or passive 

methods [6]. The active methods have used actuator materials such as piezoelectric 

or magnetostrictive materials, which are used to counteract structural deformations 

arising from vibrations from an external control system [7] [8]. However, the 

requirement for an external control system can, in some cases, be very difficult, 

especially in rotative components. Passive methods that do not require external 

control include many kinds of dissipative mechanisms: damping by ‘friction ledge’ 

[9], particle impact damping [10] and damping using viscoelastic inserts [11]. Shape 

memory alloys (SMAs) have also been postulated for use in damping roles, due to 

their high loss coefficients [12]. 

A literature survey encompassing honeycomb sandwich structures and solutions for 

improved damping properties is presented in this chapter, for application in high-

vibration environments such as the rotating parts of a jet engine. The problems 

addressed by this thesis are subsequently defined at the end of this chapter. 

1.2 Honeycomb Sandwich Structure 

1.2.1 Uses of Sandwich Panel/Origins 

Bitzer states that one of the earliest man-made sandwich panels dates back to 1845, 

with a wooden egg-crate core used as a very good compression panel for train 

applications [3]. Sandwich construction was then used by Fairbain in 1849 in the 

construction of the Britannia and Conway tubular bridges [23]. This sandwich panel 

was made with iron cores and a wood core.  

With the development of aircraft applications, sandwich structures started to be used 

more widely because of their high density-specific properties. Therefore, the first 

plane with sandwich panels was built in 1919 for seaplane pontoons. Later on, von 
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Karman and Stock patented a glider that used sandwich panels in its fuselage [3]. A 

few years later, von Karman and Mautner designed a plane with sandwich elements 

in the wings. Sandwich panels were then introduced in the fuselage of several planes 

such as the Comet Race and the Albatross, and in the wings and the fuselage of the 

famous Mosquito, developed at the outbreak of World War II by the de Havilland 

Airplane Company. In these planes, the sandwich structure consisted of a balsa 

wood core and plywood skins [3]. A metal-wood sandwich was then applied in the 

floor of the older F27. In 1945, the first all-aluminium sandwich panel was produced. 

The use of the metal element for sandwich panels was an important step to avoid 

any degradation caused by the use of bio-degradable materials. However, the 

manufacturing of metal sandwich panels was the source of several problems, such 

as the bonding of the core and the face sheet using an adhesive [3]. 

Subsequent to World War II, during which time the development of aerospace 

technology and materials/structures such as sandwich panels was rapid, panels 

began to be used for a lot of different applications because of their attractive 

properties, especially in the fields of marine, aviation, building construction, and 

automotive. For example, sandwich panels were used in the Apollo project, which 

successfully landed on the Moon in 1969 [3]. 

Today, a large variety of sandwich materials are used in packaging applications 

using Kraft paper materials, to more advanced aircraft applications using metallic 

and composite materials [4]. 

1.2.2 Description of Sandwich Structure 

A sandwich structure is formed by bonding thin, strong face sheets to a relatively 

thicker, lightweight core. A sandwich structure is composed of a skin, an adhesive 

film and a core, as illustrated in Figure 1.2 [13]. 
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Figure 1.2: Representation of a sandwich panel [13]. 

a. Face-Sheet 

In the sandwich panel structure, the face sheet handles the loads and deflection 

requirements, which influence the choice of the materials. A large range of materials 

are used in different industries, depending on the application for which the sandwich 

structure is designed. Packaging applications very often use Kraft paper as face 

sheets, whereas the aerospace industry tends to use materials with higher damage 

tolerance, such as composites [3]. The materials of the face sheets are chosen for 

properties such as strength, stiffness, damage tolerance, environmental conditions, 

appearance and cost. 

b. Core Material 

The core materials of sandwich structures are usually described as ‘cellular solid’ 

[2]. The term ‘cellular solid’ characterises structures made up of solid ribs or plates 

forming an interconnected network. Their internal architecture can form ‘open-cells’ 

or ‘closed cells’ and be ‘deterministic’ or ‘stochastic’. Stochastic architectures are 

characterised by random cell parameters such as foams, whereas deterministic cells 

are defined by constant cell parameters forming a periodic arrangement of cells such 

as honeycomb panels. Figure 1.3 illustrates some examples of core materials used 

in sandwich structures: wood cores, foam cores, honeycomb cores, corrugated 

cores and textile cores [5].  

Skin 
Core (honeycomb) 

Adhesive 
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Figure 1.3: Types of core in a sandwich panel [5]. 

Among the different cores that can be introduced in a sandwich panel, honeycombs 

are the most commonly used. It should be noted that an infinite number of 

honeycomb cell geometries can be defined given specific geometric cell parameters 

such as the number of walls, wall thickness and wall length, etc. Complex unit cells 

can be defined as illustrated in Figure 1.4, as opposed to more simplistic cells as in 

Figure 1.5 [18] [19]. The most commonly used honeycomb cell geometries are 

hexagonal or squared, one of the main reasons being the ease of manufacturing [3]. 

This thesis focuses on the hexagonal honeycomb core. 
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Figure 1.4: Representations of a triangular and a star-cell core [19]. 

            

Figure 1.5: Representations of a hexagonal and a re-entrant cell core [18]. 

‘Cellular solids’ are used as core materials for sandwich panels because of their low 

relative density */s, where* is the density of the core material and s is the density 

of the constituent material. Any material that can form ‘cellular solids’ can be used 

as a constituent material. For example, aluminium and steel can be used for metallic 

cores and fibreglass and Kraft paper can be used for non-metallic cores. The choice 

of the core material is based on its density and its application. It can be used for 

creating unidirectional fluid flows, for absorbing energy impacts, to impede thermal 

transport across the faces of sandwich panels and for acoustic damping [3] [16] [17].  

c. Adhesive 

The structural integrity of a sandwich panel is ensured by the bonding of the face 

sheet to the core material provided by the use of an adhesive. The choice of 

adhesive material depends on the skin/core properties and the 

environment/application for which the sandwich panel is designed [3]. Adhesives are 
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chosen conservatively in respect of the sandwich panel operating temperature range 

as their properties vary dramatically with temperature. Common adhesives used in 

sandwich panels are nitrile phenolic films, modified epoxy films, polyimide films, 

modified urethane pastes, core splicing adhesive pastes and tapes [22].  

d. Manufacture of honeycomb sandwich structure 

Many techniques are used to manufacture honeycomb cores depending on their 

constituent materials. Metallic honeycombs can be made by resistance welding, 

brazing, diffusion bonding, thermal diffusion and adhesive bonding, the latest being 

the most widely used in industry [3]. Two common manufacturing processes for 

honeycombs are illustrated in Figure 1.6. In the expansion process, thin metal sheets 

are cut into panels and strip bonded. These panels form after bonding to a block, 

which is cut and pulled apart to create an expanded panel. This method is widely 

used because the process is one of the cheapest to build honeycomb structures. 

However, this process requires high inter-sheet bond strengths to enable the sheet 

stretching. This can be done with low-density honeycombs. As the relative density 

of the honeycomb increases, the force needed to stretch the sheets can cause inter-

sheet bond fracturing [15]. In this case, other manufacturing methods are required, 

such as the corrugation process. As presented in Figure 1.6, during the corrugation 

process a metal sheet is corrugated and cut into panels, then each corrugated panel 

is welded together to create the honeycomb structure. 
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Figure 1.6: Representations of the expanded honeycomb manufacturing process 

(top) and the corrugation manufacturing process (bottom) [15]. 
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Both the expanded and the corrugation processes can be applied to manufacture 

non-metallic honeycomb [3]. With the intensive development of 3D printers, fused 

deposition modelling (FDM) has become a quick and very effective method to 

manufacture complex honeycomb geometries [20]. 

1.2.3 Mechanical Properties of Sandwich Structures 

Sandwich structures are characterised by their excellent density-specific properties. 

They exhibit especially high ratios between bending stiffness and mass; hence their 

application in aeronautic applications. The high bending stiffness of a sandwich 

structure is achieved by the separation of the face sheet with a core material, 

increasing the second moment of area of the structure. For illustration, Vinson 

compared the flexural and bending stiffness of an isotropic sandwich construction 

with a monocoque construction of the same skin mass (see Figure 1.7). The ratio 

between the bending stiffness of the sandwich structure and a monocoque 

construction is given in Equation 1.1 [1].  

 

Figure 1.7: Cross-section of sandwich and monocoque constructions [1]. 

𝐷𝑠𝑎𝑛𝑑.
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Equation 1.1 

The primary function of the face sheet in a sandwich structure is to provide 

extensional and in-plane shear stiffness, whereas the core provides a through-

thickness shear resistance and a through-thickness extensional resistance. Core 

properties are, therefore, characterised with high through-thickness shear modulus 

and Young’s modulus [1]. Since most of core materials are cellular solids, much work 

has been undertaken to investigate their geometry-dependent properties. Equations 
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governing the mechanics of honeycombs have been derived by Gibson and Ashby 

using beam theory [2, 24]. For illustration, the expressions derived by Gibson and 

Ashby are shown in Equation 1.2 to Equation 1.4 respectively for the in-plane 

Young’s Modulus in the x direction of the cell, Ex G&A, the in-plane Young’s Modulus 

in the y direction of the cell the of the cell, Ey G&A, and the in-plane shear modulus, 

Gxy G&A of the cell illustrated in Figure 1.8. In these equations, bending of the 

honeycomb cell ribs is the predominant deformation mechanism of in-plane 

hexagonal honeycomb, which is a valid hypothesis for slender ribs (ratio between 

the thickness and length of the ribs < 0.1). More complex models have been derived 

accounting for examples of the stretching and hinging of the honeycomb cell walls 

[18]. 

 

Figure 1.8: Honeycomb cell with its geometric parameters h, l, t and . 
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Equation 1.4 

1.2.4 Strength of Sandwich Structures 

The failure modes of sandwich structures depend on the properties of the face 

sheets, core materials, adhesive and the loading arrangement. Possible failure 

modes for a honeycomb sandwich panel consist of: 

- Facing failure: generally caused by an insufficient panel thickness or 

facing strength, this mode of failure occurs when the normal tensile 

stresses due to the bending loads of the panel exceed the yield strength 

of the face sheet materials 

- Transverse shear failure: caused by insufficient core shear strength or 

panel thickness 

- Crushing of core: caused by excessive beam deflection or by low core 

compression strength 

- General buckling: caused by insufficient core shear rigidity or insufficient 

panel thickness 

- Intra-cell dimpling: occurs with very thin facings and large core cells, the 

face may fail by buckling where it is unsupported by the walls 

- Shear crimping: occurs as a consequence of buckling of the panel and is 

generally caused by low core shear modulus or low adhesive shear 

strength 
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- Face wrinkling: occurs either in towards the core or outwards, depending 

on the stiffness of the core in compression and the adhesive strength. This 

mode of failure can be the origin of debonding between the face and the 

core 

Figure 1.9 illustrates some of the possible modes of failure for a honeycomb 

sandwich panel [3] [25] [28]. 

 

Figure 1.9: Modes of failure of a honeycomb sandwich panel [25]. 

To some extent, modes of failures can be classified in ‘maps of failure’, as illustrated 

in Figure 1.10 [26] [27].  
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Figure 1.10: Map of failure of a honeycomb core [27]. 

1.3 Vibration Damping 

1.3.1 Introduction to Vibration Damping 

“Vibration is everywhere, and everything vibrates”, Jones [29]. Vibrations are 

desirable for some applications, such as music instruments; but, in most cases, 

vibrations are an undesirable phenomenon leading to waste of energy and noise 

pollution. In structures, uncontrolled vibrations are often a source of mechanical 

failure, as illustrated in the collapse of the Tacoma Bridge in 1940. Vibrations are 

most critical when the natural frequency of a system matches the excitation 

frequency caused by external dynamic loads, as they induce resonance of the 

system. In an aero-engine, the response of the engine can be magnified up to 1,000 

times at resonance [77]. Uncontrolled vibration can be limited with careful design, 

involving design iterations for mass, stiffness and damping of the system in order to 

avoid external driving frequencies. This will be discussed for a single degree of 

freedom system with viscous damping, as seen in Figure 1.11 [29] [30]. 

Face yield 

Face wrinkling 

 

Core shear 

Core 

crushing 
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Figure 1.11: Single degree of freedom system with viscous damping. 

The equation of motion for this system is shown in Equation 1.5, where m is the 

mass, c the coefficient of viscous damping, k the stiffness of the system and F(t) the 

force excitation. 

 

𝑚. 𝑥̈ + 𝑐. 𝑥̇ + 𝑘. 𝑥 = 𝐹(𝑡) 

Equation 1.5 

The natural frequency of the system, , depends of the stiffness and mass 

parameters of the system, as shown in Equation 1.6. Any modification to the stiffness 

and/or mass of the system is, therefore, a potential solution to avoid resonance 

induction at a specific external frequency. 

𝜔0 = √
𝑘

𝑚
 

Equation 1.6 

However, most complex systems operate in a wide frequency range associated with 

multiple resonances. This is the case, for example, for an aero-engine in which the 

tuning of mass and stiffness parameters becomes almost impossible for avoidance 

of critical frequencies [78]. In order to reduce the response of a system, damping is 
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added to meet the required fatigue allowable. The objective of introducing damping 

in a system is to dissipate energy through each cycle of vibration by conversion into 

heat. As a result, resonance phenomena arising at the natural frequencies of a 

system are limited via energy dissipation. Equation 1.5 can be rearranged 

introducing the damping ratio, , of the system, as shown in Equation 1.7. It should 

be noted that multiple measures of damping have been defined; the coefficient of 

viscous damping and the damping ratio are one of these measures. This will be 

presented in further detail in section 1.3.2. 

𝑥̈ + 2. 𝜁. 𝜔0. 𝑥̇ + 𝜔0
2. 𝑥 =

𝐹(𝑡)

𝑚
    with    𝜁 =

𝑐

2.√𝑘.𝑚
 

Equation 1.7 

Figure 1.12 illustrates the impact of varying the damping ratio on the response 

amplitude of a single degree of freedom system with viscous damping subjected to 

a harmonic excitation. The amplitude response is reduced to increase the damping 

ratio to 1 (known as critical damping), where the resonance peak virtually 

disappears. The first modal frequency of a single degree of freedom viscously 

damped system is given in function of the natural frequency of the system 0 in 

Equation 1.8.  

𝜔𝑅 = 𝜔0. √1 − 𝜁2 

Equation 1.8 
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Figure 1.12: Time and harmonic response of the system with viscous damping [29]. 

1.3.2 Damping Parameters 

In the previous paragraph, the damping ratio,, and the coefficient of viscous 

damping, c, were introduced to define damping. The definition of the damping 

parameter is directly associated to the method used for measuring the damping 

properties of a system [79]. These methods can be classified in three categories: 

1. Methods based on the transient response of a system: the logarithmic 

decrement, , is used to measure damping as defined in Equation 1.9, 

where qi and qi+1 are heights of two subsequent peaks 

𝛿 = log (
𝑞𝑖

𝑞𝑖+1
) 

Equation 1.9 

2. Methods based on the harmonic response of a system: these methods 

use the definition of the Q factor to define the damping parameter at the 

resonance of a system 

3. Methods based on energy dissipation: the loss factor, , is used as a 

measure of energy dissipation, as defined in Equation 1.10, where Umax is 
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the maximum energy stored in the system and U the energy loss per 

cycle 

𝜂 =
Δ𝑈

2𝜋. 𝑈𝑚𝑎𝑥
 

Equation 1.10 

As a measure of damping, these parameters are related to each other as shown in 

Equation 1.11. 

𝜂 =
1

𝑄
= 2. 𝜁 = tan (𝛿) 

Equation 1.11 

1.3.3 Material Damping 

Three primary mechanisms can be identified as sources of damping: internal 

damping, structural damping and fluid damping. Since the scope of the research 

presented in this thesis is to use material for improved damping properties of 

structures, material internal damping is discussed. 

Material damping is a consequence of microstructural defects, crystal grain relative 

motions, dislocations in metals and molecular chain movements in viscoelastic 

materials causing energy dissipation through heat generation [31]. Damping of 

materials is usually quantified with loss factor, , as defined in Equation 1.10. The 

loss factor represents the energy dissipation per loading cycle. The energy 

dissipation of a cycle of loading is illustrated in Figure 1.13. 
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Figure 1.13: Representation of the hysteresis behaviour in a stress-strain curve 

introducing internal material damping. 

The amount of energy lost per cycle is highly dependent on the material, as 

illustrated in Table 1.1. For instance, the energy dissipated during each cycle of 

vibration is extremely small for most metals unless the material is deformed beyond 

the yield point whereby the material starts to deform plastically [3]. Specific metallic 

alloys, for instance, shape memory alloy (SMA), exhibit higher damping properties 

from complex internal mechanisms of deformation [12]. 

Table 1.1: Loss factors of classic materials [76] 
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Viscoelastic refers to polymers composed of long, intertwined and cross-linked 

molecular chains. The internal molecular interaction that occurs during the 

deformation and vibration of these materials provides damping by energy dissipation 

through heat generation. Viscoelastic materials encompass all rubber and gel 

materials [29]. Viscoelastic material properties are frequency and temperature 

dependent, as illustrated in Figure 1.14.  

 

Figure 1.14: Material property of a viscoelastic material as a function of temperature 

(left) and frequency (right) [29]. 

For deformation below the yield strain of materials, metals exhibit an elastic 

behaviour characterised by Hooke’s law. In contrast to purely elastic materials, 

viscoelastic materials exhibit an elastic and viscous behaviour under loading, 

enhancing energy dissipation. Figure 1.15 illustrates the stiffness loss map of 

Young’s modulus versus damping for materials at ambient temperature [108]. With 

loss factor between 0.001 and 1 and Young’s modulus between 0.01 MPa and 5 

GPa, viscoelastic materials shows much higher damping capacity than metals.  

However, good damping performance of viscoelastic material is highly dependent 

on temperature and is only suitable for applications operating between -40°C to 

150°C [80] [110]. 



42 

Honeycombs with Structured Core for Enhanced Damping 

 

Figure 1.15: Stiffness loss map of Young’s modulus versus damping for materials 
at ambient temperature [108]. 

Recently, enhanced damping has been achieved by tailoring material properties and 

design materials with a negative or null Poisson ratio [81] [89]. Materials with a 

negative Poisson ratio were first introduced by Lakes in 1987 with polyurethane 

foam. Materials with a negative Poisson ratio are known as ‘auxetic’, derived from 

the Greek word ‘auxestos’, meaning ‘that which may be increased’ [18] [86]. 

1.4 Damping of Sandwich Panels 

Damping of sandwich panels falls in two categories: active and passive techniques 

[9]. 

Active damping deals with ‘smart materials’ such as piezoelectric materials, 

magnetostrictive materials and magneto rheological fluids [7] [8]. Piezoelectric 

materials provide an electric charge when mechanically stressed, and vice versa. 

These materials are, therefore, used as both sensors and actuators to control 

structures by providing an ‘out of phase’ signal to cancel unwanted deformations. 
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Passive damping encompasses all types of energy dissipation mechanism that do 

not require external control. Material damping is often used as an effective passive 

damping mechanism for structures relying on the damping capabilities of materials. 

As highlighted in the previous section, specific metals such as SMA and viscoelastic 

materials are suitable for passive damping applications. Passive damping can be 

achieved by friction and particle impact damping. Possible damping technologies are 

presented in Table 1.2. 

Table 1.2: Damping technologies for sandwich panels. 

Active Damping Technology Passive Damping Technology 

Electro and magnetorheological fluids 
Shunted piezoelectrics 

Shunted magnetostrictive 

Thermoplastic cores 
Constraint layer 

Foam filling 
Friction (particles, ledge) 
Particle impact damping 

Tuned mass damping 

 

For implementation inside jet engines, and especially rotating parts, active damping 

techniques are not a viable solution for damping improvement and, hence, not 

discussed in this thesis. 

1.4.1 Viscoelastic Layer 

Viscoelastic materials are commonly used as a layer treatment to enhance the 

damping properties of a mechanical component since they exhibit high material 

damping properties [4]. Since this technology is often applied in transportation 

industries such as automotive or aerospace, effective implementation of viscoelastic 

materials has been developed to limit weight increase. This is achieved by a local 

insertion of viscoelastic treatment where the viscoelastic material is most likely to be 

deformed, therefore increasing its internal energy dissipation. Layer damping 

treatments encompass free layer damping and constrained layer damping, as 

described subsequently.  
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1.4.1.1 Free Layer Damping or Coated Layer 

Free layer damping consists of the application of a viscoelastic material with high 

damping properties on the surface of a base structure (see Figure 1.16). Under 

vibration, the viscoelastic layer follows the deformation of the base structure resulting 

in additional energy dissipation in the viscoelastic layer. Damping properties 

increase with the volume of viscoelastic material used as coating. However, this 

technique often leads to unwanted weight increase [4] [29]. 

 

Figure 1.16: Illustration of a free layer damping system [4]. 

1.4.1.2 Constrained Layer Damping 

Constrained layer damping (CLD) consists of an added viscoelastic material layer, 

sandwiched between two stiffer layers, as illustrated in Figure 1.17. Similarly to the 

free layer damping treatment, the viscoelastic layer follows the deformation of the 

based structure, enhancing the damping properties of the assembly. The damping 

performance of optimised CLD for a given weight increase of viscoelastic material is 

increased compared to free layer damping. The combined effect of the base 

structure and the constrained layer under vibration imposes a higher magnitude of 

shear deformation in the viscoelastic layer [4] [29] [32] [38]. 

  

Figure 1.17: Illustration of a constrained layer damping system [4]. 
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Since viscoelastic materials exhibit low stiffness compared to metals, the 

introduction of viscoelastic layers can potentially lead to unwanted low-frequency 

modes. Hybrid solutions using a honeycomb core parallel to the viscoelastic layer 

can be used to avoid such undesirable effects, as illustrated in Figure 1.18. Jung 

and Aref highlight that the global stiffness of the added layer treatment is governed 

by the honeycomb core [39]. 

 

Figure 1.18: Schematic presentation of the idealised force-displacement relation of 

the concept developed by Jung and Aref [39]. 

1.4.2 Honeycomb Filling 

Enhancement of the damping properties of the honeycomb sandwich panel can be 

provided through the use of a high damping performance material placed in the voids 

of the honeycomb structure. This can be achieved through simple filling of the 

honeycomb core with a lossy material or by use of particles inside the void of the 

honeycomb. 

1.4.2.1 Foam and Viscoelastic Filling 

Foam and viscoelastic filling is a damping solution that makes use of the internal 

voids of the honeycomb sandwich structure. The cell walls of the honeycomb core 
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are backed up by the viscoelastic or foam material so that the total surface allows 

external forces to dissipate more energy than the honeycomb core alone [11] [40] 

[41]. Experimental results with the foam filling of panels have shown an increase in 

the crushing strength and energy absorption capacity of a honeycomb sandwich 

panel up to 300% [46]. However, adding foam or viscoelastic material to the 

honeycomb sandwich panel significantly increases the total weight of the sandwich 

panel. Partial filling of the honeycomb core is a solution for reduced added mass, 

which can be achieved by filling target honeycomb cell voids within a sandwich 

panel, as presented by Woody and Smith [47], or by partially filling the honeycomb 

cell void as presented by Wayne et al. [98]. With partial foam filling, Woody and 

Smith obtained an improvement of almost 60% in damping for an added mass of 

less than 6% of the total structure [47]. Partial filling of the honeycomb unit cell with 

viscoelastic material has been shown to significantly enhance the damping 

properties of a honeycomb structure for a reduced weight penalty (see Figure 1.19) 

[98]. These partial filling methods consist of: i) an interlayer of viscoelastic material 

within the ribs of the cell; and ii) a viscoelastic material inserted in the form of fillets 

in the corner of the cell. 

 

Figure 1.19: Tan delta plotted against frequency for three ABS honeycomb samples 

at -50C [98]. 
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1.4.2.2 Particle Dampers 

Structures filled with particles, generally small metallic or glass spheres, provide 

energy dissipation by non-elastic impact and friction damping to the vibrating 

structure. One of the advantages of this technique is to provide damping in any 

direction and over a wide frequency range. It also exhibits low influence on the 

stiffness of the structure, since the particles are not mechanically constrained by the 

structure [10] [48-57]. However, the added particles lead to weight increases. Michon 

et al. used viscoelastic particles for enhanced damping capacity provided by energy 

dissipation from viscoelastic deformation as well as impact and friction [10].  

1.4.3  Shape Memory Alloy Honeycombs 

Honeycomb cores for sandwich panels formed in entirety from SMA have been the 

object of recent study because they potentially combine both excellent density-

specific mechanical properties and high damping loss coefficients [13] [14]. Shape 

memory alloys are two-phase alloys, with a martensitic phase predominating at a 

specific lower transition temperature, an austenitic phase predominating at a specific 

higher transition temperature, and both phases mixing at temperatures in between. 

The martensitic-austenitic transformation that occurs in SMAs (under mechanical or 

temperature loading) promotes high energy dissipation (or damping) in these 

materials [12]. This feature of SMAs has been applied to honeycomb structures as 

a route for improved damping by the author in previous work [67]. However, damping 

enhancement in SMA honeycombs appears effective only for a high magnitude of 

deformation to trigger the martensitic-austenitic phase transformation. 

1.4.4 Friction Damping in Honeycomb Sandwich Structures 

A friction damping mechanism can be applied to sandwich panels through the use 

of friction ledges alongside the honeycomb core, as illustrated in Figure 1.20 [9]. 

Vibrations cause friction between the ledge and the casing, enhancing energy 

dissipation and, therefore, damping. 
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Figure 1.20: Representation of the friction damping system developed by Romberg 

[9]. 

1.5 Conclusion and Problematic Thesis Statement 

Many technological methods have been identified for enhancement of the damping 

properties of the honeycomb sandwich panel. These technologies consist of the use 

of inherently lossy materials such as viscoelastic materials, friction damping, particle 

impact damping and the use of smart materials such as piezoelectrics [5-9]. Since 

this thesis focuses on rich vibration environments such as the rotating parts of a gas 

turbine engine, active methods have been discarded. Enhancement of the damping 

properties of sandwich panels via passive technologies have been identified through 

the use of free and constrained viscoelastic layers. However, these technologies do 

not benefit from the hollow structure of the honeycomb core of a sandwich panel. 

Viscoelastic and foam filling technologies as well as particle filling of the honeycomb 

core of a sandwich panel have been identified as benefiting from the hollow macro 

structure of the honeycomb core. However, the use of an additional damping 

material inside the core of a sandwich panel increases its mass, which is often 

deleterious and may also lead to a significant change in dynamic properties. 

Damping improvement has been recently highlighted on a density basis, filling target 

cells of the honeycomb core [47] and partially filling the honeycomb cell [98]. These 

methods appear well justified as the added damping material should be introduced 
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in a location where its loading is maximised for the best use of its dissipation 

capability. 

This thesis focuses on the enhancement of vibration damping in a honeycomb 

sandwich panel and explores the competing demands between damping and the 

addition of extra mass. The objectives of the thesis are as follow: 

 Determine the most influent loading direction in honeycomb panels subjected 

to vibration. 

 Optimise the location of damping material within the honeycomb cell to limit 

mass increase. 

 Optimise the mass increase given by the introduction of damping material 

within the honeycomb cell on a density basis. 

 Optimise the geometry of the damping insert within the honeycomb cell to 

enhance damping capability on a density basis. 

 Optimise the location and number of damping inserts within a honeycomb 

sandwich panel to limit mass increase. 

Chapter 2 aims to identify the most influent loading directions of units cells within the 

honeycomb core of cantilever panels subjected to vibration. In this chapter, the 

influence of the location of the cell within the panels on the magnitude of deformation 

is also investigated.  

Chapter 3 describes the optimal location for damping ligament inserts for use in the 

honeycomb cell void. In this chapter, several geometries of honeycomb ranging from 

‘auxetic’ to regular cells are investigated.  

Chapter 4 examines the use of viscoelastic damping inserts in both ‘linear’ and ‘star’ 

arrangements under in plane shear/axial loads for a regular honeycomb cell 

geometry. Young’s modulus, loss factor and loss modulus as well than density 

specific loss modulus are quantified using finite elements analyses. 

Chapter 5 examines the use of shear lap damping inserts under in plane shear/axial 

loads for a regular honeycomb cell geometry. Young’s modulus, loss factor and loss 
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modulus as well than density specific loss modulus are quantified using finite 

elements analyses. 

Chapter 6 investigates the use of the shear lap damping inserts on the damping 

properties of the first bending mode of a cantilever sandwich panel. A method for 

choosing targeted unit cells within the sandwich panel to limit the total mass increase 

of the panel is also presented in this chapter. 

Chapter 7 discusses the findings of the study. 

Finally, Chapter 8 concludes the thesis and provides to the reader recommendations 

for further work. 
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Chapter 2. Unit Cell Deformation Mechanism 

in Honeycomb and Sandwich Panels 

Subjected to Vibration 

2.1 Introduction 

In the process of designing a honeycomb sandwich panel, the honeycomb core is 

very often modelled as a continuum using homogenous properties, discarding the 

local deformation of the honeycomb unit cell geometry at a ‘mesoscale’ [2] [18].  This 

method is computationally inexpensive and is, therefore, very often used by 

engineers in the early design stage to size adequately a sandwich panel for a given 

application. However, this method cannot be used to establish the distribution of 

deformation, stress and strain in cells within a sandwich panel. 

In this chapter, a discrete modelling approach for the honeycomb core using finite 

elements is taken so as to establish the distribution of deformation and principal 

loading directions in cells within a sandwich panel subjected to vibration.  

The deformation of a unit cell within a panel subjected to vibration is a combination 

of multiple loads caused by the constraint given by surrounding cells and the skins 

of a honeycomb or sandwich panel. The first objective of this chapter is to identify 

the most predominant loading directions of unit cells within the honeycomb core of 

panels subjected to vibration.  

The second objective of this chapter is to investigate if cells within a honeycomb 

and/or sandwich panel deform in a similar pattern independently from their locations 

within the panel for its first natural modes of deformation. 

This analysis aims to narrow the complexity and number of load cases to account 

for optimising the mechanical and damping properties of honeycomb structures.   
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2.2 Methods 

2.2.1 Modal Analysis of Cantilever Honeycomb and Sandwich Panels 

Four different models of a cantilever honeycomb plate with and without face sheet 

have been simulated. The geometry of the honeycomb cell consists of a regular 

honeycomb cell with parameters h = l = 10 mm, t= 0.2 mm and  = 30°, as shown in 

Figure 2.1.  

 

Figure 2.1: Honeycomb cell with its geometric parameters h, l, t and ; and the cell 

orientation conventions L and W. 

Models a, and b are illustrated in Figure 2.2. The number of cells along the x and y 

axes were chosen to investigate conventional principal cell orientations, L and W, 

for panels of approximately the same dimensions. The dimensions of the panel 

associated with Models a and b are 180 mm x 311.8 mm x 10 mm (6 cells along the 

x axis and 18 cells along the y axis) and those associated with Models c and d are 

300 mm x 173.2 mm x 10 mm (10 cells along the x axis and 10 cells along the y 

axis).  
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(a)                                                   (b)  

Figure 2.2: Illustration of the geometry of Model a and b representing respectively a 

honeycomb core and honeycomb sandwich panel.   

Finite element analysis software ANSYS 13 [90] was used to simulate the behaviour 

of each of the models studied in this chapter. Four nodes linear elastic shell elements 

with both bending and membrane capabilities and with six degrees of freedom at 

each node (SHELL63 in ANSYS) were used to mesh the honeycomb core and face 

sheets. Shell elements were used instead of 3D brick elements because of the 

typically low ratio between the thickness and the length of the honeycomb cell walls 

and face sheets. The optimal number of elements required for each model was 

computed from convergence studies, and is reported in Table 2.1. Figure 2.3 shows 

detail of the mesh of a single honeycomb cell from Model a, with 10 elements along 

the core depth, while Figure 2.4 shows the mesh for a honeycomb cell and face 

sheets extracted from Model b with 14 elements along the core depth. In both cases, 

these are the unit cells tessellated to produce the entire structure. 
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Table 2.1: The number of shell elements used in each model. 

 Elements 

Model a 65,400 

Model b 455,700 

Model c 61,000 

Model d 422,500 

 

 

Figure 2.3: Mesh of a honeycomb unit cell from Model a, with 10 elements along the 

cell depth. 
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Figure 2.4: Mesh of a honeycomb unit cell with its facings from Model b, with 10 

elements along the cell depth. 

Cantilever boundary conditions were applied to each model. For the nodes located 

at one edge of the panel, all degrees of freedom were constrained to zero, as 

represented in Figure 2.5. Figure 2.5a shows the boundary conditions applied to 

Models a and b and Figure 2.5b those applied to Models c and d. Of note is the 

change in orientation of the cells between Figure 2.5a and Figure 2.5b. 
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                                       (a)                                                 (b) 

Figure 2.5: Cantilever boundary condition associated with Models a and b (a) and 

with Models c and d (b). 

Both honeycomb core and facings were assumed to be made of aluminium, with 

material properties given as: Young’s modulus E = 70 GPa, Poisson ratio  = 0.33 

and density  = 2700 kg.m-3. 

A modal analysis was performed in the FE software to identify the first bending, 

torsion, shear and second bending modes. To reduce computational time, the block 

Lanczos method eigenvalue solver was used [90]. The models were generated with 

Ansys Parametric Design Language (APDL). 

A normalisation of the node displacements between different models and vibration 

modes was required. Hence, the node undergoing the maximal displacement was 

identified and its displacement was set to 10 mm, from which scale factors were 

calculated to normalise the displacement of all the other nodes in that structure and 

for that vibration mode. 

The total strain energy in each model under each of the first four modes was derived 

with an equivalent static analysis because the results of the normal mode analysis 
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are dimensionless. The normalised displacements of each node derived in the modal 

analyses were used as applied displacements in the static analyses for calculation 

of the strain energy associated to each mode shape.  

2.2.2 Deformation Mechanism of Honeycomb Cells within Panel 

The deformation of a honeycomb unit cell within a panel subjected to vibration (or 

any other loading) is caused by a combination of forces and moments acting on the 

periphery of the honeycomb unit cell. These loads and moments can be projected 

onto any specific coordinate system related to the honeycomb unit cell. As such, 

Gibson and Ashby identified two main modes of deformation: in-plane and out-of-

plane deformations [2]. Figure 2.6 illustrates some of the typical in-plane and out-of-

plane deformations of a honeycomb unit cell, namely in-plane tension/compression, 

in-plane shear, out-of-plane transverse shear and out-of-plane bending. The out-of-

plane bending deformation of a honeycomb panel results in the in-plane deformation 

of the honeycomb cell as illustrated in Figure 2.7. In this case, one of the face of the 

honeycomb cell is loaded in in-plane tension while the opposite face is loaded in 

compression, passing through a zero deformation state in the neutral plane of the 

cell. As a result, the bending deformation of the honeycomb cell can be described 

by the in-plane tension/compression deformation through the depth of the cell. Of 

note, the out-of-plane transverse shear deformation of the honeycomb is much stiffer 

than the out-of-plane bending deformation because it involved significant axial or 

shear of the cell walls themselves [2]. 
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Figure 2.6: Deformation mechanisms of a honeycomb cell within a sandwich panel 

subjected to vibration: (a) in-plane tension/compression, (b) in-plane shear, (c) 

transverse shear through the core thickness, (d) bending.  

 

Figure 2.7: In-plane loading as associated with the out-of-plane bending of a unit 

cell. 
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2.2.2.1 In-plane Deformation 

In-plane deformations of all cells which capture the out-of-plane bending deformation 

of the honeycomb cell as described in the previous paragraph, have been calculated 

along the three directions formed by the opposite edge of the honeycomb cell, as 

shown in Figure 2.8. In-plane strains 1, 2 and 3 have been derived from Equation 

2.1 to Equation 2.3 where  represents the length of vector V


 before deformation of 

the cell and  is the length after deformation. 

𝜀1 =
‖𝐴𝐵⃗⃗⃗⃗  ⃗‖

𝑏𝑑
− ‖𝐴𝐵⃗⃗⃗⃗  ⃗‖

𝑎𝑑

‖𝐴𝐵⃗⃗⃗⃗  ⃗‖
𝑏𝑑

 

Equation 2.1 

𝜀2 =
‖𝐶𝐷⃗⃗⃗⃗  ⃗‖

𝑏𝑑
− ‖𝐶𝐷⃗⃗⃗⃗  ⃗‖

𝑎𝑑

‖𝐶𝐷⃗⃗⃗⃗  ⃗‖
𝑏𝑑

 

Equation 2.2 

𝜀3 =
‖𝐸𝐹⃗⃗⃗⃗  ⃗‖

𝑏𝑑
− ‖𝐸𝐹⃗⃗⃗⃗  ⃗‖

𝑎𝑑

‖𝐸𝐹⃗⃗⃗⃗  ⃗‖
𝑏𝑑

 

Equation 2.3 

 

Figure 2.8: Vectors and directions inside the honeycomb cell defined to calculate in-

plane strains 1,2 and 3.  

3 

1 

2 
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In-plane strains 1, 2 and 3 have been calculated for all models and mode shape 

studied at nodes located on the bottom face of the panels. 

The variation of 12 and 3 across the thickness of the core was investigated for a 

specific cell within Models a and b situated in the middle of the panel as shown in 

Figure 2.9, so as to consider the deformation of the cell as a continuum, i.e. away 

from edges and constraint. 

The maximum tension/compression and in-plane shear strain have been defined by 

parameter i* (see Equation 2.4). 

     𝜀𝑖
∗ = 𝑚𝑎𝑥𝑎𝑙𝑙_𝑐𝑒𝑙𝑙𝑠(|𝜀𝑖|)     with      𝑖 = {1,2,3} 

Equation 2.4 

 

Figure 2.9: Cell location within Model a and b located away from the edge of the 

panel (4th row, 9th line).  

2.2.2.2 Transverse Shear Out-of-plane Deformation 

Out-of-plane transverse shear has been calculated in each edge of the honeycomb 

cell, as illustrated in Figure 2.10. The transverse shear strain has been derived 



61 

Honeycombs with Structured Core for Enhanced Damping 

from Equation 2.5 where 𝑂𝐵⃗⃗ ⃗⃗  ⃗ represents the vector after deformation of the cell wall 

through the thickness of the cell and 𝑂𝐶⃗⃗⃗⃗  ⃗ the vector between the first two nodes at 

the bottom of the cell after deformation (see Figure 2.10). The vector 𝑂𝐶⃗⃗⃗⃗  ⃗ was 

assumed to be locally collinear with the vector  representing the cell wall through 

thickness before deformation. This convention was considered to be a good 

approximation as long as enough elements were used to model the core through 

thickness. Convergence tests showed that at least 10 elements were required 

through the thickness of the honeycomb panel without skin and 14 elements for 

those with skins, see Figure 2.11 and Figure 2.12 in the result section. The number 

of elements used to model the geometries studied was chosen from a convergence 

study on parameter . 

𝛾 = 𝑎𝑐𝑜𝑠 (
𝑂𝐵⃗⃗ ⃗⃗  ⃗. 𝑂𝐶⃗⃗⃗⃗  ⃗

‖𝑂𝐵⃗⃗ ⃗⃗  ⃗‖. ‖𝑂𝐶⃗⃗⃗⃗  ⃗‖
) 

Equation 2.5 

 

Figure 2.10: 3D view of a honeycomb cell and its deformed shape under transverse 

shear loading. 
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Parameter * was defined to estimate the maximum transverse shear strain between 

all the cells of the panel (see Equation 2.6). 

𝛾∗ = 𝑚𝑎𝑥𝑎𝑙𝑙_𝑐𝑒𝑙𝑙𝑠(|𝛾|) 

Equation 2.6 

2.3 Results 

2.3.1 Convergence Test 

A convergence test is shown in Figure 2.11 for Model a, representing a 6x18 cell 

honeycomb panel without skin. The convergence study was carried out on the 

maximum strain 1
* and , respectively, the axial strain and the transverse shear 

strain from all the cells inside the sandwich structure. It can be seen that parameter 

1 is not sensitive to the mesh refinement and accurate results are achieved by using 

only two elements along the thickness of the core (i.e. 10,464 elements for Model 

a). Parameter  is, however, sensitive to the element size. Honeycomb panels 

without skin were modelled using 10 elements along the thickness of the core (i.e. 

65,400 elements for Model a). This was found to be a good compromise between 

the accuracy of parameter  and the computational time. 
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Figure 2.11: Transverse shear and in-plane axial strains in function of the number of 

elements along the core depth for Model a.  

A convergence test is shown in Figure 2.12 for Model b, representing a 6x18 cell 

sandwich panel with skins. The convergence study was carried out as described 

previously for a honeycomb panel without skin. It can be seen that parameter 1 is 

not sensitive to the mesh refinement and accurate results are achieved using only 

two elements along the thickness of the core (i.e. 43,296 elements for Model b). 

Parameter  is, however, sensitive to the element size of the mesh. It should be 

noted that more elements along the core thickness are required to achieve 

convergence of the transverse shear strain for a sandwich panel than for a 

honeycomb panel (without skins). Sandwich structures with skins were modelled 

using 14 elements along the thickness of the core (i.e. 455,748 elements for Model 

b). This was found to be an effective compromise between the accuracy of 

parameter  and computational time. 
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Figure 2.12: Transverse shear and in-plane axial strains against the number of 

elements along the core depth for Model b. 

2.3.2 Modal Analysis of Cantilever Honeycomb and Sandwich Panels 

The modal frequencies of the first four modes of the models studied are shown in 

Table 2.2. Frequencies associated to models with skins, i.e. Models b and d, are 

more than ten times higher compared to the models without skins, i.e. Models a and 

c. The natural frequencies between the two honeycomb panels, i.e. Models a and c, 

are within 10% differences; the same between the natural frequencies of the two 

sandwich panels, i.e. Models b and c. 
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Table 2.2: Modal frequencies (Hz) of the first four modes of vibration of Models a, b, 

c and d. 

 Model a Model b Model c Model d 

Mode 1 9,0E+00 1,2E+02 1,0E+01 1,3E+02 

Mode 2 1,6E+01 4,2E+02 1,8E+01 4,5E+02 

Mode 3 3,5E+01 7,2E+02 3,5E+01 7,8E+02 

Mode 4 4,9E+01 1,0E+03 5,2E+01 1,1E+03 

 

Table 2.3 shows the first four mode shapes of Models a and b, i.e. 6x18 cell 

honeycomb and sandwich panels. The first and second mode shapes correspond 

respectively to the first bending and first torsion mode of the structure. The third 

mode for Model a, i.e. panel without skins, is an in-plane shear mode whereas for 

Model b, i.e. panel with skins, the third mode is a second order bending mode; vice 

versa for the fourth mode. These mode shapes are consistent with those obtained 

for homogenous structures of similar geometry and under similar boundary 

conditions. 
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Table 2.3: Mode shapes of the first mode of vibration of Models a and b, i.e. 6x18 

cell honeycomb and sandwich panels.  

 Model a – 6x18 honeycomb 

panel 

Model b – 6x18 sandwich 

panel 

Mode 1 

       

Mode 2 

  

Mode 3 

 

 

Mode 4 
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Table 2.4 shows the mode shapes associated with Models c and d, i.e. 10x10 cell 

honeycomb and sandwich panels, with similar observations made on the modal 

deformation shapes of Models a and b. Modes 1 and 2 are, respectively, a first 

bending and a first torsion mode. Mode 3 of Model c (without skins) is an in-plane 

shear mode whereas, for Model d (with skins), this mode is a second bending mode; 

and vice versa for Mode 4. 
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Table 2.4: Mode shapes of the first mode of vibration of Models c and d, i.e. 10x10 

cell honeycomb and sandwich panels.  

 Model c Model d 

Mode 1 

  

Mode 2 

  

Mode 3 

 

 

 

Mode 4 
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2.3.3 In-plane Deformation of Honeycombs  

2.3.3.1 Deformed Shape of Cells in Panels Subjected to Vibration 

Typical in-plane deformations of the honeycomb cells with the honeycomb and 

sandwich panel have been illustrated respectively in Figure 2.13 and Figure 2.14 for 

the mode shapes studied in this chapter. The main directions of in-plane deformation 

are indicated with red arrows, and consist for all modes except the first in-plane shear 

mode of in-plane axial deformation caused by the bending of the honeycomb core. 

For the in-plane shear mode, the in-plane deformation of the cell is caused by the 

in-plane shear deformation of the honeycomb core.  

 

(a)                                                                           (b) 

Figure 2.13: Deformation of a cell with the main local deformation highlighted with 

red arrows for the first bending mode (a) and the first in-plane shear mode (b) of 

Model c. 
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(a)                                                                           (b) 

Figure 2.14: Deformation of a cell with the main local deformation highlighted with 

red arrows for the first bending mode (a) and the first in-plane shear mode (b) of 

Model d. 

2.3.3.2 In-plane Deformation through the Honeycomb Core Depth 

In-plane strains 1, 2 and 3 have been calculated in the middle cell of Models a and 

b for the first four vibration modes, as described in the method section of this chapter. 

Figure 2.15 shows in-plane strains 1,2 and 3 across the core depth of the middle 

cell without skins, i.e. Model a, normalised against their maximum magnitude 1-

max,2-max and 3-max for the first four modes of vibration. All strains vary linearly across 

the core depth. For all out-of-plane modes of vibration, i.e. the first bending, the first 

torsion and the second bending modes, the strains are increasing/decreasing across 

the core depth. For the first in-plane shear mode the strain is constant across the 

core depth. 
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Figure 2.15: Normalised in-plane strains 1/1-max,2/2-max and 3/3-max in function of 

the core depth of a cell (4th row, 9th line) from Model a. 

Figure 2.16 shows in-plane strains 1, 2 and 3 across the core depth of the middle 

cell with skins, i.e. Model b, normalised against their maximum magnitude 1-max,2-

max and 3-max for the first four modes of vibration. As opposed to the honeycomb 

panel, the strains do not vary linearly across the core depth. For all out-of-plane 

modes of vibration, i.e. the first bending, the first torsion and the second bending 

modes, the strains are increasing/decreasing across the core depth and the rate of 

change of the strains is reduced towards the minimal and maximal depth of the cells, 

i.e. the closest to the sandwich panel skins. For the first in-plane shear mode, the in-
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plane strains are maximal towards the middle depth of the cell and decrease towards 

the sandwich panel skins.  

 

Figure 2.16: Normalised in-plane strains 1/1-max,2/2-max and 3/3-max in function of 

the core depth of a cell (4th row, 9th line) from Model b. 

2.3.3.3 In-plane Deformation of Honeycomb Cells within Panel 

Maps of in-plane strains 1, 2 and 3 are shown in Table 2.5 for all the cells of the 

first bending mode of Model a. The distribution of strain is symmetric for both strains 

2 and 3, because of the symmetry of the geometry, the constraints and both strain 
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directions. Hence, the results for strain 3 have not been represented in the 

subsequent results. 

Table 2.5: Map of in-plane strains 1, 2 and 3 from all cells within Model a for the 

first order bending mode.  

Model a – Strain 1 Model a –Strain 2 Model a – Strain 3 

 

   

 

Table 2.6 to Table 2.9 show the magnitude of strains 1,2 and  at depth z = 0 mm 

for each cell within Models a, b, c and d, respectively, for the first bending mode, the 

first torsion mode, the first in-plane shear mode and the second bending mode. In 

each table, the scale of the graph remains constant. Cells with minimum strain are 

represented in blue and those with maximum strain are represented in red. Cells in 

tension exhibit positive strains and cells in compression negative strain. Similitude 

can be drawn for the location of maximum/minimum strain within panels with and 

without skins for the same modes of deformation and the same strain direction. It 

should be noted that the magnitude of deformation is higher for panels without skins 

compared to panels with skins. This is discussed subsequently. Apart from this 

similitude, the location of maximum/minimum strain is different for each mode and 

each strain direction. 



74 

Honeycombs with Structured Core for Enhanced Damping 

Table 2.6: Maps of strains 1 and 2 of each cell inside Models a, b, c and d at 

depth z = 0 for the first bending mode. 

First bending Strain 1 Strain 2 

Model a 

 
 

 

Model b 

 

 

 

Model c 

 

 

 

 

Model d 
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Table 2.7: Maps of strains 1 and 2 of each cell inside Models a, b, c and d at depth 

z = 0 for the first torsion mode. 

Torsion Strain 1 Strain 2 

Model a 

 

 

 

 

Model b 

 

 

 

 

Model c 

 

 

 

 

Model d 
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Table 2.8: Maps of strains 1 and 2 of each cell inside Models a, b, c and d at 

depth z = 0 for the first in-plane shear mode. 

In-plane shear Strain 1 Strain 2 

Model a 

 

 

 

 

Model b 

 

 

 

 

Model c 

 

 

 

 

Model d 
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Table 2.9: Maps of strains 1 and 2 of each cell inside Models a, b, c and d at 

depth z = 0 for the second bending mode. 

Second 

bending 

Strain 1 Strain 2 

Model a 

 

 

 

 

Model b 

 

 

 

 

Model c 

 

 

 

 

Model d 
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The maximum strains 1
*and2

*
 at depth z = 0 mm between all the cells for each 

model and mode studied in this chapter are shown in Figure 2.17. The magnitude of 

strain is higher for the honeycomb panel (2.5%), i.e. Models a and c, than for the 

sandwich panel (2%), i.e. Models b and c, for all modes studied. The orientation of 

the cell within the panel, i.e. L or W, as shown in Figure 2.1, slightly influences the 

magnitude of maximal strain depending on the mode shape and strain orientation. 

Strain 1 is generally higher for L-orientated cells and strain 2 is generally higher for 

W-orientated cells. It should be noted that the maximum strain for each model was 

shown to be dependent on the mode shape of the structure in Figure 2.17. This last 

result is valid for the given assumption made in this chapter, i.e. each mode shape 

has been scaled to account for a maximal nodal displacement of 10 mm 

independently of the energy required to force the modal displacement. The strain 

energy stored in each model has been derived from a static analysis where the 

maximal nodal displacement has been set to 10 mm for each mode of vibration and 

is shown in Table 2.10, and was shown to be different for each mode, limiting the 

interpretation of this last result. 

 

Figure 2.17: Maximum strain 1
*and2

*
 for Models a, b, c and d and the mode of 

deformation studied. 

 



79 

Honeycombs with Structured Core for Enhanced Damping 

Table 2.10: Total strain energy of each mode of vibration of the models studied. 

Results obtained from a static analysis where the maximal nodal displacement has 

been set to 10 mm for each mode of vibration. 

Strain energy 
[N.m] 

Model a 
(honeycomb only) 

Model b 
(face sheets) 

Model c 
(honeycomb only) 

Model d  
(face sheets) 

First bending 9.0E-04 6.9E-01 1.0E-03 7.5E-01 

Torsion 1.9E-03 4.3E+00 2.1E-03 4.7E+00 

In-plane shear 2.6E-02 5.6E+01 2.4E-02 5.6E+01 

Second bending 2.2E-02 2.3E+01 2.3E-02 2.4E+01 

 

2.3.3.4 Out-of-plane Deformation of Honeycomb 

Typical out-of-plane transverse shear deformations of the honeycomb core are 

shown in Figure 2.18 for a panel with skins for its first torsion mode. This mode of 

deformation has not been visually captured for panels without skins, i.e. Models a 

and c. 

 

Figure 2.18: Deformed shape of cells of Model d for the torsion mode and a local 

view of the transverse shear deformation. 

The maximum transverse shear strain * as described in the methods sections is 

shown in Figure 2.19. As expected and discussed in the method section, the 

maximum transverse shear strain * is quasi null for panels without skins, i.e. Models 

a and c. The highest transverse shear strain is 0.85% for sandwich panels. 
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Figure 2.19: Maximum out-of-plane transverse shear strain *
 for Models a, b, c and 

d and the mode of deformation studied. 

2.4 Discussion 

2.4.1 Dynamic Behaviour of Honeycomb and Sandwich Panels 

The natural frequencies of the panels with skins, i.e. Models b and d, are at least ten 

times higher than the natural frequencies of the identical panels without skins, i.e. 

Models a and c (see Table 2.2). Sandwich panels are, indeed, much stiffer than the 

honeycomb core alone because the added skins contribute significantly to 

increasing the bending stiffness of the panel [1].  

The first four modes have shown to be consistent for all the models studied and 

consisted of a first and second order bending mode, a first order torsion mode and 

a first in-plane shear mode (see Table 2.3 and Table 2.4). The second order bending 

mode and the in-plane shear mode were, respectively, the third and fourth natural 

modes for panel without skins, whereas the fourth and third for panels with skins. 
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This is because the added skins in the sandwich panel provide a higher increase in 

stiffness when deformed in in-plane shear than in bending. 

The cell orientation, i.e. in the L or W direction, does not have a significant impact 

on the natural frequency of the panels (comparing Model a with Model c and Model 

b with Model d). This is a consequence of the in-plane isotropy of the regular 

honeycomb core in the models studied [2]. 

2.4.2 Local Deformation of Honeycomb Cells within a Panel Subjected to 

Vibration 

The local deformation of a honeycomb cell within a honeycomb or sandwich panel 

subjected to vibration is predominated by an out-of-plane bending deformation of the 

cells resulting in the in-plane tension/compression of the cell through its depth. The 

in-plane deformation of the cell is dependent on the cell location within the panel and 

is maximal closer to the bottom and top skins of the sandwich panel. 

The maximal out-of-plane transverse shear deformation for all the natural mode 

shapes studied in the honeycomb panel only is quasi null for the honeycomb panel 

only, as shown in Figure 2.19, as opposed to the maximal in-plane deformation that 

shows strain of around 2.5% (see Figure 2.17). This is because the honeycomb core 

without skins exhibit a low bending stiffness, hence result in significant bending 

deformation of the cells causing high in-plane tension/compression close to the top 

and bottom faces of the cells as illustrated in Figure 2.15. For the first order in-plane 

shear mode, the in-plane shear deformation of the honeycomb core is predominant 

due to the mode shape deformation, as shown in Table 2.7 and Table 2.8. 

With skins on, i.e. for the sandwich panel, the out-of-plane transverse shear 

deformation of the honeycomb core reaches a maximum strain of 0.8%, which is 

significantly higher than the honeycomb panel without skins. This is because the 

core is loaded in shear by the deformation of the skins of the panel for all the out-of-

plane modes of vibration studied. It should be noted that the transverse shear 

deformation of the sandwich panel is found to be null for the first in-plane shear mode 

of the panel (see Figure 2.19). In this mode of vibration the two skins of the panel 
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translate in the same direction with no relative displacement, hence the honeycomb 

core is not loaded in out-of-plane transverse shear. The maximum in-plane 

deformation within all modes of vibration studied is 2% for the sandwich panels 

studied (see Figure 2.17). This is higher than the maximum out-of-plane transverse 

shear deformation of 0.8%. As highlighted by Gibson and Ashby, this is because the 

stiffness of the honeycomb core is higher under transverse shear loading than in-

plane loading [2]. Similarly to the honeycomb panel, in-plane deformation in the 

sandwich panel is maximal closer to the top and bottom skins of the panels (see 

Figure 2.16) and are caused by the bending deformation of the cell. However, the 

in-plane strains in the sandwich panel do not vary linearly from the top to the bottom 

face of the panel, as is the case for the honeycomb panel only (see Figure 2.15). 

This is because the added stiffness given by the skins of the panels limits the in-

plane deformation of the honeycomb cells. In this case the maximal magnitude of 

strain is reduced by 0.5% for the sandwich panel. 

The magnitude of in-plane strain of the honeycomb cell for both honeycomb and 

sandwich panels has been shown to be dependent on the location of the cell within 

the panel and the mode of vibration, as shown in Table 2.6 to Table 2.9. This is 

caused by the constraints, in this case a cantilever plate, edge effects and the 

particular mode shape deformation of the panel, which, at a unit cell level, is different 

for each individual cell within the panel. 

The cell build-up convention within the panel, i.e. along the L or W direction, as 

shown in Figure 2.1, is slightly impacting the magnitude of maximal in-plane strain 

in the honeycomb cells, despite not having a significant impact on the natural 

frequency and mode shape of the panel because of the in-plane isotropy of the 

honeycomb core. As shown in Figure 2.17, the maximum in-plane strain for panels 

with build-up cells in the L direction is strain 1
* with a magnitude of 2.5%, whereas 

the maximum in-plane strain in the W direction is 2%. This is because strain 1 

matches the direction of the length of the panel, for panels with build-up cells in the 

L direction and, hence, is slightly more subject to deformation because of the 

inherent geometry of the panel. 
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It should be noted that, since the first order bending, torsion, shear and second order 

bending modes of vibration of honeycomb and sandwich panels have been 

investigated in this chapter, the findings can be extended to more complex 

deformation of the panel resulting in the combination of the mode shape studied or 

higher order mode of deformation. 

2.5 Conclusions 

The local in-plane and out-of-plane deformations of the honeycomb cell within 

honeycomb and sandwich panels subjected to vibration have been investigated in 

this chapter. 

The predominant deformation mechanism of the unit cells consists of the out-of-

plane bending of the cells for both honeycomb and sandwich panels. The out-of-

plane bending of the cell results in high magnitude of in-plane strain close to the 

skins of the sandwich panels or close to the top and bottom faces of honeycomb 

panels. The in-plane strain are null in the neutral plane of deformation of the panel 

except for in-plane modes of the panels. The out-of-plane transverse shear loading 

of honeycomb panels is quasi null. For sandwich panels, the magnitude of out-of-

plane transverse shear deformation is lower than for the in-plane loading. 

The location of maximum in-plane deformation within the cells of a honeycomb or a 

sandwich panel is dependent of the position of the cell within the panel and the mode 

shape of the panel.  
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Chapter 3. Effective Topologies for Vibration 

Damping Inserts in Honeycomb Structures 

3.1 Introduction 

The behaviour of cellular core structures filled with viscoelastic materials was 

observed experimentally for the first time with a copper foam as a matrix and an 

elastomer as filling material [11]. The filling of hexagonal cores with foam was then 

demonstrated for improved energy and impact absorption [42] [93-95]. Foams have 

also been used to fill honeycomb structures with consequent improvement of 

damping properties [46, 47]. However, adding foam into honeycomb structures 

significantly increases the density of the sandwich panel, even if foams themselves 

exhibit relatively good density-specific properties. To avoid excessive increases in 

density, cells may be only partially filled with an insert. For example, Woody and 

Smith obtained an improvement of around 60% in damping loss factor by filling only 

selected cells within an array, adding less than 6% to the structure’s mass [47]. 

Structures filled with particles, generally small metallic or glass spheres, provide 

energy dissipation by non-elastic impact and friction damping to the vibrating 

structure [53] [96] [97]. One of the advantages of this technique is to provide damping 

in any loading mode and over a wide frequency range, and with little change in 

stiffness of the structure [96]. However, this approach significantly increases the 

density of the sandwich. Depending on the application, different materials can be 

used as particle dampers, e.g. metals and polymers. Michon et al. proposed the use 

of viscoelastic particles [10], the dissipation of energy by viscoelastic deformation 

providing additional energy loss. 

Complete occupation of a honeycomb cell void with a viscoelastic material has been 

shown to improve damping loss [11] [92]. Viscoelastic master curves for hexagonal 

and re-entrant honeycombs with viscoelastic filler have been illustrated [4]. It has 

also shown that the design of the insert has an important impact on the loss factor 

of a structure [40]. The more strain energy dissipated by the insert, the more efficient 
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the viscoelastic insert is. Designs of viscoelastic inserts inside honeycombs that 

improved the damping properties have been patented [98]. This patent describes the 

damping improvement of honeycombs with: i) a constrained layer of viscoelastic 

material within the ribs of the cell; and ii) a viscoelastic material inserted in the corner 

of the cell. Considering these results, it seems that the honeycomb filling method 

can be optimised with the use of specific core designs or specific inserts. 

In order to minimise the added mass of honeycomb structures with damping inserts, 

the objective of this chapter is to find optimal locations for ligaments made from a 

high damping material within the void of honeycomb cells, allowing for different cell 

geometries, and under a variety of in-plane loading cases reflecting the deformation 

of core honeycomb cells in a range of possible structural vibration modes, as 

described in Chapter 2. 

3.2 Methods 

The approach taken was to explore the deformation and strain in a ligament 

connecting parts of a honeycomb cell, via closed form relations, and then to identify 

the location that gave rise to the largest strain of a viscoelastic ligament for a range 

of differently shaped honeycomb cells. The solutions were then validated using finite 

elements. An FE topological optimisation was also undertaken to check whether 

ligament stiffness, which was ignored in the analytical model, had an appreciable 

effect. 

3.2.1 Parametric Analytical Study of Honeycomb Cells Loaded either Axially 

or in In-plane Shear 

An analytical study was undertaken to identify the maximum relative displacement 

of the cell ribs inside various honeycomb unit cells, for in-plane axial and in-plane 

simple shear loading (see Figure 3.1), as a result of the findings from Chapter 2. The 

effectiveness of any damping insert will be maximised if it is subjected to the largest 

deformations and strains available. The honeycomb cell can, in this sense, amplify 

the local strain experienced by an insert. 
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This approach ignores the stiffness of the viscoelastic insert, assuming that the 

stiffness of the cell itself dominates, as supported by Abd El-Sayed et al. [99]. This 

will be invalid for cases where the very stiff or large inserts are used. 

 

Figure 3.1: Loading modes considered in the analytical model, in-plane axial loading 

(left) and in-plane simple shear loading (right). 

Following Gibson and Ashby [2], deflection of the cell ribs under in-plane axial 

loading of the honeycomb can be modelled as bending deformation of a cantilever 

guided at its end (l ribs in Figure 3.2). However, it must be noted that the bending-

only deformation of the ribs described in [2] can be considered a valid assumption 

for slender cell walls and for internal angles  not approaching 0o, at which point 

beam stretching dominates behaviour [18]. For cells where  approaches 0o, the 

cells are effectively square, therefore highly anisotropic and, in practice, generally 

avoided. Equation 3.1 describes the vertical deflection of the rib, where P is the load 

normal to the beam, as represented in Figure 3.3, l the length of the beam, E the 

Young’s modulus of the honeycomb material and I the second moment of area of 

the cell wall where x and y are lengths in the local coordinate system of ribs in Figure 

3.3. 

𝑦 =
𝑃.𝑙.𝑥2

4.𝐸.𝐼
−

𝑃.𝑥3

6.𝐸.𝐼
 

Equation 3.1 
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Figure 3.2: Honeycomb cell with its parameters: h, l, t and . 

 

Figure 3.3: Bending deflection of a cantilever beam under guided end conditions. 

In-plane simple shear in the honeycomb was modelled by the bending deformation 

of the horizontal h ribs of the honeycomb cells using Equation 3.1. The bending 

deformation of the oblique l ribs was not taken into consideration as its deformation 

is negligible compare to that of the horizontal h ribs in this specific loading [2]. 

Honeycomb cells were loaded under a global 1% strain global both for the axial in-

plane and shear loading. The load P for both in-plane axial and in-plane shear 

loading is given by Equation 3.2, where  is the deflection of an Euler-Bernoulli beam 

in its local coordinate system, as shown in Figure 3.3. 

𝑃 =
𝛿. 12. 𝐸. 𝐼

𝑙3. 𝑠𝑖𝑛𝜃
 

Equation 3.2 
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Equation 3.3 and Equation 3.4 show the expression of  respectively, for in-plane 

axial loading and in-plane shear. 

𝛿𝑎𝑥𝑖𝑎𝑙 =
𝜀𝑔𝑙𝑜𝑏𝑎𝑙. 𝑙. 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
 

Equation 3.3 

𝛿𝑠ℎ𝑒𝑎𝑟 = 𝜀𝑔𝑙𝑜𝑏𝑎𝑙. (ℎ + 𝑙. 𝑠𝑖𝑛𝜃) 

Equation 3.4 

The deformations under these two loading modes were compared to the 

deformations obtained with FE models. For this purpose, an FE model of a regular 

honeycomb was constructed with the commercial FE software Ansys 13. Twenty 

uniaxial elements with tension, compression, torsion and bending capabilities were 

used to model each beam of the cell (Ansys BEAM4 element [90]).In-plane axial, in-

plane simple shear and in-plane pure shear boundary conditions were considered. 

Figure 3.4a shows the deformed shape of the honeycomb cells under 1% strain for 

the loading modes considered (displacement magnified by a factor of 10). Of note, 

the deformed shapes of the cells presented in Figure 3.4 is valid for all regular 

honeycomb cells independently of their cell ribs dimension for cells with slender cell 

walls (t<<l). This is because the ratio between the beam deflection  and the 

characteristic length of the cell for both in-plane axial loading, i.e. l.cos(), and in-

plane shear loading, i.e. h+l.sin() is independent of the cell ribs dimensions h, l and 

t. For both in-plane axial and shear loading conditions, the analytical model matches 

the FE results, validating the hypotheses made. Figure 3.4b shows, in particular, that 

the deformed shape of the honeycomb cell when loaded in in-plane simple or pure 

shear at the same strain is identical.  
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Figure 3.4: A deformed honeycomb cell predicted by the analytical and FE models 

under in-plane axial loading (a.) and, similarly, a cell under in-plane simple shear 

and in-plane pure shear (b.). 

A parametric search of all possible insert ligament locations was undertaken to 

identify the locations of the ligaments with maximal strain. This process is described 

in the following three steps. 

Step 1. Ligaments are straight and may connect any two points of the cell ribs. Cells 

were divided up into approximately 300 seed nodes in the cell void, and for each of 

these seed nodes 35 vectors were defined passing through that node, with angles 

to the horizontal at 5° increments, i.e. between 0° and 175°. This defines all the 

allowable vectors that pass through all the seed nodes in the cell void. This process 

was repeated for all seed nodes in each cell considered. 

Step 2. The deformation of a ligament was assumed to be the relative displacement 

of two points on the cell ribs connected by a vector. The deformation of the cell ribs 

was calculated by considering them as beams, as described before. This gave a 

profile of displacement at any point along the length of the cell ribs. The strain of all 

ligaments passing through all seed nodes was calculated by considering these 

displacements as the deformations of the ligaments. This makes the assumption that 

the extra stiffness associated with the presence of the ligament did not affect the 

deformation of the cell rib, and is examined in detail later. Symmetry for axial cell 

a. b. 
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deformation meant that only a quarter of the void space needs be considered, and 

half the void space needs be considered for shear. Trials with smaller intervals of 

seed node location and ligament rotation made little or no difference to the results. 

Step 3. The strain in all ligaments was calculated in post-processing and the value 

of the maximum strain at each seed node was recorded. For each honeycomb cell 

geometry, the seed nodes with the largest strain values would lie along the same 

vector as the ligament with maximal strain. Thus, the optimal locations of ligaments 

with the highest strain energies are defined. 

 As shown in Figure 3.5 and Figure 3.6, for each position inside the void space, the 

relative strain of ligaments, insert, was calculated from Equation 3.5, where Li and Lf 

were the ligament lengths before and after (respectively) the global cell deformation.  

𝜀𝑖𝑛𝑠𝑒𝑟𝑡 =
|𝐿𝑖 − 𝐿𝑓|

𝐿𝑖
 

Equation 3.5 

 

Figure 3.5: The seeds nodes in an undeformed honeycomb cell. Also shown are a 

small number of the ligaments for one particular node, notably one with length Li.  
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Figure 3.6: A deformed honeycomb cell loaded axially as shown, in which the 

ligament shown in Figure 3.5 has lengthened to Lf. 

Maps of the maximum relative strain insert_max across all ligament orientations for 

each node location inside the void of the honeycomb were then constructed post-

process (in Matlab 2009 [101]).  

Different honeycomb geometries were investigated by varying  the ratio between 

the length of the horizontal h ribs and the oblique l ribs, between 0.2 (a markedly 

squat cell) and 2.0 (a markedly thin cell). The internal angle  of the honeycomb cell 

was varied between  = 30o (a ‘regular’ honeycomb) and = -20o (a ‘re-entrant’ 

honeycomb) (see Figure 3.2) [99]. Investigation of parameters  and  provides the 

full description of the honeycomb in-plane geometric parameters as defined by 

Gibson and Ashby [2]. The effect of the cell ribs’ thickness in the present model is 

provided by the second moment of area I used in Equation 3.1 and Equation 3.2. 

Substituting P from Equation 3.2 into Equation 3.1, the second moment of area I 

disappears and, therefore, the thickness of the cell rib. This assumption is valid for 

 values, the ratio between the thickness of the cell ribs t and the oblique l ribs, lower 

than 0.2 to neglect possible contributions from the shear deformation of the ribs’ 

cross-section [2]. Relative density-specific quantities presented in the result section 

have been derived for  =0.1. The density ratio of the honeycomb rel = /c is defined 

in Equation 3.6 where  is the density of the honeycomb, and c the density of the 

constituent material of the honeycomb. 
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𝜌𝑟𝑒𝑙 =
𝜌

𝜌𝑐
= 𝛽.

2 + 𝛼

2. (𝛼 + 𝑠𝑖𝑛𝜃). 𝑐𝑜𝑠𝜃
 

Equation 3.6 

3.2.2 FE Analysis of In-plane Loadings 

A 2D FE model of a regular honeycomb cell (=1, h=1 mm, =t/l=0.02, and =30°) 

and a re-entrant cell (=-20°) was constructed using 10 Beam4 elements per ribs 

with aluminium material properties (Young’s modulus of 70 GPa and Poisson ratio 

of 0.3). Similarly, the realistic boundary conditions for in-plane axial and shear under 

1% strain were applied to the FE model of the cell so as to be a fair comparison of 

the analytical model. The displacements of all element nodes were recorded for each 

model and the relative strain between each element node, i.e. the strain of a 

hypothetical ligament placed between them ij, was calculated from Equation 3.7, 

where diij and dfij are the distances between element node i and element node j 

before and following applied deformation. Locations of maximum relative 

displacements for all the element nodes of the structure were then identified during 

post-processing. 

𝜀𝑖𝑗 =
|𝑑𝑖𝑖𝑗 − 𝑑𝑓𝑖𝑗|

𝑑𝑖𝑖𝑗
 

Equation 3.7 

3.2.3 Topological Optimisation of Honeycomb Cells Completely Filled with 

Viscoelastic Material 

A topological optimisation was undertaken with Ansys 13, of a 2D honeycomb unit 

cell model of a regular aluminium honeycomb cell (= 1 and = 30°) and a ‘re-

entrant’ cell (= 1 and = -20°). The unit cell is a representative volume element 

(RVE) for the honeycomb core. The objective of the optimisation was to minimise 

the compliance of the honeycomb cell, which was initially completely filled with a 

viscoelastic material. The constraint of the optimisation problem was to reduce the 

volume of the viscoelastic material in the honeycomb cell by 80%. The viscoelastic 
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material in solutions with smaller compliances carry a greater proportion of total load 

borne by the cell, and, therefore, are under a higher strain and likely to carry more 

strain energy. By minimising compliance, this process ensured that the viscoelastic 

material carried more strain energy and, therefore, damped more vibration energy. 

The model was initially completely filled with a viscoelastic material and loaded in 

the in-plane axial and in-plane pure shear directions to 1% strain. The viscoelastic 

material was modelled with a Young’s modulus of 0.1 MPa and a Poisson ratio of 

0.35 (the maximum value of Poisson ratio that can be assigned to elements in a 

topological optimisation in the FE software used). Symmetry boundary conditions 

were applied to the RVE cell to represent a continuum of cells. The model consisted 

of approximately 1,000 PLANE82 8-node bilinear plane elements with plane strain 

behaviour. The compliance of the cell structure was defined as the rate of 

deformation with respect to load. 

The results of this optimisation study were compared with the results from the 

analytical models, in which the stiffness of the ligaments was not considered. Four 

honeycomb cell geometries were considered, as shown in Table 3.1: Geometry 1 in 

which the native honeycomb had a Young’s modulus similar to that of the 

viscoelastic material, and geometry 2 in which the cell had a Young’s modulus of 

more than 10 times the viscoelastic material. Geometries 3 and 4 represent a ‘re-

entrant’ cell configuration. 

Table 3.1: Honeycomb cell dimensions in topological optimisation study. 

 Geometry 1 Geometry 2 Geometry 3 Geometry 4 

Honeycomb parameters     

l (mm) 1 1 1 1 

h (mm) 1 1 1 1 

t (mm) 0.01 0.02 0.01 0.02 

 30 30 -20 -20 

Material properties     

Honeycomb Young’s 

Modulus (MPa) [2] 

0.16 1.29 0.86 6.84 

Viscoelastic Young’s 

Modulus (MPa) 

0.1 0.1 0.1 0.1 
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3.3 Results 

3.3.1 Parametric Analytical Study of Honeycomb Cells Loaded either Axially 

or in In-plane Shear 

The relationship between the maximum relative strain insert_max of all possible 

ligaments and the honeycomb internal angle  is shown in Figure 3.7 for an in-plane 

axial deformation mode. In this case, the honeycomb parameters were set at = 1 

and h = 1. Honeycombs with internal angles close to 0 achieve the highest maximum 

ligament strains, with a discontinuity around  because the deformation of the 

oblique ribs (l) becomes predominantly axial rather than flexural. The location of the 

maximum ligament strain for three different honeycomb cells is shown in Figure 3.8. 

The magnitude of the ligament strain is indicated by colour for each location in the 

cell, and those ligaments with highest strain (shown in red) tend to form axes across 

the middle of the cell for all three geometries. These axes of maximal ligament strain 

locations indicate the orientation of the ligament of maximum strain, e.g. the ligament 

with the highest strain would lie across the mid axis of the cell in Figure 3.8. This is, 

therefore, the optimal ligament location and orientation. 

 

Figure 3.7: The maximum relative strain, insert max, of all possible ligaments as a 

function of the honeycomb internal angle,  under in-plane axial loading.  
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Figure 3.8: Strain map of the ligaments in three different honeycomb cell geometries 

under in-plane axial deformation, (=and 30° in a., -5° in b and -20° in c.). 

Similarly, Figure 3.9 shows the relationship between maximum relative strain 

insert_max of all possible ligaments, for different internal angles, but for the case of in-

plane simple shear. The honeycomb cell parameters were as above (=1 and h=1). 

The maximal ligament strain in simple shear is lower than the maximal ligament 

strain in axial loading (0.74 opposed to 27), see Figure 3.7 and Figure 3.9, and the 

maximal values are achieved at extreme internal angle values, i.e. = -20° and = 

30°. The minima for ligament strain are found at internal angles of = -12° and = 

12°, with no discontinuity at  = 0°. The magnitude of the maximal ligament strain is 

indicted graphically in Figure 3.10 for five different cell geometries, though this data 

was obtained for all cases. For cells with internal angles between -20° and -12° (see 

Figure 3.10), the optimal ligaments lie along axes across the middle of the cells (see 

Figure 3.9 for an example cell with  = -20°). This was in common with the case of 

axial loading (see Figure 3.8). In contrast, for cells with internal angles between -12° 

and 12°, the optimal ligaments formed symmetric cross structures in the upper and 

lower sections of the cell (see Figure 3.10). For cells with internal angles greater 

than 12°, the optimal ligaments formed a single cross structure extending across the 

full height of the cell (see Figure 3.10). 

a. b. c. 

0 

Max Strain 
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Figure 3.9: Maximal ligament strain, insert max, of ligaments inside the cell void as a 

function of the honeycomb internal angle, under in-plane shear loading. 

 

Figure 3.10: The strain of the ligaments in three different honeycomb cell geometries 

under in-plane shear deformation (= 30° in a., 10° in b.,  0° in c., -10° in d. and -

20° in e.). 

a. b. c. 

d. e. 

Max Strain 

0 
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The influence of the parameter , the ratio of the lengths h and l, of the honeycomb 

cell on the maximal ligament strain is presented in Figure 3.11, for both in-plane axial 

and shear loading cases. For these data, the internal angle  was set to 30° (a 

regular honeycomb), the length h was varied between 0.2 mm and 2 mm, while l 

remained constant at 1 mm ( = 0.2 to 2). For  = 30°, i.e. a regular honeycomb, the 

maximal ligament strain for in-plane axial loading appears to be only approximately 

twice the value for in-plane simple shear, unlike for other cell angles where it can be 

an order of magnitude. The parameter  has a minimal effect upon the magnitude of 

the maximal ligament strain, with maximum strain values reached at minimal values 

of . However, Figure 3.12 and Figure 3.13 indicate that the location of ligaments 

with maximal strain does depend on parameter . For in-plane axial loading and 

parameter  1.6, most of the ligaments with maximal strain are located across the 

middle of the cell (see Figure 3.12). Note that, upon close inspection, there is more 

than one optimal ligament and they lie on two parallel axes near to the cell mid-line 

(see Figure 3.12a). These axes tend to move closer to one another as the value of 

 increases. For values of  > 1.6, the optimal ligaments switch to two parallel 

vertical ligaments between the oblique l ribs. When loaded in-plane simple shear 

(see Figure 3.13), the optimal ligaments are located in the corners between the h 

and l ribs for 0.2 < 0.6. For values of  > 0.6, the optimal ligaments form diagonal 

crosses extending between the h ribs.  
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Figure 3.11: Maximum strain, insert max, of all ligaments as a function of the aspect 

ratio of the ribs  = h/l. 

 

 

Figure 3.12: The strain of the ligaments in four different honeycomb cell geometries 

under in-plane axial deformation ( = 30° and = 0.2 in a., 1 in b., 1.6 in c., 2 in d. 

and =-20° and =2 in e.). 

a. b. 

c. d. e. 

Max Strain 

0 
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Figure 3.13: The strain of the ligaments in three different honeycomb cell geometries 

under in-plane shear deformation (= 0.2 in a., 1 in b. and 2 in c.). 

The magnitude of the maximum ligament strain insert_max for honeycombs with 

varying internal angle  and length ratio  under axial loading is shown in Figure 

3.14. Similarly, the magnitude is shown in Figure 3.15 but normalised to the density 

ratio /c of the honeycomb. The highest ligament strain is achieved for cell 

geometries with internal angles  of near to 0 and with the lowest length ratio . In 

contrast, when considering the relative density, the length ratio  has a negligible 

effect on the magnitude of the optimal ligament strain. 

 

Figure 3.14: Maximum strain, insert max, of all possible ligaments as a function of the 

ratio between ribs, h/land the honeycomb internal angle  under in-plane axial 

deformation. 

a. b. c. 

Max Strain 

0 
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Figure 3.15: Maximum strain, insert max, normalised to the density ratio, /c, of the 

honeycomb of all possible ligaments as a function of the ratio between ribs and 

the honeycomb internal angle  under in-plane axial deformation. 

For simple shear loading, the maximum ligament strain, insert_max, for a range of 

honeycomb geometries is shown in Figure 3.16. Again, this data is shown 

normalised to relative density /c in Figure 3.17. The highest ligament strain is 

achieved for cell geometries with both large negative internal angle  and low length 

ratio . This is reversed when considering relative density, where higher positive 

values of internal angle  and length ratio  perform optimally. 
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Figure 3.16: Maximum strain, insert max, of all possible ligaments as a function of the 

ratio between ribs h/land the honeycomb internal angle  under in-plane shear 

deformation. 

 

Figure 3.17: Maximum strain, insert max, normalised to the density ratio /c of the 

honeycomb of all possible ligaments as a function of the ratio between ribs and 

the honeycomb internal angle  under in-plane shear deformation. 

3.3.2 FE Analysis 

Optimal locations of ligaments between nodes of the FE model of a regular and a re-

entrant honeycomb cell are shown in Figure 3.18 and Figure 3.19 for the different 

loading cases studied (in-plane axial and in-plane simple shear). Ligaments between 

nodes reaching at least 98% the strain of the ligament with the highest strain in the 



103 

Honeycombs with Structured Core for Enhanced Damping 

cell have been represented in these figures. When loaded axially, the optimum 

location of ligaments forms an axe across the middle of the regular honeycomb cell. 

For in-plane shear deformation, this location forms a single cross structure extending 

across the full height of the cell. For the “re-entrant” cell, ligaments of highest strain 

form an axe across the middle of the cell for both in-plane axial and shear 

deformation. 

 

Figure 3.18: Ligaments reaching at least 98% of the maximal ligament strain are 

shown located in the cell. The ligaments connect nodes in the finite element model 

of the regular cell, and their spacing is thus discontinuous. 

 

Figure 3.19: Ligaments reaching at least 98% of the maximal ligament strain are 

shown located in the cell. The ligaments connect nodes in the finite element model 

of the re-entrant cell, and their spacing is thus discontinuous. 
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3.3.3 Topological Optimisation of Honeycomb Cells Completely Filled with 

Viscoelastic Material 

The results of the topological optimisation set to maximise the global stiffness of the 

structure for an 80% volume reduction of the viscoelastic material used to fill the void 

of the cell are shown in Figure 3.20 for geometries 1 to 4 (methodology) loaded axially. 

The results of the optimisation highlight a location forming a horizontal ligament in the 

middle of the cell. 

Figure 3.21 shows the result of the topological optimisation for the geometries studied 

for in-plane pure shear loading. For geometries 1 and 2, two different locations have 

been formed by two crossed ligaments in the middle of the honeycomb cell. For 

geometries 3 and 4, the results of the optimisation highlight a location forming a 

horizontal ligament in the middle of the cell. 

 

Figure 3.20: Topological optimisation of the stiffness of a honeycomb cell filled with 

a viscoelastic material under in-plane axial deformation (a. corresponds to geometry 

1, b. to geometry 2, c. to geometry 3 and d. to geometry 4). 
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Figure 3.21: Topological optimisation of the stiffness of a honeycomb cell filled with 

a viscoelastic material under in-plane shear deformation (a. corresponds to 

geometry 1, b. to geometry 2, c. to geometry 3 and d. to geometry 4). 

3.4 Discussion 

3.4.1 In-plane Axial Loading 

When loaded axially, optimal locations of inserts tend to form a horizontal axis across 

the middle of the cell, and this is independent of the internal honeycomb angle In 

this loading case, the maximum displacement between the cell ribs arises near to 

the vertices between adjacent l ribs. However, the optimal ligament does not lie at 

the l rib vertices because the beams are rigidly connected at their ends and are thus 

considered to be ‘guided’ cantilevers (see Figure 3.3). Considering the geometry of 

the honeycomb cells, the highest absolute values of optimal ligament strains are 

found in cells with internal angle  approaching 0° (see Figure 3.7). This is because 

the rate of change of the internal angle is greatest as it approaches 0°. Notably, cells 

with negative internal angles exhibited higher maximal values of strain in their 

optimal ligaments because the distance between l rib vertices is smaller in the re-

entrant cells.  
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The influence of the cell aspect ratio  is clear in Figure 3.12, i.e. that as the h rib 

begins to exceed the l rib by 60% or more the optimal rib swaps to lying between 

adjacent rather than opposing l ribs. This is because the initial value of the distance 

between opposing l rib vertices increases with , also explaining why the highest 

value of maximum relative strain is reached for the lowest value of  (Figure 3.12). 

On a density-specific basis,  has less influence since it is also a factor in the density 

(see Figure 3.15). 

The results of the FE analysis of a regular honeycomb under axial loading, Figure 

3.18, also shows similar optimal ligament locations, agreeing well with the results 

from the analytical model. Similarly, the results obtained from the topological 

optimisation agree, and go some way to validating the assumption in section 2.1 that, 

for the range of cases studied here, the compliance of the ligament can be neglected 

and that the deformed shape of the honeycomb is mainly driven by the constituent 

material of the ribs. This assumption is likely to become invalid for cases where the 

cell ribs are much thinner or more compliant or the ligament material is much stiffer. 

3.4.2 In-plane Shear Loading 

For in-plane shear, locations of the optimal ligaments are mainly determined by the 

internal honeycomb angle .These location are classified in three categories: i) as 

shown in Figure 3.10, for cells with internal angles between -20° and -12°, optimal 

ligaments form an axis across the cell middle; ii) for internal angles between -12° 

and 12°, the optimal ligaments form a double cross structure; iii) for cells with internal 

angles of greater than 12° the optimal ligaments form a single cross structure across 

the full height of the cell. The reason the location and form of the optimal ligament 

changes is because the initial distance between l rib vertices changes with the cell 

shape, increasing as the angle  increases. From these three different highlighted 

locations, the most efficient appears to be the locations described for  between -

20° and -12° and between 12° and 30°, as shown in Figure 3.10. 

The influence of the ratio  on locations of the optimal ligaments can be seen in the 

two distinct categories, as shown in Figure 3.13. From = 0 to = 0.6, optimal 
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ligaments are located in the vertices between h and l ribs. In fact, the optimal 

ligament runs between points on the l ribs parallel and near to the h rib. At a critical 

value of cell aspect ratio, = 0.6, the increase of h reduces the ligament strain, and 

thus there is a change to a new configuration of optimal ligaments of a single cross. 

Figure 3.16 shows that higher optimal ligament strains are achieved for structures 

with the low values of angle  and ratio . If the base sheet material forming the 

honeycomb is similar as  and  change, the density will change markedly. The 

effect of this is shown in Figure 3.17, and it is clear that the higher density of the cells 

with low  and  values outweighs the benefits of higher strains in the ligament. It 

would of course be possible to alter the thickness of the constituent sheet material, 

t, so as to keep the density constant as both  and  vary, in which case inclusion of 

density would not change the shape of Figure 3.16. 

Comparison of Figure 3.14 (for axial deformation) and Figure 3.16 (for shear 

deformation) shows that the absolute strain values in the optimal ligaments are 

higher in axial loading than in shear loading (87% vs 2%, respectively), despite the 

applied global strain being 1% in both cases. The structure of the cell magnifies the 

global strain in axial loading much more than in shear. 

The FE model of cell deformation agrees well with the predictions of the analytical 

analysis, at least for the cases studied, i.e. a regular honeycomb cell ( = 1,  = 30°) 

and a re-entrant cell ( = 1,  = -20°). The topological optimisation also agrees with 

the analytical and FE model of cell deformation, despite the topological model’s 

inclusion of the ligament’s stiffness in calculation of the structure’s deformation. 

3.5 Conclusion 

The best location for inclusion of a ligament damping insert within the void of a 

honeycomb cell is the location where the relative displacement between the wall of 

the cell is maximal so as to maximise the deformation of the damping insert, hence 

its damping capacity. 
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The best locations are very specific to the geometry of the honeycomb cell and the 

in-plane loading direction. For most cases, a ligament between the two opposite 

edges of the honeycomb cell is the best location for ligament damping insert subject 

to axial loading. In all cases, complete occupation of the void is not the best solution 

for optimising the axial strain deformation of the damping material within the void of 

the cell. 

In the particular case of regular honeycomb cells, horizontal ligaments between the 

opposite edges of the cell void are best for in-plane axial loading and double cross 

ligaments across the two diagonal opposite edges of the honeycomb for in-plane 

shear loading. 
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Chapter 4. Viscoelastic Damping Inserts 

4.1 Introduction 

In-plane axial and shear loading were identified in Chapter 2 as the main deformation 

mechanisms of honeycomb unit cells inside a sandwich panel subjected to vibration. 

Best locations of damping material inside the void of the honeycomb cell have been 

investigated in Chapter 3 for both loadings. Different geometries of damping insert 

have been identified depending of the geometry of the cell and its loading. 

Complete occupation of the honeycomb cell void with damping material such as 

viscoelastic material has been shown to improve damping loss [11]. However, the 

weight penalty of this solution is considerable, making it not suitable for lightweight 

structures. Enhancement of the damping performance with partial filling of the cell 

void has been investigated for auxetic honeycombs, involving the use of viscoelastic 

material in the corner of the honeycomb cell [98]. The use of an auxetic honeycomb 

panel is, however, not common in industry because of the difficulties of 

manufacturing an auxetic core [3] [15].  

The objective of this chapter is to quantify the density-specific damping properties of 

partially filled regular honeycombs with viscoelastic damping inserts located in the 

locations highlighted in Chapter 3 for both in-plane axial and shear loadings. Only 

regular honeycomb cells are investigated in this chapter because of their common 

use in industry [3]. 

Analytical expression of the loss modulus and FE analyses have been used to 

quantify the loss modulus of the different geometry of damping inserts studied in this 

chapter. The loss modulus, the product of the structural modulus and the loss factor 

of a structure, is the figure of merit for composite material using viscoelastic material 

[86]. The damping properties of honeycomb with damping inserts have been 

quantified through static analyses using the modal strain energy (MSE) method [100] 

[102] [103]. 
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4.2 Methods 

4.2.1 Analytical Model 

4.2.1.1 Mechanical and Damping properties of a honeycomb cell with a 

ligament insert 

The mechanics of honeycomb structures have been widely studied and several 

analytical models have been developed to calculate their mechanical properties. 

Models of different complexities have been derived. Mechanical properties such as 

Young’s modulus or Poisson’s ratio can be calculated taking account of the bending 

deformation of the cell walls [2]. More complex expressions have been derived for 

thicker cell walls (t/l > 0.2), taking into account their shear deformation [2]. More 

complex expressions have been derived taking into account the 

stretching/compression and hinging of the cell walls [18]. For low-density honeycomb 

loaded at small strain, expressions derived by Gibson and Ashby, taking account 

only of the bending deformation of the cell walls, represent well the mechanical 

properties of honeycombs. Their approach has been used in this section to derive 

the mechanical and damping properties of honeycombs with a damping insert across 

their middle (see Figure 4.1). 

 

Figure 4.1: Honeycomb unit cell with damping insert partially filling the honeycomb 

cell void. 
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Analytical expressions of Young’s modulus E, loss factor  and loss modulus E* 

have been derived for in-plane uniaxial loading in the y direction to understand the 

mechanical behaviour of the honeycomb with a damping insert. The honeycomb cell 

is defined by parameters l, h, t and  as represented in Figure 4.1, and b 

representing the honeycomb depth. The damping insert is defined by parameters 

linsert and hinsert, as represented in Figure 4.2. 

 

Figure 4.2: Dimension of a horizontal ligament damping insert located within the void 

of a honeycomb cell. 

For uniaxial in-plane loading, it was assumed that the deformation mechanism 

consisted of the bending deformation of the honeycomb l walls due to the 

compression of the cell in the y direction [2] and the force introduced by the damping 

insert. Considering the symmetry of the model represented in Figure 4.1, a quarter 

of the cell can be isolated to derive the mechanical properties of the honeycomb cell 

with a damping insert. Loads resulting from the uniaxial loading along the y direction 

are represented in Figure 4.3 in a free body diagram. The moment M causing the 

bending of the cell walls is defined in Equation 4.1, where P is the force resulting 

from the stress y (see Equation 4.2), and Finsert the force of the damping insert. 

Giving the geometry of the honeycomb with the damping insert and the symmetry of 

the uniaxial loading in the y direction, the damping insert is loaded in 

tension/compression along the x direction. Using beam theory, the force of the 

damping insert, Finsert, is given in Equation 4.3, where 2..cos is the displacement 
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of the damping insert and Kinsert the stiffness of the damping insert (see Equation 

4.4), where Einsert is the Young’s modulus of the material of the damping insert. 

              

Figure 4.3: Force body diagram of the l walls of a honeycomb cell subject to a 

compressive load in the y direction. 

𝑀 =
𝑃. 𝑙. 𝑠𝑖𝑛𝜃 + 𝐹𝑖𝑛𝑠𝑒𝑟𝑡. 𝑙. 𝑐𝑜𝑠𝜃

2
 

Equation 4.1 

𝑃 = 𝜎𝑦. (ℎ + 𝑙. sin 𝜃). 𝑏 

Equation 4.2 

𝐹𝑖𝑛𝑠𝑒𝑟𝑡 = −𝐾𝑖𝑛𝑠𝑒𝑟𝑡. 2. 𝛿. 𝑐𝑜𝑠𝜃 

Equation 4.3 

𝐾𝑖𝑛𝑠𝑒𝑟𝑡 =
𝐸𝑖𝑛𝑠𝑒𝑟𝑡. ℎ𝑖𝑛𝑠𝑒𝑟𝑡. 𝑏

𝑙𝑖𝑛𝑠𝑒𝑟𝑡
 

Equation 4.4 

From standard beam theory [104], the deflection  of the walls is given in Equation 

4.5, where Es is the Young’s modulus of the honeycomb constituent material and I 

is the second moment of area of the cell wall (for a wall of uniform thickness t, 

I=bt3/12). 

y 

x 
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𝛿 =
2.𝑀. 𝑙2

12. 𝐸𝑠. 𝐼
 

Equation 4.5 

Substituting M from Equation 4.1 into Equation 4.5, and rearranging the terms, the 

deflection  is given from the geometric parameters and materials used in Equation 

4.6. 

𝛿 =
𝑃. 𝑠𝑖𝑛𝜃. 𝑙3

12. 𝐸𝑠. 𝐼 + 2. 𝐾𝑖𝑛𝑠𝑒𝑟𝑡. 𝑐𝑜𝑠2𝜃
 

Equation 4.6 

The strain of the honeycomb with its damping insert, y, is given in Equation 4.7. 

𝜀𝑦 =
𝑦𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑦𝑙𝑒𝑛𝑔𝑡ℎ
=

𝛿. 𝑠𝑖𝑛𝜃

𝑙. 𝑐𝑜𝑠𝜃
 

Equation 4.7 

Substituting  from Equation 4.6 into Equation 4.7, the strain y is given from the 

geometric parameters and materials used in Equation 4.6. 

𝜀𝑦 =
𝑃. 𝑙2. 𝑠𝑖𝑛2𝜃

𝑐𝑜𝑠𝜃. (12. 𝐸𝑠. 𝐼 + 2. 𝐾𝑖𝑛𝑠𝑒𝑟𝑡. 𝑙3. 𝑐𝑜𝑠2𝜃)
 

Equation 4.8 

Assuming a linear elastic deformation of the walls, i.e. small strain, the Young’s 

modulus Ey of the structure can be derived from Hooke’s law (see Equation 4.9). The 

first term in the expression of the Young’s modulus depends only on the parameters 

of the honeycomb structure and corresponds to the expression found of the Young’s 

modulus of the honeycomb cell without damping insert, Ey G&A, as derived by Gibson 

and Ashby in  [100] (see Equation 4.10). 
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𝐸𝑦 =
𝜎𝑦

𝜀𝑦
= 

12. 𝐸𝑠.𝐼. 𝑐𝑜𝑠𝜃

(
ℎ
𝑙
+ 𝑠𝑖𝑛𝜃) . 𝑠𝑖𝑛2𝜃. 𝑙3. 𝑏

+
2. 𝐾𝑖𝑛𝑠𝑒𝑟𝑡. 𝑐𝑜𝑠

3𝜃

(
ℎ
𝑙
+ 𝑠𝑖𝑛𝜃) . 𝑠𝑖𝑛2𝜃. 𝑏

 

Equation 4.9 

𝐸𝑦 𝐺&𝐴 = 
12. 𝐸𝑠.𝐼. 𝑐𝑜𝑠𝜃

(
ℎ
𝑙
+ 𝑠𝑖𝑛𝜃) . 𝑠𝑖𝑛2𝜃. 𝑙3. 𝑏

 

Equation 4.10 

The damping parameters of the honeycomb with its damping insert were calculated 

from the modal strain energy method [100] [102] [103]. This method approximates 

the loss factor of a structure as the sum of the ratio between the strain energy stored 

in each constituent material of the structure multiplied by its material loss factor over 

the total strain energy stored in the structure. The loss factor  of the structure 

derived from the MSE method is presented in Equation 4.11, where Utot is the total 

strain energy of the structure (Equation 4.12), insert is the loss factor of the material 

of the damping insert, Uinsert is the strain energy of the damping insert (Equation 4.13) 

and Uhoneycomb is the strain energy of the honeycomb (Equation 4.14). 

𝜂 = 𝜂𝑖𝑛𝑠𝑒𝑟𝑡.
𝑈𝑖𝑛𝑠𝑒𝑟𝑡

𝑈𝑡𝑜𝑡
+ 𝜂ℎ𝑜𝑛𝑒𝑦𝑐𝑜𝑚𝑏.

𝑈ℎ𝑜𝑛𝑒𝑦𝑐𝑜𝑚𝑏

𝑈𝑡𝑜𝑡
 

Equation 4.11 

𝑈𝑡𝑜𝑡 =
1

2
. 𝐸𝑦. 𝜀𝑦

2. 𝑉𝑐𝑒𝑙𝑙 

Equation 4.12 

With: 

𝑉𝑐𝑒𝑙𝑙 = 4. 𝑙. 𝑐𝑜𝑠𝜃. (ℎ + 𝑙. 𝑠𝑖𝑛𝜃). 𝑏 
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𝑈𝑖𝑛𝑠𝑒𝑟𝑡 =
1

2
. 𝐸𝑖𝑛𝑠𝑒𝑟𝑡. 𝜀𝑖𝑛𝑠𝑒𝑟𝑡

2. 𝑉𝑖𝑛𝑠𝑒𝑟𝑡 

Equation 4.13 

With: 

𝑉𝑖𝑛𝑠𝑒𝑟𝑡 = 𝑙𝑖𝑛𝑠𝑒𝑟𝑡. ℎ𝑖𝑛𝑠𝑒𝑟𝑡. 𝑏 

𝜀𝑖𝑛𝑠𝑒𝑟𝑡 =
2. 𝛿. 𝑐𝑜𝑠𝜃

𝑙𝑖𝑛𝑠𝑒𝑟𝑡
 

 

𝑈ℎ𝑜𝑛𝑒𝑦𝑐𝑜𝑚𝑏 = 𝑈𝑡𝑜𝑡 − 𝑈𝑖𝑛𝑠𝑒𝑟𝑡 

Equation 4.14 

The MSE method is applied in this study for static loadings. This is correct for 

frequency independent material properties such as most metals but not strictly for 

viscoelastic materials since they exhibit frequency-dependent material properties. In 

the particular case of this study, the MSE method is used to compare the damping 

properties provided by the introduction of a viscoelastic damping insert inside the 

void of a honeycomb cell, hence justifying its validity as a method for comparing the 

damping properties of honeycomb cells with different geometries of damping inserts. 

The loss modulus E*, the product of the loss factor  and the Young’s modulus E of 

the structure are deduced from Equation 4.9 and Equation 4.11 (see Equation 4.15). 

𝐸𝑦
∗ = 𝜂. 𝐸𝑦 

Equation 4.15 

4.2.1.2 Limiting condition of the insert 

The load transferred to the ligament insert of a honeycomb cell loaded in tension 

compresses the ligament insert. As a result, the ligament insert will buckle if the 
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condition in Equation 4.16 is met [111], invalidating the equations derived in the 

previous section. 

−𝐹𝑖𝑛𝑠𝑒𝑟𝑡 >
𝜋2.𝐸𝑖𝑛𝑠𝑒𝑟𝑡.𝐼𝑖𝑛𝑠𝑒𝑟𝑡

𝑙𝑖𝑛𝑠𝑒𝑟𝑡
  with  𝐼𝑖𝑛𝑠𝑒𝑟𝑡 = 

𝑏.ℎ𝑖𝑛𝑠𝑒𝑟𝑡
3

12
 

Equation 4.16 

Subtracting the expression of Iinsert, Equation 4.3 and Equation 4.4 into Equation 

4.16, a limiting condition on the thickness of the insert hinsert can be derived. The 

limiting condition of the thickness of the insert hinsert to avoid buckling is shown in 

Equation 4.17 after simplification. 

ℎ𝑖𝑛𝑠𝑒𝑟𝑡 > √
24. 𝑙𝑖𝑛𝑠𝑒𝑟𝑡. 𝜀

𝜋2
 

Equation 4.17 

4.2.2 Finite Element Analysis of Honeycomb Structure with Damping Inserts 

 

Mechanical and damping properties of regular honeycomb with damping inserts 

have been investigated with a finite element analysis using Ansys 13. Six models 

have been studied under different loading conditions. 

4.2.2.1 Damping Insert Geometries 

Geometries for damping inserts have been chosen to investigate the best locations 

of inserts for a regular honeycomb found in Chapter 3. The six geometries studied 

are represented in Figure 4.4. A regular honeycomb without insert (Figure 4.4a.) and 

one completely filled (Figure 4.4f.) with the damping material have been studied for 

comparison with the damping insert geometries studied. Figure 4.4b. shows a 

regular honeycomb with a horizontal ligament insert across the middle of the cell 

void; this location was found to be the most efficient for honeycombs loaded in in-

plane tension/compression. Figure 4.4d. shows a honeycomb with a double cross 

ligament inside the cell void; this location was found to be the most efficient for 
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regular honeycombs loaded in in-plane shear. Figure 4.4c. shows a regular 

honeycomb cell with a single ligament insert across the diagonal of the cell; this 

location was thought to be an adaption of the horizontal ligament for in-plane shear 

loading. Figure 4.4e. shows a regular honeycomb unit cell with a star ligament 

configuration combining the best location of damping insert found for both in-plane 

tension/compression and shear loadings. 
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a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

f. 

Figure 4.4: Honeycomb unit cells in blue with geometries of viscoelastic damping 

inserts in purple. 

Honeycomb geometric parameters have been set as follows: l = h = 1 mm,  = 30 ̊

and t = 0.0433 mm for a honeycomb cell relative density,  = 0.05 (see Equation 

4.18). Relative density of 0.05 matches with commonly used, ‘1/16 inch’ 

honeycombs from HEXCEL [105]. 
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𝜌∗ =
𝑡

𝑙
.

(
ℎ
𝑙
+ 2)

2. 𝑐𝑜𝑠𝜃. (
ℎ
𝑙
+ 𝑠𝑖𝑛𝜃)

 

Equation 4.18 

Table 4.1: HEXCEL Honeycomb Designation - 5052 Alloy Hexagonal Aluminium 

Honeycomb [105]. 

Each damping insert geometry has been studied from 5% to 95% filling of the 

honeycomb cell void by 5% increments. The volume occupied by the inserts Vligament 

is defined in Equation 4.19 for the ligament insert geometries (Figure 4.4b. and c.) 

without considering the overlap of the honeycomb structure. hligament is the thickness 

of the ligament insert. Giving the geometry of the insert, Vligament was calculated as 

four times area A1 and A2, as shown in Figure 4.5. The volume of the double cross 

ligament was considered to be the one of two separate ligaments and the star 

ligament, three separate ligaments. This assumes that the overlapping of the 

ligaments in the middle of the cell was neglected. This assumption is valid for low 

filling of the honeycomb void (up to 20%). For higher filling, the volume was corrected 

manually using the exact volume computed from the FE software. 

Cell Size [in] Foil Gauge Nominal Density [g/cc] Relative Density 

1/16 0.0007 0.104120012 0.038534423 

1/16 0.001 0.147369863 0.05454103 

1/16 0.0015 0.198628946 0.073511823 
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Figure 4.5: Ligament insert geometry subdivided in four sections of equal area A1 

and A2. 

𝑉𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡 =
ℎ𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡

2. 𝑡𝑎𝑛𝜃

2
+ ℎ𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡. (2. 𝑙. 𝑠𝑖𝑛𝜃 + ℎ𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡 − ℎ𝑙𝑖𝑔𝑎𝑚𝑒𝑛𝑡. 𝑡𝑎𝑛𝜃) 

Equation 4.19 

4.2.2.2 Loadings and Associated Boundary Conditions 

In-plane tension/compression, and in-plane pure shear boundary conditions have 

been applied to the geometries studied. These loading conditions correspond to the 

noticeable deformations of honeycomb cells in a sandwich structure as highlighted 

in Chapter 2. 

Boundary conditions associated to the in-plane tension/compression loading are 

shown in Figure 4.6. Nodes on the bottom edge of the unit cell were constrained in 

the y direction and nodes on the left edge were constrained in the x direction. Nodes 

on the right edge of the cell were constrained to remain parallel in the x direction. A 

displacement was applied to nodes of the top edge in the y direction, loading the cell 

at y = 0.1% strain.  
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Figure 4.6: Loading and boundary conditions of a honeycomb unit cell with damping 

insert in simulating the compression of the cell along the y direction. 

The in-plane tension/compression boundary conditions associated to the geometry 

representing the diagonal ligament across the cell (Figure 4.4c.) have not been 

applied to the unit cell but to a 9x9 cell array. This has been carefully chosen from a 

convergence study due to the discontinuity of the model of the unit cell, as 

highlighted in Figure 4.7. 

 

Figure 4.7: Honeycomb unit cell with a diagonal ligament insert. Discontinuity of the 

ligament insert for the type of unit cell chosen is highlighted within the red circles. 

Parallel 

Constraint 

Displacement 
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Boundary conditions associated to the in-plane shear loading were applied to a 

15x15 cell array to satisfy periodicity and symmetry conditions of the centre cell of 

the panel, as shown in Figure 4.8. The size of the panel studied was chosen from a 

convergence study to avoid over-constraining the edge of the unit cell [106] [107]. 

Nodes on the bottom edge of the unit cell were constrained in the x direction and 

nodes on the left edge were constrained in the y direction. Displacement dx has been 

applied to nodes on the top edge in the x direction and displacement dy to nodes on 

the right edge in the y direction. Displacements dx and dy have been fixed to load 

the panel at xy = 0.1% strain (see Equation 4.20 and Equation 4.21), with nb_cell_x 

and nb_cell_y the number of cells of the panel, respectively, in the x and y direction. 

 

Figure 4.8: In-plane pure shear loading and boundary conditions of a honeycomb 

panel (15x15 cells) with ligament damping inserts. 

𝑑𝑥 = 𝛾𝑥𝑦. 2. 𝑙. 𝑐𝑜𝑠𝜃. 𝑛𝑏_𝑐𝑒𝑙𝑙_𝑦 

Equation 4.20 

𝑑𝑦 = 𝛾𝑥𝑦. 2. (ℎ + 𝑙. 𝑠𝑖𝑛𝜃). 𝑛𝑏_𝑐𝑒𝑙𝑙_𝑥 

Equation 4.21 
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Both in-plane axial and shear boundary conditions have been validated against 

analytical expressions of the Young’s modulus, Ey G&A, and shear modulus, Gxy G&A, 

derived by Gibson and Ashby for a regular honeycomb (see Equation 1.3 and 

Equation 1.4) [2]. 

4.2.2.3 Elements Definition 

The finite element mesh consists of 2D bilinear structural PLANE82 elements (plane 

strain formulation). Numbers of elements have been carefully chosen from a 

convergence study. Models with a damping insert filling 5% of the honeycomb cell 

void had a minimum of 3,000 elements (see Figure 4.9), and models with a damping 

insert filling 95% of the cell void numbered around 35,000 for a single unit cell.  

 

Figure 4.9: FE mesh of the honeycomb unit cell with a horizontal ligament damping 

insert filling 10% of the void space of the honeycomb.  

4.2.2.4 Material Properties 

Two material properties have been defined. The constituent material of the 

honeycomb has been modelled with aluminium properties, with a set of linear and 



124 

Honeycombs with Structured Core for Enhanced Damping 

isotropic elastic constant (Eal = 70000 MPa, al = 0.3, pal = 2.7 g.cm3 and al = 0.0001 

[76]). The damping insert has been modelled with arbitrary material properties 

representing a viscoelastic material, with a set of linear and isotropic elastic constant 

(Evisco = 1MPa, visco = 0.45, visco = 1.25 g.cm3 and visco = 0.1 [108]).  

The density of the honeycomb cell partially filled with viscoelastic material, , is 

derived in Equation 4.22 where Val is the volume of the constituent material of the 

honeycomb cell (aluminium), Vcell is the volume of the unit cell defined in Equation 

4.12 and Vvisco is the volume of the viscoelastic material forming the damping insert 

defined in Equation 4.19. 

𝜌 =
𝜌𝑎𝑙 . 𝑉𝑎𝑙 + 𝜌𝑣𝑖𝑠𝑐𝑜 . 𝑉𝑣𝑖𝑠𝑐𝑜

𝑉𝑐𝑒𝑙𝑙
 

Equation 4.22 

4.2.2.5 FE Analysis 

Mechanical and damping properties of the models and loadings described previously 

have been calculated using a linear static analysis with Ansys 13 [90]. The Young’s 

modulus Ey and the shear modulus Gxy have been calculated in the centre cell of 

each model from, respectively, Equation 4.23 and Equation 4.24, where Utotal is the 

total strain energy of all the elements in the centre cell, y is the strain of the cell 

loaded axially, xy is the shear strain of the cell loaded in pure shear and Vcell is the 

total volume of the cell. 

𝐸𝑦 =
2.𝑈𝑡𝑜𝑡𝑎𝑙

𝜀𝑦
2. 𝑉𝑐𝑒𝑙𝑙

 

Equation 4.23 

𝐺𝑥𝑦 =
2.𝑈𝑡𝑜𝑡𝑎𝑙

𝛾𝑥𝑦
2. 𝑉𝑐𝑒𝑙𝑙

 

Equation 4.24 
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Loss factors and loss moduli of the structure for both loading cases have been 

derived from Equation 4.11 based on the MSE method. The MSE method is applied 

in this study for static loadings. This is correct for frequency-independent material 

properties such as most metals but not for viscoelastic materials since they exhibit 

frequency-dependent material properties [108]. In the particular case of this study,   

the loading frequency of the viscoelastic material is imposed by the recipient 

honeycomb structure independently of the damping insert geometry. Therefore, the 

MSE method is valid for comparison of each damping insert’s damping properties. 

This assumes that the loadings frequencies and the surrounding temperature of the 

damping insert are suitable for viscoelastic materials. 

4.3 Results 

4.3.1 Convergence Study 

A convergence test is shown in Figure 4.10 for different sizes of aluminium regular 

honeycomb panels of relative density = 0.05. The convergence study performed 

on the FE computed Young’s Moduli Ey and Gxy normalised against their analytical 

expression Ey_G&A and Gxy_G&A from [2] (see Equation 1.3 and Equation 1.4). The FE 

computed Young’s modulus, Ey, is constant for honeycomb panels of different sizes, 

whereas the FE computed shear modulus, Gxy, is 60% higher for a 3x3 cell panel. 
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Figure 4.10: FE predicted unit cell Young’s and shear moduli for different sizes of 

honeycomb panels normalised against their respective analytical expression from 

Gibson and Ashby [2]. 

Figure 4.11 shows the deformed shape of a regular aluminium honeycomb unit cell 

of relative density = 0.05 (a.), a 3x3 honeycomb panel (b.) and a 9x9 honeycomb 

panel (c.) loaded in in-plane shear. The unit cell deformation appears to be 

consistent with the plane of symmetry of the geometry (xOz and yOz). Horizontal 

walls of the honeycomb are deformed in bending as predicted in [2]. For larger 

arrays, the symmetry is broken where the boundary conditions have been applied, 

as shown in Figure 4.11 b. and Figure 4.11 c. As opposed to the rest of the model, 

the horizontal walls where the boundary conditions have been applied are not 

deformed in bending. Symmetry is recovered in the middle of the 9x9 honeycombs 

panel (further away from the application of the boundary conditions). 
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a. 

 

b. 

 

c. 

Figure 4.11: In-plane shear deformation of a honeycomb unit cell (a.), a 3x3 

honeycomb cell array (b.), and a 9x9 honeycomb cell array (c.). 

A convergence study has been performed on honeycomb panels with the four 

architectures of damping inserts occupying 10% of the honeycomb cell void to verify 

the consistency of the boundary conditions applied to the FE models. The strain 

energy stored in the viscoelastic material of the middle cell of the honeycomb panel 

(one of the parameters used to calculate structural modulus, loss factor and loss 

modulus of the cell with damping insert) is presented in Figure. The strain energy 

stored in the viscoelastic material is constant in in-plane axial loading independently 
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of the number of cells of the panel. For in-plane shear loading, convergence of the 

strain energy stored in the viscoelastic material is achieved for a 15x15 cell panel. 

 

a.                                                                             b. 

Figure 4.12: Strain energy (J) stored in the middle cell of different honeycomb panel 

sizes under in-plane compression (a.) and in-plane pure shear loading (b.). 

4.3.2 In-plane Axial Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The elastic equivalent Von Mises strain [90] of the viscoelastic insert geometries is 

illustrated in Figure 4.13 for a 10% filling of the void of a regular honeycomb unit cell 

and for a completely filled unit cell under a compression loading of 0.1% strain. The 

highest magnitude of strain forms a horizontal ligament across the completely filled 

cell. A higher magnitude of strain is achieved for the horizontal ligament geometry 

and the star ligament geometry compared to other geometries of damping inserts 

analysed. 
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a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

Figure 4.13: Elastic equivalent Von Mises strain of the different viscoelastic insert 

geometries filling 10% of the void of a regular honeycomb unit under compression 

loading of 0.1% strain. 

The elastic equivalent Von Mises strain [90] of a regular honeycomb unit cell with a 

horizontal viscoelastic ligament filling, respectively, 10%, 30%, 50% and 70% of the 

honeycomb cell void and a completely filled honeycomb cell loaded at 0.1% strain in 

compression is presented in Figure 4.14. The magnitude of strain in the viscoelastic 

2.05x10-3 

 

0 
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ligament is high and almost uniform at 10% filling of the honeycomb void. A higher 

magnitude of strain is achieved locally for larger ligaments that are balanced with 

localised magnitude of strain lower than that achieved for the ligament filling 10% of 

the honeycomb cell void. 

 

a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

Figure 4.14: Elastic equivalent Von Mises strain of horizontal ligament damping 

inserts filling 10% (a.), 30% (b.), 50% (c.), 70% (d.) and 100% (e.) of the void of a 

honeycomb unit cell under compression loading of 0.1% strain. 

2.05x10-3 

 

0 
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The in-plane Young’s modulus Ey is represented as a function of the volume fraction 

occupied by the viscoelastic damping insert over the void space of the honeycomb 

cell in Figure 4.15, i.e. the cell void filling with viscoelastic material for all viscoelastic 

insert geometries. The Young’s modulus of a cell completely filled with viscoelastic 

material and a honeycomb cell without damping insert are also represented in Figure 

4.15. The analytic expression of the in-plane Young’s modulus of the honeycomb 

cell with a horizontal ligament geometry derived in Equation 4.9 is superposed to the 

FE results. The Young’s modulus increases with the filling of the cell, from the 

Young’s modulus of the empty cell (14.69 MPa), i.e. an aluminium honeycomb, to 

the magnitude reached with a completely filled cell (16.65 MPa). Between the 

viscoelastic insert geometries analysed, the Young’s modulus magnitude varies less 

than 10% for a given cell filling; among those, the horizontal ligament insert exhibits 

the highest magnitude. The analytical expression of the Young’s modulus of the 

honeycomb cell with a horizontal ligament is of the same magnitude than the FE 

computed Young’s modulus and varies linearly with the cell void filling.  For cell void 

filling below 55% the Young’s modulus is slightly underestimated analytically (1 MPa 

for 5% cell filling), whereas above 55% cell void it is slightly overestimated (1.7 MPa 

for 95% filling). 
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Figure 4.15: Analytical and FE computed Young’s modulus Ey of a honeycomb cell 

of relative density = 0.05 with different geometries of ligament damping inserts 

represented in function of the cell void filling of the damping insert. 

The loss factor  derived from the MSE method under in-plane compressive strain 

of 0.1% of the honeycomb unit cell, for all viscoelastic insert geometries, a 

completely filled and an empty honeycomb cell is represented in Figure 4.16 as a 

function of the filling of the honeycomb cell void. The analytic expression of the loss 

factor  of the honeycomb cell with a horizontal ligament geometry is derived in 

Equation 4.11. Equation 4.9 is superposed to the FE results. The loss factor 

increases with the filling of the cell, from the magnitude of the empty cell (1e-4), i.e. 

a pure aluminium honeycomb, to the magnitude reached with a completely filled cell 

(1.18e-2). Between the viscoelastic insert geometries analysed, the loss factor 

magnitude varies largely for a given cell filling; among those, the horizontal ligament 
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insert exhibits the highest magnitude and the diagonal ligament insert the lowest.  

The analytical expression of the loss factor of the honeycomb cell with a horizontal 

ligament matches well the FE predictions for cell void filling up to 35%. Above 35% 

cell void filling, the analytical expression of the loss factor overestimates the FE 

predictions. 

 

Figure 4.16: Analytical and FE computed loss factor of a honeycomb cell of relative 

density = 0.05 with different geometries of ligament damping inserts represented 

in function of the cell void filling of the damping insert. 

The in-plane loss modulus Ey* for all viscoelastic insert geometries, a completely 

filled and an empty honeycomb cell, is represented in Figure 4.17 as a function of 

the filling of the honeycomb cell void. The analytic expression of the in-plane loss 

modulus Ey* of the honeycomb cell with a horizontal ligament geometry derived in 
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Equation 4.15 is superposed to the FE results. The loss modulus follows the same 

trends described for the loss factor with the horizontal ligament exhibiting the highest 

loss modulus for a given cell filling.  The analytical expression of the loss modulus 

of the honeycomb cell with a horizontal ligament matches well the FE predictions for 

cell void filling up to 50%. Above 50% cell void filling, the analytical expression of the 

loss factor overestimates the FE predictions. 

 

Figure 4.17: Analytical and FE computed loss modulus Ey* of a honeycomb cell of 

relative density = 0.05 with different geometries of ligament damping inserts 

represented in function of the cell void filling of the damping insert. 

The in-plane density-specific loss modulus Ey*/ for all viscoelastic insert 

geometries, a completely filled and an empty honeycomb cell is represented in 
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Figure 4.18 as a function of the filling of the honeycomb cell void. Except for the 

horizontal ligament insert, the density-specific loss modulus increases with the filling 

of the cell, from the magnitude of the empty cell to the magnitude of the completely 

filled cell. The horizontal ligament insert exhibits higher density-specific modulus 

from 20% filling of the cell. The highest magnitude is reached at 45% filling of the 

cell. The density-specific loss modulus decreases progressively to the magnitude of 

the cell completely filled with viscoelastic material.  

 

Figure 4.18: FE computed density-specific loss modulus Ey*/ of a honeycomb cell 

of relative density = 0.05 with different geometries of ligament damping inserts 

represented in function of the cell void filling of the damping insert. 
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The density  of the honeycomb as a function of the cell void filling with viscoelastic 

material is illustrated in Figure 4.18. The density varies linearly with the percentage 

of cell filling from 1.90e-4 g/mm3 for a filling of 5% to 1.3e-3 for a filling of 95%. 

 

Figure 4.19: Density  of a honeycomb cell of relative density = 0.05 in function of 

the cell void filling with viscoelastic material. 

4.3.3 In-plane Shear Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The elastic equivalent Von Mises strain [90] of the viscoelastic insert geometries is 

illustrated in Figure 4.20 for a 10% filling of the void of a regular honeycomb unit cell 

and for a completely filled unit cell under in-plane shear loading at 0.1% strain. The 

highest magnitude of strain forms a vertical ligament across the middle section of 

the completely filled cell. A higher magnitude of strain is achieved for insert 

geometries with diagonal ligament inserts across the cell void. As shown in Figure 
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4.20 a. and Figure 4.20 c., the strain in the horizontal ligament insert is negligible for 

in-plane shear loading. 

 

a. 

 

b. 

 

c. 

 

d. 

 

e. 

 

Figure 4.20: Elastic equivalent Von Mises strain of the different viscoelastic insert 

geometries filling 10% of the void of a regular honeycomb unit cell under in-plane 

pure shear loading of 0.1% strain. 

1.1x10-3 

 

0 
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The in-plane density-specific loss modulus, Gxy*/, for all viscoelastic insert 

geometries, a completely filled and an empty honeycomb cell is represented in 

Figure 4.21 as a function of the void filling percentage with viscoelastic material of 

the honeycomb unit cell. Except for the cross ligament insert, the density-specific 

loss modulus of all ligament inserts is lower than the magnitude reach of the 

completely filled cell. The cross ligament insert exhibits a higher density-specific 

modulus from 35% filling of the cell; the highest magnitude is reached at 75% filling 

of the cell and then decreases to the magnitude of the cell completely filled with 

viscoelastic material. The diagonal ligament increases within 10% of the density-

specific modulus of the completely filled cell from 35% filling of the cell voids; its 

magnitude remains almost constant for a higher percentage of filling. The density-

specific loss modulus of the star ligament increases progressively to the magnitude 

of the completely filled cell. The density-specific loss modulus of the horizontal 

ligament geometry is lower than that of a pure aluminium honeycomb for a filling up 

to 35%, then it increases to 75% of the density-specific loss modulus of the 

completely filled cell at 95% filling of the honeycomb cell void. 
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Figure 4.21: FE computed density-specific loss modulus Gxy*/ of a honeycomb cell 

of relative density = 0.05 with different geometries of ligament damping inserts 

represented in function of the cell void filling of the damping insert. 

4.4 Discussion 

4.4.1 Boundary Conditions 

The consistency of the boundary conditions applied to the FE models representing 

a honeycomb unit cell have been verified by comparing the FE computed moduli of 

the honeycomb cell for both in-plane axial and shear loading with their respective 

analytical expression derived by Gibson and Ashby [2]. The boundary conditions 

applied on the edge of the honeycomb unit cells are consistent for in-plane axial 

loading but not for in-plane shear loading. The FE computed shear modulus is 60% 
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higher than the predicted shear modulus by Gibson and Ashby when the boundary 

conditions are applied to the edge of a 3x3 cell panel and converge to the predicted 

shear modulus for larger panels (see Figure 4.10). This characteristic has been 

observed in [106], particularly for shear loading, and is the consequence of over-

constraining boundary conditions. The strain energy in the viscoelastic material 

follows the same pattern described for Young’s and shear moduli (see Figure 4.12). 

As a result, the boundary conditions have been applied to a unit cell model for in-

plane axial loading and to a 9x9 cell panel for in-plane shear loading.  

The converged magnitude of the FE moduli in both in-plane axial and shear is slightly 

higher than its predicted magnitude from the expression derived by Gibson and 

Ashby (< 10%) (see Figure 4.10). The expressions derived by Gibson and Ashby 

assume only bending deformation of the cell walls of the honeycomb cell, which is 

valid for honeycombs with slender walls (t/l<<1) [2]. Stretching and shear 

deformation of the walls of the honeycomb are not considered in their expressions, 

explaining the differences with the FE computed moduli. 

4.4.2 In-plane Axial Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The mechanical and loss properties of honeycombs progressively filled with 

viscoelastic material have been described in Figure 4.15 to Figure 4.17 for all 

geometries of inserts. The geometry with the honeycomb cell completely filled with 

viscoelastic material exhibits higher modulus, loss factor and loss modulus and the 

geometry without viscoelastic material exhibits the minimum ones. The viscoelastic 

material inside the completely filled cell increases the stiffness of the cell and its loss 

properties due to its high loss properties. For the partially filled cell, the mechanical 

and loss properties vary from those of a pure aluminium cell for low filling of the void 

and converge progressively to the properties of the completely filled cell for higher 

filling of the honeycomb cell void. The convergence rate to reach the properties of 

the completely filled cell is dependent on the damping ligament geometry, as 

highlighted in Figure 4.15 to Figure 4.17. The horizontal ligament geometry exhibits 

higher mechanical and damping properties than the star ligament geometry, which 
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exhibits higher properties than the cross and diagonal ligament geometries for the 

same percentage of filling of the honeycomb cell void. This is caused by the location 

of the damping ligament insert inside the honeycomb geometry. As highlighted in 

Figure 4.13, the Von Mises strain is higher in the horizontal ligament geometry than 

in the diagonal ligament geometry. Since the horizontal ligament insert is loaded at 

higher strain, it provides higher resistance than the other insert geometries upon 

axial loading, therefore exhibiting higher mechanical properties. Since the damping 

properties are dependent on the strain in the viscoelastic material, the horizontal 

ligament insert also exhibits higher damping properties. The Von Mises strain is 

higher in the horizontal ligament insert because of the cell geometry. The section of 

a regular honeycomb unit cell is characterised by parameters h, l, t and and forms 

a rectangular section of length 2.(h+l.sin()) along its horizontal axis (x) and height 

2.l.cos() along its vertical axis (y) (see Figure 4.1). Since a regular honeycomb cell 

exhibits a Poisson ratio of one, the horizontal displacement of the cell is larger than 

the vertical displacement upon in-plane axial loading. Therefore, the horizontal 

ligament is loaded at higher strain (see insert in Equation 4.13), because the relative 

displacement of opposite walls of the unit cell is higher for horizontal walls than for 

diagonal walls. This has been discussed in further detail in the previous chapter. 

Correlation with the analytical model of the horizontal insert derived in the 

methodology correlates well with the FE results for filling of the cell void below 60%. 

The Young’s modulus is slightly underestimated in the analytical model since it 

accounts only for the bending deformation of the honeycomb cell walls. Correlation 

for filling higher than 60% is limited because of the assumptions made in the 

analytical model. The length of the viscoelastic ligament linsert is assumed to be the 

distance between the two opposite horizontal walls of the honeycomb unit cell (see 

Figure 4.2). Since the l walls of the honeycomb form an angle  with the vertical axis, 

the effective length of the horizontal insert varies with the percentage of filling of the 

cell, which is not accounted for in the analytical model. Furthermore, the horizontal 

ligament is squeezed between the two l walls of the honeycomb cell, which is not 
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accounted for in the analytical model and is not negligible at high percentages of 

filling of the cell (see Figure 4.14). 

Since the enhancement of the mechanical and damping properties implies an 

increase of the total weight of the honeycomb unit cell caused by the additional filling 

with viscoelastic material, the density-specific loss modulus of honeycombs loaded 

axially with different ligament insert geometries have been compared in Figure 4.18. 

A honeycomb with a horizontal ligament insert filling 40% of its void exhibits the 

highest density-specific loss modulus, 26.7% higher than the honeycomb cell 

completely filled with viscoelastic material, which exhibits the higher loss modulus. 

The density-specific loss modulus is higher than that of the honeycomb completely 

filled with viscoelastic material from a filling of 20% to 100% of the honeycomb cell 

void. As highlighted previously, the loss modulus of the ligament insert converges 

from the value of the loss modulus of the empty cell to that of the cell completely 

filled with viscoelastic material. Low filling of the cell void exhibits small increases of 

the Young’s modulus, loss factor and loss modulus. Despite the smaller density, 

which varies linearly with the filling of the cell as shown in Figure 4.19, the additional 

damping provided by the added material is not enough to outweigh the added 

damping of the completely filled cell. Other geometries of inserts, star, diagonal and 

cross ligaments exhibit higher density-specific loss modulus compared to the empty 

cell but lower compared to the completely filled cell. This is because these 

geometries of damping inserts have diagonal ligament inserts across the cell void 

and are not effective under axial loading, as explained previously. 

4.4.3 In-plane Shear Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The mechanical and damping properties of honeycombs with damping insert loaded 

in shear are also dependent on the insert geometry. The horizontal ligament 

performs better in axial loading than the diagonal ligament, as discussed previously. 

For in-plane shear loading, the diagonal ligament performs better than the horizontal 

ligament, as shown in Figure 4.21. A honeycomb with a cross ligament insert (two 

diagonal ligaments) filling 75% of its void exhibits the highest density-specific loss 
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modulus, 16% higher than the honeycomb cell completely filled with viscoelastic 

material. The density-specific loss modulus is higher than that of the honeycomb 

completely filled with viscoelastic material from a filling of 35% to 100% of the 

honeycomb cell void. The density-specific loss modulus of the single diagonal 

ligament geometry remains within 10% of the difference of that of the completely 

filled honeycomb from 35% filling of the honeycomb cell void. The star ligament 

reaches 10% of the density-specific loss modulus of the completely filled cell at 85% 

filling of the cell void. The horizontal ligament geometry has a lower density-specific 

loss modulus than the empty cell for a filling up to 35% and then increases to 75% 

of the density-specific loss modulus of the completely filled cell at 95% filling. Von 

Mises strain plots of the honeycombs with different damping inserts in Figure 4.20 

shows that diagonal ligament inserts are loaded at much higher strains than 

horizontal ligaments. This is because the relative displacement of the diagonal 

opposite walls across the middle of the cell is higher than that between the horizontal 

walls for in-plane shear, as opposed to in-plane axial loading (Chapter 3). This has 

been discussed in further detail in the previous chapter. The Von Mises strain plot of 

the horizontal ligament geometry shows that it is barely loaded under in-plane shear 

loading. This is the reason why the density-specific loss modulus of the horizontal 

insert geometry is lower than the cell with no damping insert for filling up to 35%. 

The added material is not loaded sufficiently to provide efficient damping on a density 

basis. 

4.5 Conclusion 

The geometry of damping inserts for use inside a regular honeycomb cell void have 

been derived from Chapter 3 for best use of the damping capacity of the damping 

material upon loading. These geometries consist of a horizontal ligament insert 

across the cell void, a diagonal ligament insert, a cross ligament insert and a star 

ligament insert. 

The density-specific damping capability of each insert has been compared to an 

aluminium regular honeycomb cell and a cell completely filled with damping material; 

a viscoelastic material in this case. 
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The density-specific damping capability of each insert has been shown to be 

dependent on both the geometry of the insert and the loading of the cell. Partial filling 

of the honeycomb cell with damping insert exhibited the best density-specific 

damping capability compared to honeycomb cells without damping insert or 

honeycomb cells completely filled with a viscoelastic material. 

Under in-plane axial loading the horizontal ligament insert performs best and gives 

a 26.7% increase of the density-specific loss modulus of the honeycomb compared 

to a completely filled honeycomb cell. Under in-plane shear loading the cross 

ligament insert performs best and gives a 16% increase of the density-specific loss 

modulus of the honeycomb compared to a completely filled honeycomb cell. 
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Chapter 5. Shear Lap Joint Damping Insert 

5.1 Introduction 

The use of viscoelastic material for enhanced damping properties in a structure is 

often applied as a free layer treatment or a constrained layer treatment. In a free 

layer treatment, the damping material is sprayed or bonded to the base structure. In 

constrained layer damping treatments, the damping material is sandwiched between 

the base structure and a constraining layer. Under bending loading, the damping 

material in the free layer treatment deforms primarily in extension/compression in 

planes parallel to the base structure whereas, in the constrained layer treatment, the 

damping material deforms in shear. Constrained layer damping has shown to be 

more effective than free layer damping since the damping material is loaded at 

higher strain and, therefore, dissipates more energy [4]. 

The viscoelastic damping inserts presented in the previous chapter have been 

shown to increase the damping properties of the honeycomb cell. The damping loss 

provided by the viscoelastic material has been shown to be dependent on the insert 

geometry and the nature of loading. This is because the honeycomb host structure 

loads the insert in extension/compression; leading to increased energy dissipation. 

The damping characteristics of the viscoelastic damping insert can, therefore, be 

compared to the damping characteristics of a free layer coating of viscoelastic 

material in a structure. As mentioned previously, constrained layer damping has 

been shown to be a more effective method to implement damping in structures than 

free layer damping. The objective of this chapter is to analyse shear lap joint (SLJ) 

damping inserts for honeycomb structures and quantify their density-specific 

properties.  

Geometries of SLJ inserts are presented based on the optimum location for damping 

inserts found in Chapter 3. Analytical expressions and FE analysis have been used 

to quantify the mechanical and damping properties of the different geometries of 

damping inserts studied in this chapter. The loss modulus, product of the structural 

modulus and the loss factor of a structure are the figures of merit for composite 
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material using viscoelastic material [86]. The damping properties of honeycomb with 

damping inserts have been quantified through static analyses using the MSE method 

[100] [102] [103]. 

5.2 Methods 

5.2.1 Shear Lap Joint Damping Insert Concept 

The geometry of SLJ damping inserts for use inside honeycomb unit cells are 

illustrated in Figure 5.1 and consist of a constraining structure and a damping 

material, which can be a viscoelastic material with high damping capability. As per 

convention, the dual material single shear lap joint is referenced as the SSLJ 

damping insert and the dual material double shear lap joint as the DSLJ damping 

insert. 

 

Figure 5.1: Honeycomb cell void with a viscoelastic damping insert, a dual material 

shear lap damping insert (SSLJ) and a dual material double shear lap damping insert 

(DSLJ). 

As presented in section 4.2.1, under in-plane axial loading the viscoelastic damping 

insert is loaded in extension/compression and, therefore, strain energy is stored in 
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the damping material (see Figure 5.2). A portion of this strain energy is then 

dissipated, enhancing the damping capacity of the honeycomb structure.  

 

Figure 5.2: Deformation mechanism of a damping insert within a honeycomb cell 

void subject to in-plane axial loading. 

In the case of in-plane axial loading, the strain energy stored in the damping insert 

is a function of the strain inside the insert squared, assuming uniaxial deformation of 

the insert. The function of the constraining structure inside the SSLJ and the DSLJ 

damping inserts (Figure 5.1) is to force shear deformation of the damping material 

for increased energy dissipation. This is described in further detail subsequently. 

5.2.2 Analytical Model 

5.2.2.1 Mechanical and damping properties of a honeycomb cell with a SSLJ 

and DSLJ inserts 

Analytical expressions of the Young’s modulus Ey, loss factor  and loss modulus 

Ey* derived for the viscoelastic damping insert in section 4.2.1 using standard beam 

theory and assuming linear elasticity are identical for the SSLJ and the DSLJ insert 

geometries, and are presented, respectively, in Equation 5.1 to Equation 5.3. This 

assumes a uniaxial deformation mechanism of the damping insert. 
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𝐸𝑦 =
𝜎𝑦

𝜀𝑦
= 

12. 𝐸𝑠.𝐼. 𝑐𝑜𝑠𝜃

(
ℎ
𝑙
+ 𝑠𝑖𝑛𝜃) . 𝑠𝑖𝑛2𝜃. 𝑙3. 𝑏

+
2. 𝐾𝑖𝑛𝑠𝑒𝑟𝑡. 𝑐𝑜𝑠

3𝜃

(
ℎ
𝑙
+ 𝑠𝑖𝑛𝜃) . 𝑠𝑖𝑛2𝜃. 𝑏

 

Equation 5.1 

𝜂 = 𝜂𝑖𝑛𝑠𝑒𝑟𝑡.
𝑈𝑖𝑛𝑠𝑒𝑟𝑡

𝑈𝑡𝑜𝑡
+ 𝜂ℎ𝑜𝑛𝑒𝑦𝑐𝑜𝑚𝑏.

𝑈ℎ𝑜𝑛𝑒𝑦𝑐𝑜𝑚𝑏

𝑈𝑡𝑜𝑡
 

Equation 5.2 

𝐸𝑦
∗ = 𝜂. 𝐸𝑦 

Equation 5.3 

Assuming that the constraining structure of the damping insert does not deform 

under axial loading, the stiffness of the SSLJ insert Kinsert, derived in Equation 5.4, is 

a consequence of the shear deformation of the damping material. Ginsert is the shear 

modulus of the damping material of the insert; linsert and hinsert are the geometric 

parameters of the insert, as illustrated in Figure 5.3; b is the through thickness depth 

of the insert.  

𝐾𝑖𝑛𝑠𝑒𝑟𝑡 =
𝐺𝑖𝑛𝑠𝑒𝑟𝑡. 𝑙𝑖𝑛𝑠𝑒𝑟𝑡. 𝑏

ℎ𝑖𝑛𝑠𝑒𝑟𝑡
 

Equation 5.4 

 

Figure 5.3: Axial deformation of an SSLJ insert. 

Assuming, under in-plane axial loading of the honeycomb, that the damping material 

is loaded at a constant shear strain resulting from the displacement dx imposed by 

the honeycomb structure at each end of the damping insert (see Figure 5.3), the 
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strain energy stored upon loading in the damping insert, Uinsert, is derived in Equation 

5.5. 

𝑈𝑖𝑛𝑠𝑒𝑟𝑡 =
1

2
. 𝐺𝑖𝑛𝑠𝑒𝑟𝑡. 𝛾

2. 𝑉𝑖𝑛𝑠𝑒𝑟𝑡 

Equation 5.5 

With: 

𝑉𝑖𝑛𝑠𝑒𝑟𝑡 = 𝑙𝑖𝑛𝑠𝑒𝑟𝑡. ℎ𝑖𝑛𝑠𝑒𝑟𝑡. 𝑏 

𝛾 =
2. 𝑑𝑥

ℎ𝑖𝑛𝑠𝑒𝑟𝑡
 

Defining geometric parameters of the DSLJ insert, as illustrated in Figure 5.4, i.e. 

linsert representing the length of the damping material and hinsert the distance between 

two constraining structures, stiffness and total strain energy of the insert can be 

derived from Equation 5.4 and Equation 5.5. The stiffness of the DSLJ insert is two 

times that of the shear lap insert. The strain energy stored in the dual shear lap insert 

is two times that of the SSLJ insert for the same deflection. 

 

Figure 5.4: Axial deformation of DSLJ insert. 

5.2.2.2 Limiting condition of the insert 

It has been assumed in the previous section that the stiffer component of the SSLJ 

and DSLJ inserts do not deform while the insert is loaded axially in tension / 

compression. This hypothesis is valid when the stiffness of the viscoelastic insert 

loaded in shear is lower than the stiffness of the stiff part of the insert, as shown in 

Equation 5.6, where Kinsert_visco is the stiffness of the viscoelastic layer of the insert 

and Kinsert_stiff the stiffness of the stiff part of the insert. In Equation 5.7, the stiffness 
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of the viscoelastic layer and stiff part of the insert are substitute by their analytical 

expression dependant of the parameters of the insert. 

𝐾𝑖𝑛𝑠𝑒𝑟𝑡_𝑣𝑖𝑠𝑐𝑜 < 𝐾𝑖𝑛𝑠𝑒𝑟𝑡_𝑠𝑡𝑖𝑓𝑓 

Equation 5.6 

𝐺𝑖𝑛𝑠𝑒𝑟𝑡_𝑣𝑖𝑠𝑐𝑜 . 𝑙𝑖𝑛𝑠𝑒𝑟𝑡. 𝑏

ℎ𝑖𝑛𝑠𝑒𝑟𝑡
<

𝐸𝑖𝑛𝑠𝑒𝑟𝑡_𝑠𝑡𝑖𝑓𝑓 . ℎ𝑖𝑛𝑠𝑒𝑟𝑡. 𝑏

𝑙𝑖𝑛𝑠𝑒𝑟𝑡
 

Equation 5.7 

Equation 5.7 simplifies itself so as to give a limiting condition on the thickness of the 

viscoelastic layer of the insert, hinsert, and is shown in Equation 5.8. 

ℎ𝑖𝑛𝑠𝑒𝑟𝑡 > √
𝐺𝑖𝑛𝑠𝑒𝑟𝑡_𝑣𝑖𝑠𝑐𝑜 . 𝑙𝑖𝑛𝑠𝑒𝑟𝑡

2

𝐸𝑖𝑛𝑠𝑒𝑟𝑡_𝑠𝑡𝑖𝑓𝑓
 

Equation 5.8 

5.2.3 Finite Element Analysis of Honeycomb Structure with SLJ Damping 

Inserts 

5.2.3.1 SLJ Damping Insert Geometries 

The damping insert geometries studied in this chapter consist of dual material single 

shear lap joint (SSLJ) and dual material double shear lap joint (DSLJ) damping 

inserts, as illustrated in Figure 5.5. 
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Figure 5.5: Unit cell models of a honeycomb cell with an SSLJ insert (left) and with 

a DSLJ insert (right). 

Honeycomb geometric parameters has been set as follows, identically to the 

parameters of the honeycomb geometry used in Chapter 4: l = h = 1 mm,  = 30̊ and 

t = 0.0433 mm for a honeycomb cell relative density  = 0.05.  

A parametric model of damping insert has been created using Ansys Parametric 

Design Language (APDL) [90], and geometries of damping insert filling 5% to 40% 

of the cell void by 5% increments have been studied. The thickness of the 

constraining layer tcl has been set to 0.01 mm. The length of the constraining layer 

lcl has been set so as to leave a minimum gap of 5% between the viscoelastic 

material and walls of the honeycomb cell, as highlighted in Figure 5.5. 

5.2.3.2 Loadings and Associated Boundary Conditions 

In-plane tension/compression and in-plane pure shear boundary conditions have 

been applied to the geometries studied. These loading conditions correspond to the 

noticeable deformations of honeycomb cells in a sandwich structure, as highlighted 

in Chapter 2. Identical boundary conditions described in section 4.2.2.2, have been 

applied for in-plane tension/compression and in-plane shear. The boundary 

conditions have been applied to a 15x15 cell panel. This has been chosen from a 
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convergence study to account for the surrounding deformation of the cells around 

the middle cell of the panel. 

The analysis made in Chapter 4 highlighted that the horizontal ligament performs 

best for in-plane axial loading than the diagonal ligament across the cell void and 

the opposite for in-plane shear loading. These results have been accounted for in 

the analysis. Shear lap insert geometries are positioned horizontally across the void 

of the unit cell for in-plane axial loading and diagonally across the unit cell for in-

plane shear loading. 

5.2.3.3 Elements Definition 

The finite element mesh consists of 2D bilinear structural PLANE82 elements (plane 

strain formulation). Models with a damping insert filling 5% of the honeycomb cell 

void had a minimum of 1,500 elements (see Figure 4.9), and models with a damping 

insert filling 40% of the cell void had around 5,000 for a single unit cell. Figure 5.6, 

shows the finite element mesh of the honeycomb unit cell with a DSLJ insert filling 

10% of the cell void; 2,162 elements have been used in this model. 
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Figure 5.6: FE mesh of the honeycomb unit cell with a DSLJ insert filling 10% of the 

void space of the honeycomb.  

5.2.3.4 Material Properties 

Two material properties have been defined. The constituent material of the 

honeycomb and the constraining layers of the damping inserts have been modelled 

with aluminium properties, with a set of linear and isotropic elastic constants (Eal = 

70000 MPa, al = 0.3, al = 1.25 g.cm3 and al = 0.0001 [76]). The damping insert 

has been modelled with arbitrary material properties representing a viscoelastic 

material, with a set of linear and isotropic elastic constants (Evisco = 1MPa, visco = 

0.45, visco = 2.7 g.cm3 and visco = 0.1 [108]).  

5.2.3.5 FE Analysis 

Mechanical and damping properties of the models and loadings described previously 

have been calculated using a linear static analysis with Ansys 13[90]. Young’s 

modulus Ey and shear modulus Gxy have been calculated in the centre cell of each 

model from, respectively, Equation 5.9 and Equation 5.10, where Utotal is the total 

strain energy of all the element in the centre cell, y is the strain of the cell loaded 
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axially, xy is the shear strain of the cell loaded in pure shear and Vcell is the total 

volume of the cell. 

𝐸𝑦 =
2.𝑈𝑡𝑜𝑡𝑎𝑙

𝜀𝑦
2. 𝑉𝑐𝑒𝑙𝑙

 

Equation 5.9 

𝐺𝑥𝑦 =
2.𝑈𝑡𝑜𝑡𝑎𝑙

𝛾𝑥𝑦
2. 𝑉𝑐𝑒𝑙𝑙

 

Equation 5.10 

Loss factors and loss moduli of the structure for both loading cases have been 

derived from Equation 5.2 based on the MSE method, similarly to Chapter 4.  

5.3 Results 

5.3.1 Convergence Study 

The influence of the surrounding cells on the strain energy stored in the viscoelastic 

material is presented in Figure 5.7 and Figure 5.8, in order to verify the consistency 

of the boundary conditions applies to the FE models. These figures show the total 

strain energy stored in the viscoelastic material of the middle honeycomb cell with 

damping insert filling 10% of the honeycomb cell void for different sizes of panel, 

respectively, for in-plane axial loading and in-plane shear loading. Convergence of 

the strain energy stored in the viscoelastic material is achieved for a 15x15 cell panel 

for the SSLJ insert and both loading directions. Convergence of the strain energy 

stored in the viscoelastic material is achieved for a 3x3 cell panel for the DSLJ insert 

when loaded axially and a 15x15 cell panel when loaded in shear. The viscoelastic 

strain energy in both models where boundary conditions have been applied to the 

boundary of the unit cell were shown to be underestimated. 
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Figure 5.7: Strain energy (J) stored in the middle cell of different honeycomb panel 

sizes filled with SSLJ and DSLJ inserts under in-plane compression loading of 0.1% 

strain. 
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Figure 5.8: Strain energy (J) stored in the middle cell of different honeycomb panel 

sizes filled with SSLJ and DSLJ inserts under in-plane pure shear loading of 0.1% 

strain. 

5.3.2 In-plane Axial Damping Performance of Honeycomb with SLJ Damping 

Inserts 

The elastic equivalent Von Mises strain [90] of the SSLJ and DSLJ damping insert 

geometries filling 10% of the honeycomb cell void is illustrated in Figure 5.9 for a 

0.1% strain compression loading. The magnitude of strain in the DSLJ insert is twice 

that of the SLJ insert.  
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a. 

 

b. 

 

Figure 5.9: Elastic equivalent Von Mises strain of SSLJ and DSLJ damping insert 

geometries filling 10% of the honeycomb cell void under compression loading of 

0.1% strain. 

The elastic equivalent Von Mises strain [90] of the DSLJ damping insert filling, 

respectively, 10%, 20%, 30% and 40% of the honeycomb cell void is illustrated in 

Figure 5.10 for a 0.1% strain compression loading. The equivalent Von Mises strain 

inside the viscoelastic material decreases with increasing damping insert size. 
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a. 

 

b. 

 

c. 

 

d. 

Figure 5.10: Elastic equivalent Von Mises strain of DSLJ inserts filling 10% (a.), 20% 

(b.), 30% (c.), and 40% (d.) of the void of a honeycomb unit cell under compression 

loading of 0.1% strain. 

The in-plane Young’s modulus Ey of the SSLJ and DSLJ damping insert geometries 

is represented in Figure 5.11 in function of the honeycomb cell void occupation of 

the insert. The analytic expressions of the in-plane Young’s modulus of the 

honeycomb cell derived in Equation 5.1 for the SSLJ and DSLJ inserts is superposed 

to the FE results.  The analytical expressions of the Young’s modulus derived for 

both SSLJ and DSLJ match well the FE predictions. For both insert geometries, the 

Young’s modulus decreases with the increasing size of the damping insert and 

converges to the Young’s modulus of the cell completely filed with viscoelastic 

material. The SSLJ insert occupying 5% of the honeycomb cell void has a Young’s 
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modulus of 49.6 MPa, which represents a 198% increase of the Young’s modulus of 

a honeycomb completely filled with viscoelastic material. The DSLJ insert occupying 

5% of the honeycomb cell void has a Young’s modulus of 133 MPa, which represents 

a 698% increase of the Young’s modulus of a honeycomb completely filled with 

viscoelastic material. 

 

Figure 5.11: Analytical and FE computed Young’s modulus Ey of a honeycomb cell 

of relative density = 0.05 with SSLJ and DSLJ inserts represented in function of 

the cell void filling of the damping insert. 

The loss factor  derived from the MSE method under in-plane compressive loading 

at 0.1% strain of the SSLJ and DSLJ damping insert geometries is represented in 

Figure 5.12 in function of the honeycomb cell void occupation of the insert. The 

analytic expressions of the loss factor of the honeycomb cell derived in Equation 5.2 

for the SSLJ and DSLJ inserts is superposed to the FE results. The analytical 
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expressions of the loss factor of honeycomb cell with SSLJ and DSLJ inserts are of 

the same magnitude than the FE computed loss factor and decrease with the cell 

void filling of the cell so as the FE predictions. For both insert geometries, the loss 

factor decreases with the increasing size of the damping insert. The honeycomb cell 

with a SSLJ insert occupying 5% of the honeycomb cell void has a loss factor of 

6.59%, which represents a 458% increase of the loss factor of a honeycomb 

completely filled with viscoelastic material. The honeycomb cell with a DSLJ insert 

occupying 5% of the honeycomb cell void has a loss factor of 7.65%, which 

represents a 548% increase of the loss factor of a honeycomb completely filled with 

viscoelastic material. 

 

Figure 5.12: Analytical and FE computed loss factor  of a honeycomb cell of relative 

density = 0.05 with SSLJ and DSLJ inserts represented in function of the cell void 

filling of the damping insert. 
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The in-plane loss modulus Ey
* of the SSLJ and DSLJ damping insert geometries is 

represented in Figure 5.13 in function of the honeycomb cell void occupation of the 

insert. The analytic expressions of the in-plane loss modulus of the honeycomb cell 

derived in Equation 5.3 for the SSLJ and DSLJ inserts is superposed on the FE 

results. The analytical expressions of the loss modulus derived for both SSLJ and 

DSLJ slightly underestimate the FE predictions cell void filling below 20% and overall 

match well the FE predictions. For both insert geometries, the loss modulus 

decreases with the increasing size of the damping insert and converges to the 

Young’s modulus of the cell completely filed with viscoelastic material. The 

honeycomb cell with a SSLJ insert occupying 5% of the honeycomb cell void has a 

loss modulus of 3.27 MPa, which represents a 1,566% increase of the loss modulus 

of a honeycomb completely filled with viscoelastic material. The honeycomb cell with 

a DSLJ insert occupying 5% of the honeycomb cell void has a loss modulus of 10.17 

MPa, which represents a 5,085% increase of the loss modulus of a honeycomb 

completely filled with viscoelastic material. 
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Figure 5.13: Analytical and FE computed loss modulus Ey* of a honeycomb cell of 

relative density = 0.05 with SSLJ and DSLJ inserts represented in function of the 

cell void filling of the damping insert. 

The in-plane density-specific loss modulus Ey*/ of the SSLJ and DSLJ damping 

insert geometries is represented in Figure 5.13 in function of the honeycomb cell 

void occupation of the insert. For both insert geometries, the density-specific loss 

modulus decreases with the increasing size of the damping insert and converges to 

the density-specific loss modulus of the cell completely filed with viscoelastic 

material. The honeycomb cell with a SSLJ insert occupying 5% of the honeycomb 

cell void has a density-specific loss modulus of 14900 MPa.g-1.mm3, which 

represents a 9,950% increase compared to the honeycomb completely filled with 

viscoelastic material. The honeycomb cell with a DSLJ insert occupying 5% of the 

honeycomb cell void has a density-specific loss modulus of 42700 MPa.g-1.mm3, 
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which represents a 28,600% increase compared to the honeycomb completely filled 

with viscoelastic material. 

 

Figure 5.14: FE computed density-specific loss modulus Ey*/ of a honeycomb cell 

of relative density = 0.05 with SSLJ and DSLJ inserts represented in function of 

the cell void filling of the damping insert. 

5.3.3 In-plane Shear Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The elastic equivalent Von Mises strain [90] of the damping insert geometries filling 

10% of the honeycomb cell void is illustrated in Figure 5.15 for a 0.1% strain shear 

loading. The magnitude of strain in the DSLJ insert is almost twice that of the SSLJ 

insert.  
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a. 

 

b. 

 

Figure 5.15: Elastic equivalent Von Mises strain of SSLJ and DSLJ damping insert 

geometries filling 10% of the honeycomb cell void under in-plane pure shear loading 

of 0.1% strain. 

The in-plane density-specific loss modulus Gxy*/ of the honeycomb cell with a SSLJ 

or DSLJ damping insert geometries is represented in Figure 5.16 in function of the 

honeycomb cell void occupation of the insert. For both insert geometries, the density-

specific loss modulus decreases with the increasing size of the damping insert and 

converges to the density-specific loss modulus of the cell completely filed with 

viscoelastic material. The honeycomb cell with a SSLJ insert occupying 5% of the 

honeycomb cell void has a density-specific loss modulus of 1885 MPa.g-1.mm3, 

which represents a 4,435% increase compared to the honeycomb completely filled 

with viscoelastic material. The honeycomb cell with a DSLJ insert occupying 5% of 

the honeycomb cell void has a density-specific loss modulus of 4265 MPa.g-1.mm3, 

which represents a 10,160% increase compared to the honeycomb completely filled 

with viscoelastic material. 
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Figure 5.16: FE computed density-specific loss modulus Gxy*/ of a honeycomb cell 

of relative density = 0.05 with SSLJ and DSLJ inserts represented in function of 

the cell void filling of the damping insert. 

5.4 Discussion 

5.4.1 Boundary Conditions 

Boundary conditions applied to the edge of the honeycomb unit cell with damping 

insert have shown to underestimate the strain energy of the damping insert (see 

Figure 5.7 and Figure 5.8). Convergence of the strain energy for most damping 

inserts geometries and loadings occurs when boundary conditions are applied 

further away from the middle cell of the panel from which mechanical and damping 

properties are calculated. This is caused by the geometric discontinuity of the 

honeycomb unit cell, as represented in Figure 5.5. The honeycomb unit cell with 

damping inserts presents a quarter of the damping insert in each one of its four 
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corners. Application of the boundary conditions to the edge of the honeycomb unit 

cell is, therefore, not appropriate for the SSLJ and DSLJ insert geometries, because 

the damping inserts are not correctly loaded by the surrounding cells in each corner 

of the unit cell model. Convergence of the strain energy inside the damping insert 

has shown to be achieved in all cases for panels of 15x15 cells. The strain energy 

is overestimated for smaller panel sizes (from 3x3 cells) because of over-

constraining boundary conditions, as observed by [106], and in Chapter 4. 

5.4.2 In-plane Axial Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The mechanical and loss properties of honeycombs with SSLJ and DSLJ damping 

inserts have been described in Figure 5.11 to Figure 5.13 for in-plane axial loading. 

The Young’s modulus, loss factor and loss modulus are significantly enhanced 

through the use of both inserts. Maximum enhancement of the mechanical and 

damping properties is achieved for the minimum size of damping insert studied in 

this chapter, filling 5% of the honeycomb cell void. The DSLJ damping insert has 

been shown to increase the Young’s modulus Ey of the unit cell by 698%, its loss 

factor  by 548% and its loss modulus Ey
* by 5,085% compared to a honeycomb cell 

completely filled with the same viscoelastic material, which has been characterised 

to have the highest Young’s modulus, loss factor and loss modulus compared to the 

ligament inserts made from a single viscoelastic material studied in Chapter 4. 

Maximum enhancement is achieved for the minimum size of damping insert because 

of the shear lap geometry of the insert. Under in-plane axial loading, the constraining 

layers of the insert force shear deformation of the viscoelastic material of the 

damping insert. Since the shear stiffness of the damping insert is inversely 

proportional to its thickness (see Equation 5.4), the insert with minimal thickness 

and, therefore, minimum size provides the maximum resistance upon loading, i.e. 

maximum Young’s modulus. Consequently, strain energy is maximal for the 

minimum size of insert. Since the energy dissipation of the insert is proportional to 

its total strain energy, maximum loss factor and loss modulus are provided by SSLJ 

and DSLJ inserts of minimum size. This result has been illustrated in Figure 5.10 for 
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different sizes of insert. Analytical expressions of Young’s modulus, loss factor and 

loss modulus derived in Equation 5.1 to Equation 5.3 correlate with the results of the 

FE analyses, and provide further understanding of mechanical and damping 

enhancement given by the SSLJ and DSLJ inserts. The Young’s modulus is 

dependent on the stiffness of the damping insert that is inversely proportional to the 

thickness of the insert. The loss factor is dependent on strain energy stored inside 

the viscoelastic material that is proportional to the strain squared in the viscoelastic 

material; given the internal architecture of the damping insert, the constraining layers 

of the insert impose a shear strain inside the viscoelastic material that is inversely 

proportional to the thickness of the insert (see Equation 5.5). Therefore, the insert 

with minimum thicknesses provides the maximum enhancement of the mechanical 

and damping properties. This also explains why the DSLJ insert exhibits higher 

Young’s modulus, loss factor and loss modulus than the SSLJ insert, since its 

viscoelastic layer thickness is half the thickness of the viscoelastic layer within the 

SSLJ insert for a damping insert of the same size. This is illustrated in Figure 5.9, 

where the strain inside the DSLJ insert is twice the strain inside the SSLJ insert. 

In theory, shear lap inserts with viscoelastic layers of infinitesimal thicknesses will 

result in honeycombs with infinite Young’s modulus, loss factor and loss modulus. 

However, the thickness of the viscoelastic layer is likely to be limited by the 

manufacturing methods used to construct such inserts and the strength properties 

of the constituent material of the insert.  

Since there is an inverse relationship between the thickness of the viscoelastic layer 

in the shear lap insert and its loss modulus, its density-specific loss modulus is many 

times greater than that of the completely filled honeycomb; for example, 280 times 

in Figure 5.14. 

5.4.3 In-plane Shear Damping Performance of Honeycomb with Viscoelastic 

Damping Inserts 

The analysis made in Chapter 4 highlighted that diagonal ligament inserts perform 

best for in-plane shear loading. This is because the insert is located between the two 
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opposite corners of the honeycomb which exhibit the maximum relative 

displacement between all the locations inside the void of the honeycomb. As a result, 

the SSLJ and DSLJ located in these locations are mainly loaded axially, hence 

behave similarly than SSLJ and DSLJ horizontal inserts of a honeycomb cell loaded 

axially.. Density-specific loss modulus is enhanced by more than 10,000% compared 

to the honeycomb completely filled with viscoelastic material. This has been 

illustrated in Figure 5.16. 

5.5 Conclusion 

Shear lap joint insert consist of a damping material constrained between two or 

several constraint layers, so as to enforce deformation of the damping material 

similarly to constrained layer damping technologies [4]. Deformation of a honeycomb 

cell with a SLJ insert forces the damping material of the insert into shear deformation 

which proved to efficiently enhanced the mechanical and damping properties of the 

overall honeycomb cell.  

The two forms of SLJ insert, i.e. SSLJ and DSLJ, both outperformed by far the 

ligament damping inserts investigated in Chapter 4 and honeycomb cell completely 

filled with a damping material, in term of both mechanical and damping performance. 

Between the SSLJ and DSLJ, the DSLJ insert is the best damping insert in term of 

both mechanical and damping enhancements of the overall honeycomb cell 

Analytical expressions and FE analysis have been used to quantify the mechanical 

and damping properties of the SLJ inserts. These inserts exhibit very high 

mechanical and damping enhancement properties. Compared to a honeycomb cell 

completely filled with viscoelastic material, SLJ inserts enhanced the density-specific 

in-plane axial loss modulus Ey
* by more than 28,000% and the density-specific in-

plane shear loss modulus Gxy
* of the honeycomb structure by more than 10,000%. 
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Chapter 6. Sandwich Panel with Double Shear 

Lap Joint Damping Inserts 

6.1 Introduction 

The behaviour of cellular core structures filled with viscoelastic materials was 

observed experimentally in [11] for the first time with a copper foam as a matrix and 

an elastomer as a filling material. The filling of hexagonal cores with foam was then 

demonstrated for improved energy and impact absorption [42] [93-95]. Foams have 

also been used to fill honeycomb structures, with consequent improvement of 

damping properties [46] [47]. However, adding foam into honeycomb structures 

significantly increases the density of the sandwich panel, even if foams themselves 

exhibit relatively good density-specific properties. To avoid excessive increases in 

density, cells may be only partially filled with an insert. For example, Woody and 

Smith obtained an improvement of around 60% in damping loss factor by filling only 

selected cells within an array, adding less than 6% to the structure’s mass [47]. 

Geometries of SLJ damping inserts for use inside honeycomb unit cells have been 

shown to significantly enhance the loss modulus in in-plane tension/compression 

and in-plane shear loadings in Chapter 5. These inserts consist of a constraining 

structure and a damping material, which can be a viscoelastic material with high 

damping properties. As the viscoelastic constrained layer damping system in 

structure [4], the constraining layer of the insert is forcing high shear deformation of 

the damping material, providing high energy dissipation by the insert, therefore, 

enhancing damping properties of the honeycomb structure. 

In a sandwich structure, made from two face sheets and a honeycomb core, each 

honeycomb unit cell deformation is a combination of in-plane loading introduced by 

the out-of-plane bending deformation of the sandwich panel, and out-of-plane 

transverse shear deformation, as highlighted in Chapter 2.  

Since geometries of inserts, as studied in Chapters 4 and 5, are dependent on the 

main loading direction of the honeycomb unit cell, an engineered method for 
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localisation of an SLJ damping insert is introduced in this chapter to investigate a 

partial filling solution of sandwich panels with damping inserts, choosing the best 

orientation of the damping insert inside the honeycomb void. 

Enhancement of the damping loss factor of the first bending mode of a honeycomb 

sandwich panel with DSLJ damping inserts is investigated in this chapter. The 

damping properties of the sandwich panel with damping inserts have been quantified 

through static analyses using the MSE method. 

6.2 Methods 

6.2.1 Location and Orientation of DSLJ Damping Inserts Inside a Honeycomb 

Sandwich Structure 

When subjected to vibration, each honeycomb unit cell of a sandwich structure 

deforms as a combination of in-plane and out-of-plane loadings. The intensity of 

each loading direction is dependent of the unit cell location within the sandwich 

structure and the vibration mode exited, as discussed in Chapter 2. Since it has been 

highlighted in Chapter 5 that SLJ damping inserts are most efficient in dissipating 

energy when loaded axially, the location and orientation of the damping insert within 

the honeycomb unit cell of a sandwich structure have an impact on the damping 

performance of the insert. For best use of the damping insert characteristics, it needs 

to be located where relative displacement between opposite walls of the honeycomb 

unit cell is maximal within the sandwich panel. 

The methodology developed in this section for the location of an SLJ damping insert 

within a sandwich panel is derived from the response of a honeycomb sandwich 

panel without damping insert. The modal deformation of the panel is analysed and 

locations for damping inserts are derived for the unit cells exhibiting maximum 

relative displacement between their opposite walls (parameters 1, 2 and 3 derived 

in Chapter 2). Given a number of SLJ damping inserts to be used in the sandwich 

structure, which is driven by the maximum weight increase allowable for the 

structure, damping inserts are located in cells exhibiting maximum relative 

displacement between their opposite walls. The input/output diagram of this process 
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is illustrated in Figure 6.1. This methodology assumes that the SLJ damping insert 

does not modify the response of the sandwich structure. This approach ignores the 

stiffness of the viscoelastic insert, assuming that the stiffness of the cell itself 

dominates, as supported by Abd El-Sayed et al. [99]. This will be invalid for cases 

where very stiff or large inserts are used. 

 

Figure 6.1: Input/output diagram of the process used to localise and orientate 

damping inserts within a sandwich panel. 

6.2.2 Geometries Studied 

The sandwich panel geometries studied in this chapter share an identical host 

structure for the SLJ damping inserts. This host structure is composed of two 

aluminium face sheets of thicknesses t = 0.2 mm, and a honeycomb core structure 

of 10 mm depth formed by six regular honeycomb unit cells along the x axis and 18 

unit cells along the y axis, as described in Figure 6.2. The parameters of the 

honeycomb unit cells are h = l = 10 mm, t= 0.2 mm and  = 30°. 



172 

Honeycombs with Structured Core for Enhanced Damping 

 

Figure 6.2: Honeycomb cell with its geometric parameters h, l, t and . 

The DSLJ damping insert consists of a dual material double shear lap joint insert 

made from aluminium and viscoelastic material, as described in Chapter 5, see 

section 5.2.1. Constraint layers of the insert have a thickness t = 0.2 mm. The two 

viscoelastic layers of the insert both have 0.365 mm. The damping insert occupies 

5% of the middle void of the honeycomb unit cell. The damping insert does extend 

through the full depth of the unit cells. It stops at a distance d = 0.5 mm from the 

outer surfaces of the honeycomb unit cell, which are connected to the face sheets 

of the sandwich panel, as illustrated in Figure 6.3. This is to avoid increase of the 

panel stiffness caused by the addition of the DSLJ insert as the aim of the insert is 

to improve the damping properties of the panel without large modification of its 

structural properties. Of note, it was identified in Chapter 2 that the best location for 

forcing in-plane deformation is the closest to the skins of the panel. As such, the 

geometry of the DSLJ insert studied in this chapter could be improved even further 

so as for the insert to not occupy the neutral plane of deformation of the targeted 

mode of deformation. 
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Figure 6.3: 3D model of a honeycomb unit cell filled in its middle with one DSLJ 

insert. 

Twenty-two different geometries have been studied in this chapter. One consists of 

the sandwich panel host structure with no embedded damping insert and the last 

consists of the sandwich panel host structure completely filled with viscoelastic 

material. In between, twenty geometries with increasing numbers of DSLJ inserts 

have been studied. The description of the sandwich panel geometries, including the 

location and orientation of damping inserts, is illustrated in Table 6.1. The location 

and orientation of the damping inserts have been derived from the methodology 

presented in section 6.2.1 for improving the damping properties of the first bending 

mode of the panel. The first mode of the panel exhibits the largest effective mass 

participation which is often the most damaging of a structure. 
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Table 6.1: Sandwich panel core geometries investigated in this chapter. A 

honeycomb core without damping inserts, a series of cores filled with 10 to 193 DSLJ 

inserts, and a honeycomb core completely filled with viscoelastic material. 

 

6.2.3 FE Models 

Finite element analysis software ANSYS 13 [90] was used to create and simulate 

the behaviour of models defined in Table 6.1. Four node SHELL63 elastic shell 

elements with both bending and membrane capabilities have been used to mesh the 
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face sheets, the honeycomb core and the thin aluminium rib of the damping insert. 

Height nodes SOLID45 elastic solid elements have been used to mesh the 

viscoelastic material of the damping insert. Each unit cell is meshed with 2,107 shell 

elements. The damping insert is meshed with 846 shell and solid elements. The 

number of finite elements used in each model varies between approximately 100,000 

to 300,000, depending on the number of damping inserts embedded in the 

honeycomb host structure. Figure 6.4 illustrates the finite element mesh of the 

honeycomb sandwich panel with embedded damping inserts. 

 

Figure 6.4: FE model of the sandwich panel filled with 20 DSLJ inserts, as studied in 

this chapter. 

6.2.4 Material Properties 

Two material properties have been defined. The constituent material of the 

honeycomb has been modelled with aluminium properties, with a set of linear and 
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isotropic elastic constants (Eal = 70000 MPa, al = 0.3, al = 2.7 g.cm3 and al = 

0.0001 [76]). The damping insert has been modelled with arbitrary material 

properties representing a viscoelastic material, with a set of linear and isotropic 

elastic constants (Evisco = 1MPa, visco = 0.45, visco = 1.25 g.cm3 and visco = 0.1 

[108]).  

6.2.5 FE Analyses 

Cantilever boundary conditions were applied to each model described in Table 6.1. 

All degrees of freedom of nodes located at one edge of the panel were constrained 

as represented in Figure 6.5.  

A normal modal analysis has been performed with ANSYS 13, using the block 

Lanczos method eigenvalue solver for reduced computational time, to compute the 

first modal frequency and mode shape of each model. 

Bending stiffness and damping properties associated to the first bending mode of 

each model have been computed from a linear static analysis. A force F of 1 N has 

been equally distributed to nodes lying on the opposite constrained edge of the 

sandwich structure in the transverse direction, as illustrated in Figure 6.5. It is 

assumed that the static deformation of the panel subject to the force F is similar to 

the deformation of the first bending mode of this panel. The damping properties have 

been derived using the modal strain energy method [100] [102] [103].  

 

Figure 6.5: Loading and boundary conditions of the sandwich panel. 
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6.3 Results  

Table 6.2 shows the first bending mode frequency, weight, bending stiffness and 

loss factor of all sandwich panel geometries studied. Table 6.3 shows the variation 

of these parameters against the sandwich panel with no damping inserts.  

The first bending mode frequency of the sandwich panel with DSLJ damping inserts 

varies up to 5% for geometries with less than 130 inserts. For geometries with a 

higher number of embedded inserts, the frequency decreases up to 25% for 

geometries with voids filled with DSLJ damping inserts. The sandwich panel with no 

damping insert but completely filled with a viscoelastic material presents the 

maximum frequency variation with a reduction of 64% the frequency of the sandwich 

panel with no inserts. 

The mass of one DSLJ damping insert is approximately 10 g. Therefore, the weight 

of the sandwich panel with an increasing number of damping inserts is increasing, 

with an increase of up to 82% compared to the host sandwich panel structure. The 

sandwich panel with no damping insert but completely filled with a viscoelastic 

material presents the maximum weight variation with an increase of 1,436% of the 

frequency of the sandwich panel with no inserts. 

The bending stiffness of the sandwich structure slightly increases with the number 

of DSLJ damping inserts, with an increase of up to 1% compared to the structure 

completely filled with damping inserts. The bending stiffness of the sandwich panel 

with no damping insert and the panel completely filled with viscoelastic material are 

similar.  

The loss factor of the sandwich panel with damping inserts increases significantly 

with the number of DSLJ damping inserts, with an increase of up to 824% compared 

to the sandwich panel with no embedded inserts. The loss factor of the sandwich 

structure filled with viscoelastic material is increased by 420% compared to the 

sandwich panel with no embedded inserts. The loss factor increase of the sandwich 

structure filled with viscoelastic material is achieved with 40 DSLJ inserts, as 

illustrated in Figure 6.6. 
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The modal effective mass of the first bending mode of the geometries studied 

increases with the number of DSLJ damping inserts. The variation of the modal 

effective mass remains below 10% for sandwich panel with up to 70 embedded 

damping inserts compared to the sandwich panel with no damping inserts. The rate 

of variation increases with added damping inserts. The modal effective mass of the 

sandwich panel with a damping insert in each of its cells (193 inserts) is increased 

by 80%. Maximum effective mass variation compared to the sandwich panel with no 

insert is achieved for the sandwich panel filled with viscoelastic material (691% 

increase). 
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Table 6.2: Frequency, weight, bending stiffness, loss factor and effective mass of a 

sandwich panels with cores exhibiting various numbers of DSLJ inserts and a core 

completely filled with viscoelastic material. 

 

Table 6.3: Frequency, weight, bending stiffness, loss factor and effective mass 

variations of a sandwich panels with cores exhibiting various numbers of DSLJ 

inserts and a core completely filled with viscoelastic material. 
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Figure 6.6: Loss factor and weight increase of a sandwich panel with cores exhibiting 

various numbers of DSLJ inserts and a core completely filled with viscoelastic 

material compared to the same sandwich panel without damping insert. 

Figure 6.7 shows the weight-specific bending stiffness, the ratio between the 

bending stiffness and the total weight of the geometries studied. The weight-specific 

bending stiffness decreases with increasing number of embedded damping inserts 

and is minimal for the sandwich panel completely filled with viscoelastic material. 
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Figure 6.7: Weight-specific bending stiffness of a sandwich panel with cores 

exhibiting various numbers of DSLJ inserts and a core completely filled with 

viscoelastic material. 

Figure 6.8 shows the weight-specific loss factor, the ratio between the loss factor 

and the total weight of the geometries studied. The weight-specific loss factor is 

increasing with the number of embedded DSLJ damping inserts and is maximal for 

110 inserts. The weight-specific loss factor decreases for a higher number of DSLJ 

damping inserts (471% increase compared to the sandwich panel with no insert). 

Minimum weight-specific loss factor is achieved by the sandwich panel completely 

filled with viscoelastic material (66% decrease compared to the sandwich panel with 

no insert). 
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Figure 6.8: Weight-specific loss factor of a sandwich panel with cores exhibiting 

various numbers of DSLJ inserts and a core completely filled with viscoelastic 

material.. 

6.4 Discussion 

6.4.1 Bending Stiffness of Sandwich Panel with DSLJ Damping Inserts 

The bending stiffness of the sandwich panel has been shown to be almost 

independent of the number of embedded damping inserts (see Table 6.2 and Table 

6.3). A maximum variation of 1% has been highlighted for the sandwich panel 

completely filled with DSLJ damping inserts compared to the sandwich panel with 

no insert. This is because the stiffness of the sandwich panel geometries is mostly 

dependent on the honeycomb sandwich panel host structure geometry, which is the 

same for all geometries studied in this chapter. The same applies to the bending 

stiffness of the sandwich panel filled with viscoelastic material. 

The weight-specific bending stiffness has been shown to be maximal for the 

sandwich panel host geometry with no damping insert (see Figure 6.7). Since the 

variation of the bending stiffness has shown to be independent of the number of 
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embedded damping inserts inside the sandwich panel, any added mass caused by 

the addition of DSLJ damping inserts introduces a reduction of the weight-specific 

bending stiffness. The sandwich panel filled with viscoelastic material is 

characterised by the minimum weight-specific bending stiffness since this geometry 

gives the maximal weight increase. 

6.4.2 Modal Frequency of Sandwich Panel with DSLJ Damping Inserts 

Partial insertion of DSLJ damping inserts for up to 140 inserts has shown a frequency 

variation of up to 10% despite a maximum weight increase of 60% for the sandwich 

panel geometry with 140 inserts. Therefore, partial insertion of DSLJ damping inserts 

has a minor impact on the first bending mode frequency response of a sandwich 

panel. This is a consequence of the methodology used for partial filling and 

orientation of the DSLJ damping insert inside the sandwich host structure. As shown 

in Table 6.1, damping inserts are localised near the constrained edge of the panel 

where the relative displacement between opposite edges of the honeycomb unit cell 

wall is maximal (Chapter 2). Therefore, the added mass of the DSLJ insert does not 

have a significant impact on the dynamic behaviour of the panel. This is illustrated 

in Table 6.3, which shows a 10% variation of the transverse modal effective mass (z 

direction) for up to 70 added damping inserts. 

Geometries with more than 140 damping inserts have higher impact on the 

frequency variation of the first bending mode of the honeycomb sandwich panel host 

structure. The first bending frequency of the panel with DSLJ damping inserts in 

each of its cells is decreased by 25% compared to the frequency of the sandwich 

panel host structure. The larger influence on the frequency variation with increasing 

numbers of DSLJ damping inserts is caused by the location of the damping insert. 

With increased numbers of damping inserts, cells further away from the constraining 

edge of the sandwich panel are filled. Therefore, these geometries have larger 

impact on the transverse modal effective mass of the panel, i.e. larger impact on the 

dynamical response of the structure. The sandwich panel filled with viscoelastic 

material is characterised by the maximum frequency variation since this geometry 

gives the maximal weight increase and transverse modal effective mass.  



184 

Honeycombs with Structured Core for Enhanced Damping 

6.4.3 Loss Factor of Sandwich Panel with DSLJ Damping Inserts 

The loss factor of the sandwich panels studied had a positive relationship with the 

number of DSLJ inserts used. The geometry filled with DSLJ damping inserts has 

shown an 825% loss factor increase compared to the sandwich panel geometry with 

no inserts. With increasing numbers of damping inserts inside the sandwich host 

structure, the total strain energy stored in the viscoelastic material of the damping 

inserts increases, and, therefore, the loss factor. It should be noted that the rate of 

the loss factor variation is maximal for small numbers of inserts added to the 

sandwich host structure (see Figure 6.6). This is because the first damping inserts 

are located in cells exhibiting maximum relative displacement between their opposite 

walls, therefore, storing more strain energy than the damping inserts placed in cells 

that have less relative displacements between their opposite walls. The loss factor 

of the panel filled with viscoelastic materials has shown a loss factor increase of 

420%, reaching the loss factor of the geometry with 40 DSLJ damping inserts. 

Despite having more viscoelastic material to dissipate energy, the loss factor of the 

panel filled with viscoelastic material does not achieve the performance of the DSLJ 

damping inserts. This is because complete viscoelastic material filling of the cell is 

not an efficient method to add the damping material, since most of the material is 

not loaded by the surrounding walls of the honeycomb cell (Chapter 5). This also 

explains why the sandwich panel filled with viscoelastic material showed the minimal 

weight-specific loss factor with all the geometries studied (see Figure 6.8). The 

added damping provided by the viscoelastic material filling the cells does not 

balanced the added weight, hence, providing less energy dissipation on a density 

basis than the host sandwich panel. All geometries with DSLJ damping inserts have 

shown an increase of the weight-specific loss factor compared to the host sandwich 

panel with an optimum solution with 110 CLD damping inserts. This optimum 

configuration gives a 739% loss factor increase for a 47% added mass compared to 

the sandwich panel without damping inserts, with minimal impact on the bending 

stiffness and first natural frequency of the structure. Hence, partial filling of the 

honeycomb cells performs better on a density basis than the complete filling of all 

the cells of the sandwich panel. 
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6.5 Conclusion 

Enhancement of the damping loss factor of the first bending mode of a honeycomb 

sandwich panel with CLD damping inserts has been investigated in this chapter and 

benchmarked against a honeycomb sandwich panel with no damping insert and a 

sandwich panel filled with viscoelastic material.  

The sandwich panel completely filled with viscoelastic material is an inefficient way 

of improving the damping capacity of a sandwich panel on a density basis. The 

weight penalty of this solution has been shown to be too large to compensate for the 

added damping provided by the viscoelastic material. 

On the other hand, partial filling with DSLJ damping inserts of the honeycomb 

sandwich panel have been shown to be a very effective solution for improving the 

damping capacity of a honeycomb sandwich panel on a density basis, with minimal 

influence on the stiffness and first frequency of the panel. An optimum configuration 

using 110 embedded DSLJ damping inserts has been found for the first bending 

mode of the panel, giving a 739% loss factor increase for a weight increase of only 

47% compared to the host sandwich panel structure without DSLJ inserts. 

  



186 

Honeycombs with Structured Core for Enhanced Damping 



187 

Honeycombs with Structured Core for Enhanced Damping 

Chapter 7. Discussion 

Seminal work by Huang et al. [11] presented the enhanced damping properties of 

the honeycomb sandwich panel due to the introduction of viscoelastic material inside 

the hollow honeycomb core. This method, however, severely increased the weight 

of the sandwich panel, therefore mitigating the excellent density-specific properties. 

Subsequently, Woody et al. [47] and Wayne et al. [98] investigated the damping 

properties of honeycomb structures by respectively filling target cells within the 

honeycomb structure and partially filling the honeycomb cell voids with the use of 

damping inserts in the form of corner fillets in the corner of ‘auxetic’ honeycomb unit 

cells to reduce the weight increase. Both methods showed large enhancements of 

the damping properties of the honeycomb structure with reduced added mass. The 

aim of the current work has been to combine and develop both methods to 

investigate the competitive demand between increased damping properties and 

minimum added mass. The present work describes the optimisation of the location 

of the damping insert material for use within the honeycomb unit cell and presents 

an effective method for location of these damping inserts within a honeycomb 

sandwich panel. The loss factor of a honeycomb sandwich panel partially filled with 

DSLJ inserts has been evaluated at 0.084% for the first bending mode of the panel 

for a 47% added mass compared to the host sandwich panel without insert. The lost 

factor of the host sandwich panel was evaluated at 0.01%. Finite element models 

and analytical predictions have been developed to characterise honeycomb 

structures with damping inserts and have been validated against well-established 

analytical predictions [2] [18]. 

7.1 Location of Damping Material within a Honeycomb Unit Cell 

As an initial step for characterising optimal locations for damping material within the 

void of a honeycomb unit cell, a study has been undertaken to understand the 

primary deformation mechanism of the unit cell within a honeycomb and sandwich 

panel subjected to vibration in Chapter 2. The local out-of-plane shear strains of the 

honeycomb unit cell within a honeycomb panel have been found to be two orders of 

magnitude lower than the in-plane strains for its first fundamental modes. This is 



188 

Honeycombs with Structured Core for Enhanced Damping 

because bending is the principal deformation mechanism of the honeycomb unit cell 

within a honeycomb panel. Therefore, planes situated away from the neutral bending 

plane of the honeycomb panel exhibit larger in-plane tension/compression than 

transverse shear loading (see Table 2.6 to Table 2.9). For sandwich panels, in-plane 

tension/compression strains and transverse shear strains are of similar magnitude 

because the skins of the sandwich panel limit the bending deformation of the 

honeycomb core. It should be noted that, as a consequence, the bending stiffness 

of a sandwich panel is significantly higher than the honeycomb core panel itself, and 

is characteristic of the excellent density-specific properties of a sandwich structure. 

The locations of the filling damping material, in this case a viscoelastic elastomer, 

within the honeycomb cell void have been studied in Chapter 3, assuming that the 

optimal locations for damping inserts lie where the relative displacements of the 

honeycomb cell walls are maximal. Damping inserts placed in these locations are 

deformed at the highest axial strain possible, therefore dissipating maximum energy. 

Analytical expressions have been derived using beam theory and assuming that the 

damping material does not contribute to the deformation of the unit cell. This 

approach ignores the stiffness of the viscoelastic insert assuming that the stiffness 

of the cell itself dominates, as supported by Abd El-Sayed et al. [99]. These 

expressions have been used to characterise these optimal locations under in-plane 

loading cases reflecting the deformation of core honeycomb cells in a range of 

possible structural vibration modes studied in Chapter 2. Out-of-plane transverse 

shear loading has not been studied since the relative cell walls motion is less than 

for in-plane loading as demonstrated in Chapter 2.. The optimal locations of inserts 

within cells have been demonstrated to be sensitive to both cell geometry and the 

in-plane loading directions, as illustrated in Figure 3.8, Figure 3.10, Figure 3.12 and 

Figure 3.13. The optimal location for a regular honeycomb cell loaded in tension 

compression forms a single horizontal ligament in the middle of the honeycomb cell 

void (see Figure 3.8), whereas, for in-plane shear loading, it forms a double cross 

ligament between the top and bottom walls of the honeycomb unit cell. These 

locations have been shown to be a consequence of the characteristic parameters 
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defining the honeycomb unit cell and were discussed in further detail in Chapter 3. 

The locations of damping materials predicted with the analytical model developed 

for this study have been found to be similar to the results of the topological 

optimisation run for regular and ‘auxetic’ honeycomb unit cells taking into account of 

the stiffness of the viscoelastic material, validating the assumptions made in the 

analytical model for predicting the best locations for damping inserts inside 

honeycomb cells. Specifically, the fact that the stiffness of the damping insert was 

not accounted in these analytical models. It should be noted that this will be invalid 

for cases where stiff or large inserts are used. 

Regular honeycomb unit cells with damping material in the optimal location 

highlighted previously have been studied in Chapter 4 and showed a 26.7% increase 

of the density-specific loss modulus for in-plane axial loading and a 16% increase 

for in-plane shear loading compared to a honeycomb unit cell completely filled with 

viscoelastic material, as described by Huang et al. [11]. Despite having less damping 

material than a filled honeycomb unit cell, honeycomb unit cells partially filled with 

damping showed higher density-specific loss modulus because the ratio between 

the strain energy stored in the viscoelastic material and its volume is reduced 

between the optimum configuration for the damping insert and the filled honeycomb 

cell. Strain plots of the different insert geometries studied illustrated this 

characteristic in Figure 4.13, Figure 4.14 and Figure 4.20. Partial filling of the 

honeycomb unit cell in the form of fillets, as described by Miller et al. [98], has been 

shown to be an effective location for damping inserts in the very specific cases of an 

auxetic honeycomb with a large aspect ratio (>3) as described in their patent 

application. Fabrication of metallic honeycomb panels with such unit cell geometries 

is, however, not possible using the current well-established expanded and 

corrugated manufacturing processes, therefore creating evident limitation in the 

case of mass production. Hence, these damping insert locations have not been 

further investigated. It should be noted that the results of this analysis have been 

derived from a linear static analysis using the modal strain energy method to quantify 

the damping properties of the honeycomb unit cell with damping inserts [2]. The 
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viscoelastic material dependency against frequency and temperature has not been 

analysed in this study. Generic viscoelastic properties have been used to quantify 

the density-specific loss modulus efficiency against honeycomb unit cells without 

inserts and completely filled with viscoelastic material. As defined, this analysis 

provides a methodology for comparison of the damping capability of honeycomb unit 

cells with different geometries of damping inserts. 

7.2 Effective Damping Insert Geometry within a Honeycomb Unit Cell 

Partial filling of the honeycomb unit cell with a unique damping material in the optimal 

locations highlighted has been shown previously to enhance the density-specific loss 

modulus of the honeycomb unit cell compared to a honeycomb unit cell completely 

filled with a damping material. Since the optimal location for damping inserts have 

been identified in locations where the relative displacement between opposite 

displacement of the honeycomb cell walls is maximal, this assumes that most of the 

dissipation by the damping insert is provided by its axial deformation. It is well known 

that shear deformation is very effective for dissipating energy and more efficient than 

tension/compression loadings [27] [109]. In order to enhance the energy dissipation 

of the damping insert made from a single damping material, the concept of SLJ 

damping inserts has been investigated in Chapter 5. These SLJ damping inserts are 

made from two different materials. A viscoelastic material forms a layer constrained 

between two or three thin sheets of a stiffer material, as illustrated in Figure 5.1. The 

SLJ damping inserts have shown significantly higher density-specific loss modulus 

for the smallest introduction of viscoelastic material (damping insert filling 5% of the 

honeycomb cell void). The density-specific in-plane and shear loss moduli have 

respectively been shown to be 280 and 100 times higher than a honeycomb unit cell 

completely filled with viscoelastic material as described by Huang et al. [11]. Since 

the SLJ inserts have been located in the optimal location for axial loading of the 

insert within the honeycomb cell void, the constrained layers load the viscoelastic 

layer in shear inducing a shear strain inversely proportional to the viscoelastic layer 

thickness, therefore providing higher energy dissipation for thinner viscoelastic layer 

thicknesses. This explains why these SLJ damping inserts are characterised by such 
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large improvement of the density-specific loss modulus compared to inserts made 

only from a viscoelastic material. This is illustrated in Figure 4.13 and Figure 5.15, 

where the maximal strain inside the viscoelastic material reaches 0.2% for simple 

damping inserts and 3% for DSLJ inserts under the same loading condition. It should 

be noted that the fatigue shear strength and adhesive strength of the viscoelastic 

material have not been investigated and are likely to impose constraints on the 

minimum thickness of the viscoelastic layer for a given fatigue life requirement, 

therefore limiting its damping capability. 

7.3 Partial Filling of Sandwich Panel with Damping Inserts 

The influence on the damping loss factor of the first bending mode of a sandwich 

structure with embedded DSLJ damping inserts has been investigated in Chapter 6. 

Partial filling of selected voids within the honeycomb panel exhibits the best weight-

specific loss factor, which is 12% higher than the honeycomb sandwich panel filled 

with damping inserts in all of its cells, 4.7 times higher than the host honeycomb 

sandwich panel and 15.8 times higher than the honeycomb sandwich panel 

completely filled with viscoelastic material, as described by Huang et al. [11] (see 

Figure 6.8). The loss factor of the best weight specific loss factor configuration with 

110 DSLJ inserts was evaluated at 0.084% for the first bending mode of the 

sandwich panel which compares with a loss factor of 0.01% for the host sandwich 

panel without inserts and a loss factor of 0.052% for the sandwich panel completely 

filled with viscoelastic material. The cell voids selected for partial filling of the 

honeycomb host structure resulted from the study in Chapter 2 of the modal 

deformation of the first bending mode of the structure. Cell voids with the highest 

local in-plane tension/compression have been progressively filled with DSLJ inserts 

and are, therefore, the best locations for damping inserts since they have been 

shown to be more effective when loaded axially. Since the local in-plane deformation 

of each cell within the sandwich structure is dependent on its location within the 

panel, this explains why partial filling of the sandwich structure has been shown to 

be more effective on a weight basis than complete occupation of all the cell voids 

with DSLJ damping inserts. It should be noted that the best locations of damping 
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inserts identified in Chapter 6 are valid only for the first bending mode of the 

sandwich structure since the local in-plane strain of the cells have been shown to be 

dependent on the mode shape of the host structure in Chapter 2. Therefore, damping 

inserts could be located within the sandwich panel to target specific modes of 

deformation and damp critical frequency ranges. This could be a very efficient way 

of designing next generations of gas turbine fan blades using DSLJ damping inserts 

embedded in a low-density honeycomb panel within the hollow structure of the blade. 

Significantly, since these damping inserts are located within the sandwich structure, 

they would have minimum impact on the aerodynamic performance of the blades 

and be protected from their harsh conditions of use (air flow speed, buzz saw, bird 

strike events, etc.).  

Additionally, partial filling of a sandwich panel was demonstrated to have a marginal 

impact on the dynamical response of the sandwich structure with the first modal 

frequency varying only by 3.4% for the optimal partial filling solution with DSLJ 

inserts found in Chapter 6 (see Table 6.3). This is because partial filling of the 

honeycomb sandwich structure does not largely impact on the total weight and 

stiffness of the structure as opposed to complete filling of the honeycomb cell voids, 

which has been characterised by a frequency drop of 64.4% because of the large 

added mass caused by the introduction of the damping material in large quantities.  

It is also important to note that the honeycomb sandwich structure simply filled with 

viscoelastic material as described by Huang et al. [11] was shown to have a weight-

specific loss factor lower than the sandwich panel host structure itself. Since 

honeycomb sandwich panels are used in application where the weight penalty is 

critical, the attraction of this solution appears to be limited; for instance, in transport 

applications.  

Manufacturing methods for the fabrication of sandwich panels with embedded SLJ 

inserts have not been investigated in this thesis and could potentially appear to be 

challenging given the complexity of the geometry and the fact that these inserts are 

not made from a sole material. It is believed that the recent development in additive 
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layer manufacturing processes, with the use of 3D printing technology, could result 

in very efficient processes for manufacturing SLJ inserts, which could then be 

embedded in the honeycomb core of a sandwich structure. 
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Chapter 8. Conclusion 

This thesis focused on the vibration damping enhancement of honeycomb sandwich 

panels and explored the competing demands between damping and the addition of 

extra mass.  

The problem was tackled by initially characterising the main local deformation 

mechanism of unit cells within a sandwich panel subjected to vibration. In-plane 

deformation of the honeycomb unit cell has been shown to be the predominant mode 

of deformation for honeycomb panels, whereas in-plane and transverse shear 

deformation have been shown to be the predominant mode of deformation for 

honeycomb sandwich structures. It was also highlighted that the magnitude and 

loading of the honeycomb unit cell are dependent on its location within the 

honeycomb or sandwich panel and the mode shape of the panel. 

An optimisation study has been done on diverse honeycomb unit cell geometries for 

finding locations where the relative displacement between the honeycomb cell walls 

of the void is maximal under in-plane loadings. Therefore, these locations are valid 

for both honeycomb panel and sandwich panel together since in-plane loadings have 

been characterised as the main deformation mechanism for both structures. 

Transverse shear loading has not been studied in this work and could be used as a 

subject for further study for optimisation of the damping performance of a sandwich 

structure. These locations have shown to be dependent on the nature of the loading, 

i.e. in-plane tension/compression or in-plane shear loading of the honeycomb unit 

cell and the unit cell geometry. 

Analytical expressions and finite element analysis have been used to investigate 

partial filling of the honeycomb unit cell with a damping material, in this case a 

viscoelastic elastomer, in the target locations identified previously where the relative 

displacement between the honeycomb cell walls is maximal. Damping inserts in the 

form of ligaments partially filling the honeycomb cell void have been characterised 

with a 26% increase of their density-specific loss modulus compared to cells filled 

with damping material for in-plane tension/compression loading.  
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The form of the damping insert itself has also been analysed for enhancement of the 

dissipation provided by the damping material. DSLJ damping inserts, placed in the 

location where the relative displacement between the honeycomb cell walls of the 

void is maximal under in-plane loadings, have been characterised with very 

significant damping improvements compared to honeycomb cells completely filled 

with viscoelastic material. This insert geometry showed a density-specific loss 

modulus for tension/compression loading increased by 280 compared to filled 

honeycomb unit cells. Such enhancement is provided by the use of SLJ inserts 

inside the honeycomb unit cell because the constrained layer of the damping insert 

introduced a high shear strain in the damping material layer, which is a very efficient 

mechanism for dissipation of vibrational energy. 

The loss factor of the first bending mode of a cantilever sandwich panel has been 

shown to be significantly enhanced with the use of embedded SLJ inserts for a small 

addition of mass by the damping inserts. The loss factor of the sandwich structure 

filled with an SLJ insert in every cell was shown to be enhanced by 8.2 times for an 

82% increase in mass compared to the honeycomb host sandwich panel. The 

solution described by Huang et al. consisting of a honeycomb sandwich panel 

completely filled with viscoelastic material gave a loss factor increase of 4.2 times 

for a 14 times increase in mass compared to the host sandwich panel, therefore not 

efficient on a density basis. Partial filling of target cells of the honeycomb sandwich 

structure with SLJ damping inserts orientated appropriately to maximise the shear 

strain of the viscoelastic layer has been shown to be the most efficient method for 

enhancement of the loss factor of the structure on a density basis. Partial filling 

solutions with SLJ inserts have also been shown to have a reduced impact on the 

dynamical behaviour of the host structure. The optimum partial filling solution 

identified on a density basis gave a first modal frequency reduction of only 3.5% 

compared to the host structure.  

This thesis primarily focussed on developing a concept which enhances the damping 

properties of honeycomb sandwich panel without largely increasing the weight of the 

panel using analytical models and finite element analyses. Further work is required 
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so as to complete and validate the work presented in this thesis. Guideline for further 

is described subsequently. 

 Analysis methods: a combination of analytical and FE linear static and modal 

analyses have been used in this thesis to demonstrate the concept of using 

viscoelastic damping insert. As such, the influence of the loading frequency 

and temperature have not been investigated in this thesis. 

 Strength capability of the damping insert: stress analysis of detailed FE 

models of the different insert geometries presented in this thesis should be 

carried out to determine the maximum loading capability of the insert and 

investigate potential debonding of the insert with the honeycomb host 

structure.  

 Manufacturability of the damping insert: investigation on the manufacturability 

of the insert should be carried out to understand the feasibility of 

manufacturing the damping inserts presented in this thesis.  

 Experimental validation: experiments should be carried on sandwich panels 

with damping inserts to validate their damping enhancement. 

 Optimisation of the number and location of damping inserts within sandwich 

panels: an engineered methodology has been presented in this thesis so as 

to optimise the number and location of damping inserts within a sandwich 

panel. Optimisation algorithms could be investigated so as to improve the 

result presented in this thesis. Furthermore, only the first bending mode of a 

sandwich panel has been investigated to quantify the damping enhancement 

given by the introduction of damping inserts. The optimisation of the number 

and location of damping inserts could be extended to investigate the damping 

enhancement of a multitude of natural modes of the panel, of different panel 

geometries and of different boundary conditions. 

It should be noted that part of the above suggestions for further work are currently 

under investigation  in another PhD research project by Pierre Amjaud from the 

University of Exeter, supervised by Prof. Chris Smith. 
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