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ABSTRACT 6 

This study investigates the relationships between carbon reduction and sustainability in the 7 

context of wastewater treatment, focussing on the impacts of control adjustments, and 8 

demonstrates that reducing energy use and/or increasing energy recovery to reduce net energy 9 

can be detrimental to sustainability. 10 

Factorial sampling is used to derive 315 control options, containing two different control 11 

strategies and a range of sludge wastage flow rates and dissolved oxygen setpoints, for 12 

evaluation. For each, sustainability indicators including operational costs, net energy and 13 

multiple environmental performance measures are calculated. This enables identification of 14 

trade-offs between different components of sustainability which must be considered before 15 

implementing energy reduction measures. In particular, it is found that the impacts of energy 16 

reduction measures on sludge production and nitrogen removal must be considered, as these 17 

are worsened in the lowest energy solutions. 18 

It also demonstrates that a sufficiently large range of indicators need to be assessed to capture 19 

trade-offs present within the environmental component of sustainability. This is because no 20 

solutions provided a move towards sustainability with respect to every indicator. Lastly, it is 21 

highlighted that improving the energy balance (as may be considered an approach to 22 
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achieving carbon reduction) is not a reliable means of reducing total greenhouse gas 23 

emissions. 24 

Keywords: carbon neutral; control; energy; sustainability; WWTP 25 

1 INTRODUCTION 26 

Improving the energy balance of wastewater treatment plants (WWTPs), with the aim of 27 

moving towards carbon neutrality, is a topic of great interest. This is driven by numerous 28 

policies, initiatives and commitments, including the European Union’s 2030 Climate and 29 

Energy Policy Framework (which requires a 40% reduction in greenhouse gas (GHG) 30 

emissions by 2030 with respect to a 1990 baseline and for 27% of energy to be from 31 

renewable sources), and the UK’s Carbon Reduction Commitment (CRC) (under which 32 

companies, including those in the water industry, are compelled to reduce their energy use by 33 

80% by 2050 with respect to a 1990 baseline (DECC 2014). However, whilst such changes 34 

may benefit the environment due to reduced carbon emissions, there is a need to explore the 35 

wider economic, environmental and societal impacts. 36 

There is on-going research into the maximisation of energy recovery / minimisation of use 37 

through increased methane (CH4) production, improved biogas quality and use of alternative 38 

processes (e.g. Gao et al. 2014, Scherson and Criddle 2014, Villano et al. 2013), and it has 39 

been suggested that carbon neutrality may be an achievable objective if multiple strategies 40 

are implemented (Mo and Zhang 2012, Rosso and Stenstrom 2008).  41 

Indeed, carbon neutral WWTPs have been reported (Suez Environment 2012, USEPA 2014). 42 

However, there is no universal consensus as to what should be covered by the term ‘carbon’ 43 

in the context of carbon reduction and carbon footprint: Gori et al. (2011), for example, 44 

include direct carbon dioxide (CO2) and CH4 emissions, whereas the claim of carbon 45 
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neutrality for the aforementioned WWTPs is based only on energy use. This is in line with 46 

the CRC, which incentivises only reduction in CO2 emissions associated with energy use 47 

(taking into account different levels of emission from different energy sources), but in such 48 

cases there is still a need to investigate the potential implications of carbon reduction 49 

measures on CO2 and CH4 formation by biological treatment processes. 50 

Reducing net energy use alone may prove to be ineffective if the goal is to mitigate global 51 

warming. In such cases, even a more comprehensive evaluation of carbon emissions 52 

(considered to be those containing carbon) may be insufficient since nitrous oxide (N2O) 53 

emissions from WWTPs can provide a significant contribution to total GHG emissions 54 

(Kampschreur et al. 2009). Strategies have previously been identified, for example, in which 55 

a reduction in energy use corresponds with an increase in total GHG emissions (Flores-Alsina 56 

et al. 2014) and, whilst there is on-going research into strategies for the reduction of GHG 57 

emissions, there is a need to investigate the impacts employing the approach encouraged 58 

under the CRC – i.e. reduction of energy use – on total GHG emissions. 59 

Carbon or energy reduction may also be used to address sustainability issues (e.g. Holmes et 60 

al. 2009). However, sustainability is a complex, multi-dimensional concept comprising of 61 

economic, environmental and societal components (Mihelcic et al. 2003), each of which can 62 

be sub-divided into a large number of elements represented by different indicators (e.g. Muga 63 

and Mihelcic 2008). ‘Carbon neutral’ or ‘energy neutral’ do not necessarily imply sustainable 64 

operation, as they address only one element of sustainability and implementation of low 65 

carbon solutions may have unintended detrimental effects on other aspects. For example, 66 

WWTP control modifications which provide a reduction in energy consumption but 67 

correspond with neither a reduction in total GHG emissions nor an improvement in effluent 68 

quality have previously been identified (Flores-Alsina et al. 2014): this corresponds with a 69 

move away from sustainability with respect to two of three indicators. It has even been 70 



4 

suggested that the most sustainable solution may not result in any recovery of resources from 71 

wastewater (Guest et al. 2009), highlighting the need to explore the relationship between 72 

carbon neutrality and sustainability. 73 

This study, therefore, aims to investigate previously unexplored relationships between carbon 74 

neutrality and sustainability in the context of wastewater treatment, focussing in particular on 75 

the impact of energy reduction measures. The study highlights the potential benefits 76 

achievable and the associated consequences of adjustment to WWTP control for an activated 77 

sludge plant, rather than the development and/or application of new processes. An approach 78 

consistent with that required under the CRC, which is based only on energy use and recovery, 79 

is used in the assessment of carbon emissions; total GHG emissions, including direct and 80 

indirect CO2, CH4 and N2O are evaluated separately. Low energy solutions are highly 81 

desirable under the CRC and there is much research focussed on enhancing energy recovery 82 

from wastewater to reduce the carbon footprint. By assessing the operational costs and a 83 

range of environmental performance indicators, including GHG emissions and pollutant 84 

removal efficiency, this research provides a more detailed picture of the potential impacts of 85 

pursuing carbon neutral/negative wastewater treatment on moving towards sustainability in 86 

the development of WWTP control strategies. 87 

2 MATERIALS AND METHODS 88 

2.1 Wastewater treatment plant model 89 

The WWTP in which energy saving measures are implemented and sustainability indicators 90 

evaluated is an activated sludge plant, the Benchmark Simulation Model No. 2 for GHG 91 

emissions (BSM2G) (Flores-Alsina et al. 2014), with a mean influent flow rate of 92 

20,648 m
3
/d. Components include a 900 m

3
 primary clarifier, an activated sludge unit 93 

containing two 1500 m
3
 anoxic tanks and three  3,000 m

3
 aerobic tanks in series, a 6,000 m

3
 94 
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secondary settler, a sludge thickener, a 3,400 m
3
 anaerobic digester, a dewatering unit and a 95 

160 m
3
 reject water storage tank. A diagram of the plant layout is given by Flores-Alsina et 96 

al. (2011). 97 

Biological processes are modelled using the Activated Sludge Model No. 1 (Henze et al. 98 

2000) with extensions to enable modelling of N2O emissions (Hiatt and Grady 2008, 99 

Mampaey et al. 2013), as detailed by Guo and Vanrolleghem (2014). Additional GHG 100 

emission sources modelled include CO2 produced and consumed in biological treatment, CO2 101 

from anaerobic digestion and biogas combustion, fugitive CH4 emissions from anaerobic 102 

digestion, electricity consumption and generation, production of external carbon source, CO2 103 

and CH4 from sludge storage and disposal, and N2O from recipient due to effluent load. 104 

Further details on the model can be found in Flores-Alsina et al. (2014). 105 

It is important to remember that mathematical WWTP models, as used in this study, do not 106 

provide an exact representation of reality. Control strategies that are successful when 107 

modelled may be less so in practice due to factors affecting full scale plants; however, 108 

benchmark simulation models do provide a means of objective control strategy evaluation 109 

(Copp et al. 2014). 110 

2.2 Control strategy 111 

Two different control strategies providing DO control (illustrated in Figure 1) are 112 

investigated. These are selected since, as well as impacting energy consumption (e.g. Amand 113 

and Carlsson 2012), DO control and aeration intensities in the activated sludge reactors are 114 

known to affect values of potential sustainability indicators, such as operational costs, 115 

effluent quality and GHG emissions (Aboobakar et al. 2013, Sweetapple et al. 2014b). 116 
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 117 

Fig. 1 – DO control in the activated sludge unit in: a) the CL1 control strategy; and b) the 118 

CL2 control strategy 119 

Firstly, the control strategy of Flores-Alsina et al. (2014) is implemented (referred to here as 120 

‘CL1’). This consists of two PI control loops: one in which DO concentration in the fourth 121 

activated sludge reactor is controlled by manipulation of aeration intensities in reactors 3-5, 122 

where aeration intensity in reactor 5 is half that in reactors 3 and 4, and one in which nitrite 123 

concentration in the second activated sludge reactor is controlled by manipulation of the 124 

internal recycle flow rate. 125 

In the second control strategy, CL2, the DO spatial distribution is controlled with three 126 

independent control loops. This has previously been shown able to provide a significant 127 

reduction in GHG emissions and operational costs whilst maintaining a high effluent quality 128 

(Sweetapple et al. 2014a), and Jeppsson et al. (2007) found it to use significantly less energy 129 

for aeration than a wide range of alternatives. A setpoint of 1 g O2/m
3
 (Jeppsson et al. 2007, 130 

Vanrolleghem and Gillot 2002) is provisionally set for every controller in CL2.  131 

In both CL1 and CL2, two different wastage flow rates (Qw_winter and Qw_summer) are used to 132 

ensure sufficient biomass is maintained in the system during winter months. The higher flow 133 
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rate, Qw_summer, is applied when the influent temperature is greater than 15ºC (approximately 134 

start of May to end of October). 135 

The CL1 control strategy with default parameter values (DO setpoint = 2 g O2/m
3
, 136 

Qw_winter = 300 m
3
 /d, Qw_summer = 450 m

3
/d) (Flores-Alsina et al. 2014) represents the base 137 

case. 138 

In all control loops, the sensors are assumed to be ideal (i.e. modelled with no noise and no 139 

delay) for testing the theoretical energy saving potential and sustainability impacts of 140 

different control options.  141 

2.3 Decision variable sampling 142 

A range of control options are developed for evaluation using factorial sampling of key 143 

decision variables, in order to identify solutions which improve the energy balance whilst 144 

maintaining a compliant effluent. Factorial sampling is chosen as it can provide good 145 

coverage of the search space with relatively few simulations, as demonstrated by Sweetapple 146 

et al. (2014a). Alternative techniques which provide greater coverage and may result in 147 

further improvements, such as Monte Carlo sampling or multi-objective optimisation with 148 

genetic algorithms, could be used in further study if computational capacity allows (e.g. 149 

Sweetapple et al. 2014c). 150 

Selection of decision variables for sampling is guided by knowledge of control handles with 151 

significant impact on energy use, and previous sensitivity analyses with respect to indicators 152 

which may be used for sustainability. 153 

Firstly, wastage flow rate is adjusted as this has been shown to be a key control handle with 154 

respect to its effects on GHG emissions, operational costs (which include energy use and 155 

recovery) and effluent quality (Sweetapple et al. 2014b). The two wastage flow rates, 156 
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Qw_winter and Qw_summer, are both increased or decreased by the same factor simultaneously, 157 

using nine levels in the range 0.8-1.2 (e.g. for an adjustment factor of 0.8, 158 

Qw_winter = 0.8*300 m
3
 /d and Qw_summer = 0.8*450 m

3
/d). It is important to be aware here that, 159 

under low wastage flow rates, performance of a real plant may not match that simulated due 160 

to increased sludge concentrations and potential overloading of the sedimentation tanks. 161 

However, by restricting the wastage flow rate reduction to a maximum of 20%, this study 162 

aims to produce results which are at least indicative of those that may be achieved in a real 163 

plant.  164 

Secondly, the DO setpoints are sampled, with ranges selected to encompass the default 165 

values. Selection of appropriate setpoints is important and a potential pathway to reduce 166 

energy consumption, since sufficient DO must be supplied to sustain aerobic activity and 167 

avoid bulking issues but over aeration represents a waste of energy, as the higher the DO 168 

level the lower the oxygen transfer efficiency. 169 

The single DO setpoint in CL1 is sampled at five levels in the range 1.0-3.0 g O2/m
3
. Each 170 

setpoint is evaluated in conjunction with each wastage flow rate adjustment factor, yielding 171 

45 solutions for evaluation in the CL1 control strategy. A 4-level factorial sampling design is 172 

used to generate sets of DO setpoints for the CL2 control strategy, with values in the range 173 

0.5-2.0 g O2/m
3
. Instances in which the setpoint for the final reactor is greater than that for 174 

one or both of the preceding aerated reactors are removed, as such operation is likely to be 175 

inefficient in simulation studies due to high DO recirculation to the anoxic zone (DO 176 

recirculation is likely to be less significant in a real plant due to oxygen consumption in the 177 

settler or recirculation line; greater realism may be provided with a reactive settler model 178 

(Guerrero et al. 2013), but at the expense of greater computational demand). This results in 179 

30 combinations of setpoints for analysis with each set of wastage flow rates, giving a total of 180 

270 solutions for evaluation in the CL2 control strategy. 181 
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2.4 Performance assessment 182 

Performance assessment of each control option is based on a one-year period which 183 

incorporates diurnal and seasonal phenomena. Simulation of each control option is carried 184 

out using the prescribed 200 day constant influent followed by 609 days dynamic influent, of 185 

which the last 364 are used for evaluation.  186 

2.4.1 Effluent quality 187 

Effluent quality compliance is assessed for every solution using the constraints summarised 188 

in Table 1 (based on the BSM2 requirements (Nopens et al. 2010)). For those that achieve 189 

acceptable 95 percentile values, energy use, energy recovery and sustainability indicators are 190 

also evaluated. 191 

Table 1 – Effluent quality constraints 192 

Effluent quality measure Maximum concentration (g/m
3
) 

COD 100 

Total nitrogen 18 

Ammonia and ammonium nitrogen 4 

TSS 30 

BOD5 10 

 193 

2.4.2 Net energy 194 

Sources of energy use considered are activated sludge aeration, pumping (of internal recycle 195 

flow, return sludge, waste sludge, primary settler underflow and dewatering underflow), 196 
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anoxic reactor mixing and digester influent heating. Energy recovery is calculated based on 197 

CH4 production in the anaerobic digester, the theoretical energy content of CH4, and a 198 

specified conversion efficiency. A net energy value is also calculated (energy use minus 199 

energy recovery); this is the energy measure considered in this study and should be 200 

minimised to improve the energy balance. A ‘net energy use’ rather that ‘net energy 201 

recovery’ value is chosen since for other sustainability indicators (see Section 2.4.3) a lower 202 

value corresponds with greater sustainability - it would be harder to compare indicators if one 203 

is to be maximised. This approach is also consistent with that of Flores-Alsina et al. (2011), 204 

who report net power using the same method. Note that when energy recovery is greater than 205 

the modelled energy use, this value will be negative; however, it is not possible to make any 206 

claims regarding the energy neutrality of the plant in such cases as not every source of energy 207 

use is considered in the calculation (influent pumping, for example, which is not included in 208 

the BSM framework as it is assumed to be the same under every scenario, being a significant 209 

omission). Energy requirements reported and used in literature cover a wide range, but 210 

typically 0.043 to 0.094 kWh/m
3
 can be attributed to influent pumping, headworks, solids 211 

dewatering and lighting (Metcalf and Eddy 2004), all of which are omitted in the BSM2G net 212 

energy calculation. As such, any solution providing a modelled net energy greater 213 

than -0.043 kWh/m
3
 is unlikely to be energy neutral when considering the wider picture, but 214 

this is not a guarantee of carbon neutrality and a significantly lower net energy could be 215 

required. 216 

Also note that BSM2G provides only indicative values of energy use and recovery; it is not 217 

entirely representative of reality. Calculation of energy use for digester heating, for example, 218 

is based only in the digester influent temperature and assumes no heat loss. 219 
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2.4.3 Sustainability 220 

It is not possible to classify any solution as ‘sustainable’, but sustainability indicators should 221 

be able to show progress towards or away from sustainability (Lundin et al. 1999). Multiple 222 

indicators are used in this study for assessment of the environmental and economic aspects 223 

sustainability, guided predominantly by the work of Molinas-Senante (2014). These are 224 

summarised in Table 2. 225 

Table 2 – Indicators for sustainability assessment 226 

Dimension Indicator Units 

Economic Operational costs - 

Environmental COD not removed % 

Environmental Suspended solids not removed % 

Environmental Total nitrogen not removed % 

Environmental Energy consumption kWh/m
3
 treated 

wastewater 

Environmental Sludge production kg TSS/m
3
 treated 

wastewater 

Environmental GHG emissions kg CO2e/m
3
 treated 

wastewater 

 227 

Operational costs are represented by an operational cost index (OCI), as defined by Jeppsson 228 

et al. (2007). This accounts for sludge disposal, external carbon source and energy costs. 229 
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Investment costs, another potential indicator for economic sustainability, are not considered 230 

in this case since the base case (against which the change in sustainability is assessed) already 231 

utilises DO control. Additional investment would be required for implementation of the CL2 232 

control strategy (for both hardware and software), but this sum cannot be quantified and is 233 

assumed to be minimal compared with the costs reported by Molinas-Senante (2014) for 234 

comparison of different treatment technologies. 235 

Treatment efficiency provides three indicators for environmental sustainability. In this study, 236 

percentage of influent COD, TSS and total nitrogen not removed, rather than percentage 237 

removed as in Molinas-Senante (2014), are reported. This is to ease comparison of 238 

sustainability indicators, since a reduction in indicator value now represents a move towards 239 

sustainability in all cases. Further environmental sustainability indicators (e.g. land area 240 

required, potential for water reuse and potential to recover products) which will not differ as a 241 

result of only operational changes are not included. GHG emissions are considered in 242 

addition to the indicators proposed by Molinas-Senante (2014), given that there is increasing 243 

interest in the impact of GHG emissions from wastewater treatment and their contribution to 244 

global warming. 245 

The societal aspect of sustainability is not covered in this research since this cannot easily be 246 

quantified and adjustment of only WWTP control is expected to have negligible effect on 247 

typical indicators used for impact on society. Possible indicators for the social dimension of 248 

sustainability include odours, noise, visual impact and public acceptance (Molinos-Senante et 249 

al. 2014). These are useful when comparing treatment technologies but there would be no 250 

discernible or quantifiable difference resulting only from adjustment of control parameters. 251 

‘Complexity’, a further indicator for social sustainability (Molinos-Senante et al. 2014), will 252 

be affected by the choice of control strategy – use of model predictive control, for example, 253 

would be considered more complex than conventional proportional integral (PI) controllers. 254 
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However, the control strategies evaluated in this study all use PI controllers and, although the 255 

number of control loops differs between CL1 and CL2, it is assumed that there is insufficient 256 

difference in the complexity of each control strategy to warrant further attention. 257 

3 RESULTS AND DISCUSSION 258 

3.1 Wastage flow rate adjustment 259 

Performance of control strategies with adjustment of only wastage flow rates is shown in 260 

Figure 2. Within the range of wastage flow rates considered (base case ± 20%), all solutions 261 

produce an effluent with compliant 95 percentile values and net energy can be reduced by up 262 

to 63%. However, it is observed that a reduction in net energy does not correspond with a 263 

universal move towards sustainability. Whilst increasing wastage flow rate with respect to the 264 

base case in CL1 improves sustainability with respect to net energy, OCI, COD removal, TSS 265 

removal and GHG emissions, it also results in decreased sustainability with respect to sludge 266 

production and total nitrogen removal. This corresponds with trade-offs observed by Flores-267 

Alsina et al. (2011) for operation with a low sludge retention time (SRT): low operational 268 

costs and GHG emissions but worsened effluent quality. In particular, the observed reduction 269 

in nitrogen removal when wastage flow rate is increased with no compensatory increase in 270 

DO setpoint is as expected, since nitrifiers will be washed out first under increased wastage 271 

flow rates due to their low growth rate, and higher DO concentrations are required to 272 

maintain nitrification at a low SRT (Eckenfelder and Argaman 1991). 273 
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 274 

Fig. 2 – Impact of wastage flow rate adjustment on net energy import and sustainability 275 

indicator values; arrows represent direction of change resulting from increased wastage flow 276 

rate 277 

The CL2 control strategy is able to provide the greatest reduction in net energy and with 278 

significantly reduced operational costs and GHG emissions. However, there are trade-offs to 279 

consider, with reduced total nitrogen removal showing a move away from sustainability 280 

despite compliance being achieved.  281 

Within the range considered, no overall improvement in WWTP sustainability can be 282 

achieved by adjustment of wastage flow rate alone: in both control strategies, increased 283 

wastage flow rate corresponds with improvements in net energy, TSS removal and COD 284 

removal, but also increases sludge production and can be detrimental to nitrogen removal. 285 

The base case is already near-optimal with respect to nitrogen removal, and performance in 286 

this respect is worsened by adjustment of wastage flow rate to improve sustainability as 287 

indicated by net energy, operational costs, COD removal, TSS removal or GHG emissions. 288 



15 

However, improvements may be achieved with further adjustments to the WWTP operation, 289 

in particular by optimisation of the DO setpoint(s). 290 

3.2 Dissolved oxygen setpoint adjustment 291 

3.2.1 Sustainability indicators 292 

When wastage flow rates and DO setpoint(s) are adjusted simultaneously, a wide range of 293 

solutions are produced which provide a reduction in net energy with respect to the base case 294 

whilst maintaining a compliant effluent. The greatest energy reduction (73%) is achieved by 295 

implementing the CL2 control strategy with a 20% increase in wastage flow rate and DO 296 

setpoint in the final reactor reduced to 0.5 g O2 /m
3
 (maintaining a setpoint of 1 g O2 /m

3
 in 297 

reactors 3 and 4). This may be sufficient to achieve energy neutrality, but neutrality cannot be 298 

guaranteed given that the modelled net energy recovery (0.075 kWh/m
3
) is less than the 299 

upper bound of typical energy requirements reported by Metcalf and Eddy (2004) for the 300 

sources not included and BSM2G provides only a relatively simplistic estimate of energy use. 301 

Even if energy neutrality is achieved, this solution still results in a move away from 302 

environmental sustainability as represented by sludge production and nitrogen removal. 303 

A pair-wise comparison of sustainability indicators for all solutions which reduce net energy, 304 

provide a compliant effluent and are non-dominated based on the seven sustainability 305 

indicators considered (i.e. no one indicator value can be further improved without worsening 306 

another) is presented in Figure 3. It is important to notice that a reduction in net energy does 307 

not necessarily correspond with a reduction in GHG emissions. Indeed, the second lowest net 308 

energy solution results in a 1.7% increase in GHG emissions with respect to the base case. 309 

This increase may be inconsequential given modelling uncertainties and uncertainty in 310 

emissions data collected from real plants. However, a not insignificant proportion (10%) of 311 

solutions which provide a reduction in net energy also result in an increase in modelled GHG 312 
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emissions, showing that this is a potentially important issue of which awareness is important. 313 

This finding is supported by past observation that low DO setpoints lower energy 314 

consumption but yield higher GHG emissions due to increased N2O formation (Flores-Alsina 315 

et al. 2014), and is significant given that the general aim of the CRC, in which energy use is 316 

measured, is to reduce GHG emissions. This suggests that, perhaps, improving the energy 317 

balance is not a reliable methodology for emission reduction, and shows that it is important to 318 

consider the wider effects of energy reduction measures. 319 

 320 
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Fig. 3 – Pairwise comparison of sustainability indicators, for solutions with adjusted wastage 321 

flow rates and DO setpoints which better base case net energy use (compliant and non-322 

dominated solutions only) 323 

Figure 3 also shows that considering the effects of energy reduction measures on GHG 324 

emissions is particularly important if no loss of nitrogen removal capacity is to be accepted, 325 

since only 11% of solutions shown provide an improvement in both GHG emissions and 326 

nitrogen removal. Ensuring no increase in GHG emissions whilst maintaining required 327 

nitrogen removal is an important consideration due to the high global warming potential of 328 

N2O emitted during nitrification and denitrification. N2O emissions can be curbed to some 329 

extent by measures such as ensuring sufficient DO during nitrification (Kampschreur et al. 330 

2009), and it has been suggested that no compromise is required since plants achieving high 331 

levels of nitrogen removal typically emit less N2O (Law et al. 2012) – avoiding compromise 332 

may become more challenging if energy saving measures are required, however. 333 

Distinct trade-offs between sludge production and TSS removal, and sludge production and 334 

COD removal are shown in Figure 3. As may be expected, only marginal reduction in sludge 335 

production can be achieved if the COD and TSS removal indicators for sustainability are not 336 

to be worsened, again suggesting that trade-offs are likely to be required.  337 

A significant proportion of solutions providing a reduction in net energy also worsen 338 

environmental sustainability as indicated by the pollutant removal efficiencies. Initially it 339 

appears that the potential negative effects on COD and TSS removal are most significant, as 340 

the performance loss of the worst solutions with respect to the base case is more than double 341 

the performance gain of the best, whereas for total nitrogen removal, the maximum potential 342 

performance loss is approximately equal to the greatest potential gain. More detailed 343 

observation shows, however, that total nitrogen removal can be reduced from 80.5% (base 344 
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case) to 78.2% (corresponding to effluent 95 percentiles of 11.4 and 12.4 g N/m
3
 345 

respectively) by implementation of control strategies to reduce net energy, whereas COD and 346 

TSS removal remain above 99.95% in all solutions. Despite signifying a move away from 347 

sustainability, it may be that such a small reduction in COD and TSS removal with respect to 348 

the base case is an acceptable concession to achieve improvement in other indicators. Such 349 

decisions would be subjective, however, and for the purposes of this study no indicator 350 

weightings are applied and no one indicator is considered more important than any other. 351 

Finally, 89% of solutions which provide a reduction in net energy demonstrate improved 352 

economic sustainability, as represented by the OCI. Although solutions providing the greatest 353 

energy reduction are not those with the lowest operational costs, modifying WWTP control to 354 

improve the energy balance appears to have detrimental effects on economic sustainability 355 

only when the energy reduction is small. A strong correlation between net energy and OCI is 356 

expected as energy costs are a key component of the OCI, and solutions which result in an 357 

increased OCI correspond with those in which sludge production (another component of the 358 

OCI) is increased. 359 

3.2.2 Net energy and energy recovery 360 

It is shown in Figure 4 that increasing energy recovery is not necessary to reduce net energy – 361 

34% of solutions which better the base case net energy do so despite reduced energy 362 

recovery, due to a greater reduction in energy use for aeration. However, to achieve the 363 

greatest potential reduction in net energy, increased energy recovery is required. To enable 364 

further investigation into the effects of selecting reduced or increased energy recovery 365 

solutions on each component of sustainability, solutions which provide a reduction in net 366 

energy with a decrease in energy recovery are distinguished in Figure 3 from those in which 367 

energy recovery is increased. 368 
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 369 

Fig. 4 – Comparison of energy recovery and net energy for compliant solutions providing a 370 

reduction in net energy with respect to the base case 371 

All solutions in which a reduction in net energy is achieved without increasing energy 372 

recovery result in reduced nitrogen removal and/or reduced COD removal, both of which are 373 

considered a move away from sustainability. Simultaneous improvement of these two 374 

indicators is only achieved by solutions which provide increased energy recovery. 375 

Conversely, simultaneous improvement in nitrogen removal and sludge production is only 376 

achieved by solutions with reduced energy recovery, showing again that a universal move 377 

towards sustainability cannot be achieved within the range of simple control measures 378 

investigated. To provide greater sustainability, alternative control strategies and/or treatment 379 

technologies should be considered. Use of ammonium control, for example, can enhance 380 

nitrification during high load periods and save energy under low loads, and model predictive 381 

control can be advantageous when a plant is highly loaded and subject to stringent effluent 382 

fines (Stare et al. 2007). In such cases, however, it is important to also consider capital costs 383 
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associated with their implementation, as these may impact significantly on their 384 

sustainability. 385 

Solutions which provide an increase in energy recovery all correspond with an increase in 386 

sludge production (viewed here as undesirable with respect to sustainability). This confirms 387 

that research focussed solely on enhanced energy recovery from wastewater treatment may 388 

not necessarily be beneficial with respect to sustainability (as defined in this study), since it is 389 

necessary to consider the wider impacts. This is certainly not to suggest that increased energy 390 

recovery is always undesirable, however, as only a narrow range of control options were 391 

considered in this study, but it highlights the importance of considering the effects on 392 

sustainability when measures are taken to increase energy recovery. 393 

3.2.3 Identification and analysis of ‘best’ solutions 394 

The number of sustainability indicators improved by solutions in both the CL1 and CL2 395 

control strategies is shown in Figure 5. No options investigated here provide an improvement 396 

in all seven indicators, and more than 70% result in a move away from sustainability as 397 

measured by two or more indicators. Further improvements may be achievable with 398 

implementation of alternative or additional control strategies. However, it is widely 399 

recognised that trade-offs occur in sustainability assessment (e.g. Morrison-Saunders and 400 

Pope 2013) and these must be considered in selection of the ‘best’ solutions. 401 
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 402 

Fig. 5 – Number of sustainability indicators bettered with respect to base case for solutions 403 

providing a reduction in net energy whilst retaining a compliant effluent quality 404 

The CL1 control strategy appears to perform best with respect to the number of sustainability 405 

indicators bettered, although this could be biased by the sampling strategy. In total, seven 406 

solutions are identified which better six of the seven sustainability indicators, including net 407 

energy. These could be viewed as preferable if the sustainability impacts of modifying 408 

WWTP control to improve the energy balance are to be minimised, but in reality selection of 409 

preferable solutions will be more complex: small deterioration in two sustainability indicators 410 

may be preferable to significant deterioration in one, but such decisions would have to be 411 

made on a case-by-case basis, taking into account local considerations. Given that no 412 

weightings are applied to sustainability indicators in this study and without further 413 

information it is not possible to prioritise improvements, however, this section of the research 414 

focusses on solutions providing improvement in the greatest number of indicators, 415 

irrespective of the magnitude of each improvement or deterioration. 416 

Control details of the seven solutions which demonstrate a move towards sustainability in 417 

terms of six indicators (subject to achieving effluent quality compliance but regardless of 418 

sustainability credentials) and, for comparison, the base case and the lowest net energy 419 
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solution are given in Table 3. Sustainability indicators for these solutions are shown in Figure 420 

6, with indicator values normalised with respect to the range observed across all solutions 421 

providing reduced net energy. Smaller values than those of the base case, i.e. those inside the 422 

dashed line, represent a move towards sustainability based on specific corresponding 423 

indicator. 424 

Table 3 – Control parameters for base case, lowest energy solution and solutions which 425 

better six sustainability indicators with respect to the base case 426 

Solution Base 

case 

CL1-1 CL1-2 CL1-3 CL1-4 CL2-1 CL2-2 CL2-3 Min net energy 

solution 

Control strategy CL1 CL1 CL1 CL1 CL1 CL2 CL2 CL2 CL2 

Wastage flow rate 

adjustment factor 

1.00 1.15 1.10 1.05 1.00 1.20 1.00 1.00 1.20 

Mean SRT (days) 16.35 14.28 14.92 15.61 16.37 13.71 16.36 16.36 13.71 

Reactor 3 DO 

setpoint (g O2/m
3
) 

- - - - - 0.5 0.5 1.5 1.0 

Reactor 4 DO 

setpoint (g O2/m
3
) 

2.0 1.5 1.5 1.5 1.5 2.0 2.0 1.0 1.0 

Reactor 5 DO 

setpoint (g O2/m
3
) 

- - - - - 0.5 0.5 1.0 0.5 

 427 
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 428 

Fig. 6 – Sustainability indicator values for lowest net energy solution and solutions 429 

demonstrating move towards sustainability in six indicators. Values nearer the centre of the 430 

plot are preferable, and dashed line represents the base case. 431 

Figure 6 demonstrates the importance of assessing impacts of control adjustments with 432 

respect to different aspects and multiple components of sustainability as it shows that, 433 

although each solution provides a reduction in net energy, the sustainability impacts are quite 434 

different. For example, it is possible that only sludge production is worsened, only COD 435 

removal worsened, or only nitrogen removal worsened, depending on the choice of solution. 436 

There are also further trade-offs to consider, with the solutions providing the greatest 437 

reduction in net energy also showing the largest impact on the one sustainability indicator 438 

worsened: solution CL1-1 provides a 52% reduction in net energy but increases sludge 439 

production by 1.5%, whereas CL1-3 only reduces net energy by 36% but the increase in 440 

sludge production drops to 0.5%. 441 
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Although minimisation of sludge production is generally considered to correspond with 442 

improved sustainability (e.g. Molinos-Senante et al. 2014, Roeleveld et al. 1997), the 443 

magnitude of impact of sludge production on sustainability is dependent on the chosen means 444 

of disposal. Application to land, for example, might be considered to offset the WWTP’s 445 

embodied energy as it reduces the need to use fossil fuel-based fertilisers (Mo and Zhang 446 

2012). As such, further information is required to determine the true extent of the negative 447 

sustainability impacts of solutions CL1-1, CL1-2, CL1-3 and CL2-1; if the sludge disposal 448 

method is chosen wisely then these solutions could be more desirable than appears based on 449 

the relatively large increases in sludge production shown in Figure 6. In reality, the scale and 450 

direction of environmental impacts resulting from increased sludge production will be 451 

dependent on the chosen means of disposal. 452 

Diagrams such as in Figure 6 can be very useful for visualisation the trade-offs required 453 

under each solution and can aid selection of a preferable solution for implementation, based 454 

on the context-specific priorities and preferences. It can be seen, for example that, although 455 

the first seven solutions all provide an improvement in six sustainability indicators, the 456 

magnitude of improvement in each varies considerably, as does the deterioration in the final 457 

indicator. Without considering sustainability impacts, it is possible that the minimum net 458 

energy solution would be implemented; however, despite providing a significant move 459 

towards sustainability in terms of six indicators, performance with respect to nitrogen 460 

removal and sludge production is among the worst of the solutions shown. The best solution 461 

may appear to be CL1-4, since only worsens one sustainability indicator (COD not removed) 462 

and the impact is negligible (0.1% change). 463 
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4 CONCLUSIONS 464 

This research has explored the impacts of adjusting WWTP control to improve the energy 465 

balance on a range of sustainability indicators, by implementing a range of wastage flow rates 466 

and DO setpoints in two different control strategies. Based on analysis of the solutions 467 

generated which provide a compliant effluent with a reduction in net energy, the following 468 

conclusions are drawn: 469 

 Implementing changes to WWTP control to reduce net energy use can be detrimental 470 

to sustainability. The energy balance of WWTPs may be improved by increasing 471 

sludge wastage flow rate alone, but this may result in a move away from 472 

environmental sustainability due to reduced nitrogen removal if additional changes to 473 

the aeration are not also made. 474 

 Increased energy recovery does not necessarily correspond with a move towards 475 

sustainability, particularly in terms of environmental sustainability as represented by 476 

sludge production. Reduction in net energy can also be achieved by solutions in which 477 

energy recovery is decreased, but this results in different sustainability indicator trade-478 

offs. 479 

 Simultaneous improvement of both DO control and wastage flow rate selection can 480 

provide substantial energy savings, increase economic sustainability and enhance 481 

multiple indicators of environmental sustainability. However, it is particularly 482 

important that the impacts on sludge production and nitrogen removal are considered, 483 

as the lowest energy solutions developed are shown to be detrimental to these. 484 

 Trade-offs between sustainability indicators have been identified and it is important 485 

that these are considered in future adjustment to WWTPs to achieve reduced energy 486 

use and carbon neutrality: reducing energy use does not guarantee an increase in 487 
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sustainability. It is also important that a sufficiently large range of indicators is used 488 

to capture trade-offs present within the environmental component of sustainability 489 

since no solutions were found to provide a move towards sustainability with respect to 490 

every indicator.    491 

 Improving the energy balance is not a reliable means of achieving a reduction in total 492 

GHG emissions. Although a reduction in net energy was typically found in this study 493 

to correspond with reduced GHG emissions when energy recovery was also increased, 494 

solutions were also identified in which a significant reduction in net energy was 495 

achieved but at the expense of increased GHG emissions. 496 

It is hoped that these findings will reinforce the need to consider the wider impacts of any 497 

WWTP control adjustments made with the aim of reducing energy use and/or increasing 498 

energy recovery, and in particular draw attention to potential unintended consequences of 499 

schemes such as the CRC. 500 
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