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ABSTRACT 

We present preliminary results of the characterization of the optical response of Ge2Sb2Te5 (GST) 

thin-films integrated with Si3N4 nanophotonic circuits at telecom wavelengths. Transmission 

measurements are carried out GST thin-films of varying width deposited on top of ring resonators. 

The nanophotonics circuits are fabricated and optimized in order to find the best response when GST 

is placed atop the waveguiding layer. Our results for the absorption/transmission properties at 

different phase states of GST thin-films paves the way towards a all-photonic non-volatile memories. 
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1. INTRODUCTION 

The properties of phase change materials capable of switching from the amorphous to crystalline state 

in a matter of picoseconds [1-3], and the ability to retain such states for very long periods of time [4,5] 

have created significant interest in the recent years. Ge2Sb2Te5 (GST) is a common phase change 

material, and its use in phase change memories (PCMs) has been a subject of intense research. PCMs 

promise to bridge the gap between fast switching but short term on-chip memories and long-term but 

slow storage systems such as solid-state systems and hard-drives [4, 6,7].  

The demonstrated scalability of GST down to 6nm thin films [5,8] and the strong contrast between the 

optical properties of this material in the amorphous and crystalline state [9], together with Si-based 

devices could allow the creation of fully functional photonic non-volatile memories [10]. In particular, 

silicon nitride-on-insulator is emerging as a promising material platform to fabricate such 

nanophotonic components because of its broad band transparency window, covering telecom and 

visible wavelengths [11,12].  

In this work, we present a fabrication process for photonic circuits based on the architecture proposed 

in [10], which compromises a microring resonator as substrate for the GST layer coupled to a 

nanophotonic waveguide. We present preliminary experimental results of the characterization for 

devices employing the amorphous state of the phase change material and simulation results of the 

actual geometry used in the process. 

 

2. SIMULATIONS 

The modal profiles of the GST covered waveguide cross-section illustrated in Fig. 1a are calculated 

using a Finite Element Method (FEM). Our device consists of a waveguide covered with a 10nm GST 

layer.  A second 10nm thick layer of indium tin oxide (ITO) is also included as needed for capping the 

GST after the deposition process in order to avoid oxidation. The rectangular waveguide is designed 

to be half-etched into a 330nm silicon nitride-on-insulator substrate. 
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During the simulations the width and the wavelength were swept in order to find optimal parameters, 

where the contrast between absorption coefficient α in the amorphous and the crystalline states of 

GST were significantly high, and, at the same time, where the waveguide supports only monomode 

operation. The results in Fig. 1d suggest that the waveguide width does not have a strong effect on the 

contrast between the two states for a wavelength =1.57 µm. Nevertheless, we have found that for a 

width larger than 1.4µm a second order mode can be exited for reasonable transmission. Therefore, we 

have fixed our waveguide width to 1.3µm and calculated the wavelength dependence in the range 

were the experimental measurements were carried out; the results are illustrated in Fig. 1e.  
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Fig. 1: (a)Waveguide geometry and materials used in the FEM simulation. (b) Calculated TEo modal 

profile when the GST is in the amorphous state and (c) when it is in the crystalline state. (d) 

Absorption coefficient against width of the waveguide for a wavelength of =1.57µm. (e) Absorption 

coefficient dependence on the wavelength for a width of 1.3 µm. 

 

3. FABRICATION 

In order to measure the absorption coefficient of the GST on top of the waveguides, we have used an 

architecture that compromises a microring-like (race track) resonator coupled to a nanophotonic 

waveguide (Fig. 2a). The fabrication process of these devices consists of the two main procedures 

described below. 

Nanophotonic circuit fabrication 

The fabrication of the waveguides and the microrings from silicon nitride-on-insulator substrates 
requires two e-beam lithography steps. First, alignment markers, which will be used for proper 

positioning of the subsequent e-beam expositions, are defined using a positive tone resist. After 
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developing the resist (in our case PMMA) a metal layer consisting of 5nm of Cr and 100nm of Au is 

evaporated on top of the sample. Subsequently, the PMMA is lifted off and the markers remain.  

In a second exposure using the alignment markers for positioning, the pattern of the nanophotonic 

waveguides is written in ma-N 2403 negative tone resist and then developed. Later, dry reactive ion 

etching in CHF3/O2 chemistry is applied to etch down half of the Si3N4 thickness. Afterwards the 

exposed ma-N is removed to reveal the devices illustrated in Fig.2a. 

The patterns of the nanophotonic circuits include two Bragg gratings separated by a distance of 250 

µm  (Fig 2b), used to couple light at a specific wavelength coming from a tunable laser source into the 

waveguides and to couple out the transmitted light  at a second port [11]. Parameters like the gap 

between the waveguide and the race track, the width of the first and the radius of the latter were varied 

throughout the full chip. 

    

 

 

 

 

 

 

 

 

Fig. 2: Left: Optical micrograph of half-etched Si3N4 waveguides and microring resonators. The 

grating couplers were designed for five different wavelengths in the range 1.5-1.6µm and for five 

different (after) GST widths. Right: SEM image of a grating coupler designed for a wavelength of 

1.52 µm 

GST deposition 

Once the nanophotonic circuits were fabricated, they are characterized optically in order to obtain the 

reference values for the resonances. When this is done, a further e-beam lithography step is required to 

write the masks where GST is going to be deposited. Using PMMA once again and the alignment 

markers as reference, rectangular patterns of 0.5, 1, 5, 10 and 20µm wide and 80 µm long are written 

on top of the free straight portions of the race tracks (Fig. 3d). After the development of the PMMA, 

10nm of Ge2Sb2Te5 was sputtered onto the sample followed by deposition of 10nm of ITO to avoid 

oxidation of the phase-change material. 

With an average RMS surface roughness of 2.4 nm, AFM and SEM pictures of the GST layer for the 

five different widths are illustrated in Fig. 3. Only when the width is short, i.e., 0.5 or 1 µm, a 

curvature on top of the GST/ITO layer can be noticed as shown in Fig. 3a. The spikes on both sides 

are due to the lack of directionality in the sputtering process which results in the GST depositing on 

the PMMA sidewalls. The presence of the spikes was confirmed with SEM pictures as shown in Fig. 

3e. 
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Fig. 3: AFM profile for the GST layers with width of (a) 0.5 µm and (b) 5 µm. (c) From top to 

bottom: 3D AFM images for GST widths of 0.5, 5, and 20µm. (d) SEM image: border of the 5 µm 

GST layer. (e) Device with GST on top at the end of all the fabrication process. 

4. MEASUREMENTS AND RESULTS 

Using a customized measurement setup including and optical fiber array, a telecom wavelength laser 

operating in the range 1.5-1.62µm and a power meter are connected to the nanophotonic circuit 

through the on-chip Bragg gratings. In the array the fibres are separated by 250µm, which corresponds 

to the separation of the two grating couplers within one device.  The sample and the fibres are located 

on a computer controlled three-axis piezostage with sub 100nm alignment precision. Once the sample 

is placed on the stage, the position of the fibres is fixed to the point of highest transmission of the 

waveguides, measured with the powermeter. 

Here we investigate four different kinds of devices with parameters given in Table 1. For each of the 

parameters, there were a total of five devices of type 1 and four of types 2, 3 and 4 each. The 

transmission and the average quality factor (Q) of these devices were measured before the GST 

deposition. Next, GST was deposited selectively on one part of the ring waveguides on all devices 

(shown in Fig. 3e) which remained in the amorphous state during all measurements. Different widths 

of: 0.5, 1, 5 and 10 µm; and also 20 µm in the case of the devices 1 were chosen for the GST strip. 

Subsequently, the transmission was measured once again.  

Devices Radius (µm) Gap (µm) Wavelength (µm) Width (µm) Q-factor  

1 70 1.5 1,58 1.3 45000 

2 100 1.0 1,58 1.3 10000 

3 100 1.0 1,60 1.3 8000 

4 100 1.3 1,58 1.3 25000 

Table 1. Parameters for the four different devices used in the experimental measurements and the 

average Q-factor of the devices without GST. Width refers to the waveguide width. 
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A set of experimental measured peaks for the devices with and without GST at different widths are 

shown in Fig. 4a. We have determined the average wavelength shift for each resonance peak in the 

transmission spectrum with GST, with respect to the same device without GST. The results are 

presented in Fig. 4b where it can be seen that the set of devices 1 presents the highest shift as expected 

because in this case the radius is smaller and the gap bigger than for the other devices. A linear 

behaviour can be observed after 1 µm width for each set of devices (the device with 5 µm of GST in 

set 1 was damaged). 

Then the Q-factor was measured for every single resonance peak using a Lorentz fit to the 

experimental data and then, with this information the absorption coefficient αdB=10∙log10e∙2πng/λQ 

was calculated [13]. The absorption coefficient of the GST was computed by substracting the 

absorption coefficient obtained from the resonance peaks with GST from the coefficient obtained 

without GST. In Fig. 4c is illustrated the dependence of αdB with the wavelength in a small range were 

the maximum transmission for the waveguide is obtained. Next, an average over all the αdB on one 

device was done for each GST width. The results are plotted in Fig. 4d.  In spite of the different 

parameters used, the values for αdB show a common general non-linear behaviour. 
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Fig. 4: (a) Transmission spectrum of devices 1 with their respective resonance peaks for different 

GST width.  (b) Average of the wavelength shift due to the GST coverage for every device. (c) 

Absorption coefficient as a function of the wavelength for the devices 1 and (d) Absorption coefficient 

as a function of the GST width for every device. 
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4. CONCLUSION 

The use of nanophotonic waveguides coupled to microring resonators allows for measuring the 

relevant optical properties of the GST, such as the absorption coefficient by following the evolution of 

the Q factor of the resonances. In particular, we have found that race tracks with the parameters 

described above for the devices 1 are the most suitable in order to obtain high Q-factors and therefore, 

easier and more accurate experimental measurements of the difference between resonators with and 

without GST in the amorphous state. New experiments involving more devices must be realized in 

order to obtain accurately the absorption coefficient as a function of the wavelength.  
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