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Abstract  Models of adaptive behaviour typically assume that animals behave as though they have highly complex, detailed 

strategies for making decisions. In reality, selection favours the optimal balance between the costs and benefits of complexity. 

Here we investigate this trade-off for an animal that has to decide whether or not to forage for food – and so how much energy 

reserves to store – depending on the food availability in its environment. We evolve a decision rule that controls the target reserve 

level for different ranges of food availability, but where increasing complexity is costly in that metabolic rate increases with the 

sensitivity of the rule. The evolved rule tends to be much less complex than the optimal strategy but performs almost as well, 

while being less costly to implement. It achieves this by being highly sensitive to changing food availability at low food abun-

dance – where it provides a close fit to the optimal strategy – but insensitive when food is plentiful. When food availability is 

high, the target reserve level that evolves is much higher than under the optimal strategy, which has implications for our under-

standing of obesity. Our work highlights the important principle of generalisability of simple decision-making mechanisms, 

which enables animals to respond reasonably well to conditions not directly experienced by themselves or their ancestors [Cur-
rent Zoology 61 (2): 303–312, 2015]. 
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Evolutionary models of animal behaviour have typi-
cally assumed that behavioural strategies can be highly 
flexible and detailed (McNamara and Houston, 2009). 
For example, in models of state-dependent behaviour, 
the optimal strategy found by dynamic programming 
takes the form of a large look-up table, which specifies 
what the animal should do for all values of the state 
variables (Houston and McNamara, 1999). Such appro-
aches therefore implicitly assume that the animal has 
sufficient flexibility to respond optimally to every possi-
ble set of environmental parameters and internal states 
(Houston and McNamara, 1999). However, it is impor-
tant to note that dynamic programming is a computa-
tional tool for finding the optimal strategy, not a repre-
sentation of the process by which animals make deci-
sions (McNamara and Houston, 2009). Such an optimal 
strategy identifies the upper limit on performance, but 
ignores any potential costs of the decision-making me-
chanism. The high precision implied by dynamic-pro-
gramming solutions would surely be costly if imple-
mented by real organisms, in terms of the required sen-
sory apparatus or cognitive processing (DeWitt et al., 
1998). Therefore, the strategies used by real animals are 
likely to be much less precise. 

Furthermore, the complex solutions found by dyna-
mic programming are specific to the chosen parameter 
values and therefore to a certain set of environmental 
conditions; they do not reveal what the animal should 
do if conditions change (McNamara and Houston, 2009). 
To allow flexibility across conditions it is possible to 
calculate a dynamic-programming solution for each set 
of conditions; but these solutions are independent, in 
that there is no generalisation across similar sets of con-
ditions. From an adaptive perspective, this lack of ge-
neralisation seems inefficient. Instead, animals are like-
ly to have evolved simple mechanisms that are less co-
gnitively demanding but still perform reasonably most 
of the time, across a broad range of conditions. Such 
simple and inexpensive rules (‘rules of thumb’) could 
allow animals to generalise across similar conditions, 
with the cost that performance is not exactly optimal 
under any conditions. Progress in behavioural research 
depends on understanding how natural selection bal-
ances the costs and benefits of complexity in decision-   
making rules. 

One area in which animal decision-making has been 
particularly well studied is how animals decide when to 
eat and how much energy to store in their body (Brodin, 
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2007). Theory predicts that animals should use energe-
tic reserves in order to trade off the risks of two sources 
of mortality: starvation and predation (Lima 1986; 
McNamara, 1990; McNamara and Houston, 1990; 
Houston and McNamara 1993). This prediction is con-
sistent with how food availability and predation risk co-   
vary with patterns of fat storage in a range of animals 
(Gosler et al., 1995; Krams et al., 2010; Meijer et al., 
1994). In principle, animals could have an optimal rule 
that precisely specifies when to eat for every possible 
level of food availability. However, such a complex rule 
is likely to be costly to implement. Simpler rules that 
are less sensitive to changes in food availability may do 
sufficiently well without incurring high costs. Work is 
required to elucidate how such simple rules may have 
been designed by natural selection. 

Here, we investigate what kinds of foraging rules are 
favoured by natural selection when the flexibility of the 
optimal solution is not cost-free, such that costs con-
strain the evolution of the foraging rule and its resulting 
behaviour. We evolve a decision rule under varying de-
grees of cost and compare the outcome to the optimal 
strategy found by dynamic programming (Houston and 
McNamara, 1999; Clark and Mangel, 2000). Our aim is 
to highlight some general principles about mechanistic 
constraints on decision-making, but as an illustrative 
case we focus on the overwinter survival of a small bird 
that has to decide whether to forage or rest. If there is 
no day/night cycle, the optimal strategy is a threshold 
value of energetic reserves above which the animal rests 
and below which it forages. The example of foraging or 
resting to maximise overwinter survival is used for illu-
strative purposes because it is the simplest case of 
energy management we can consider. We assume static 
conditions (cf. fluctuating conditions, e.g. Higginson et 
al., 2012), no energetic cost to reserves (cf. linear or 
accelerating costs, e.g. Lima, 1986; McNamara and 
Houston, 1990; Witter and Cuthill, 1993), all-or-none 
foraging (cf. a continuum of foraging intensity, e.g. 
Houston et al., 1993), no reproductive attempts (cf. one 
or more reproductive attempts, e.g. McNamara et al., 
1991) and no competition with conspecifics (cf. dy-
namic game models, e.g. Houston and McNamara 1988). 
This problem has been studied extensively from an op-
timality perspective and is well understood (e.g. Brodin, 
2007). Furthermore, the survival circuit concept (Le-
Doux, 2012) implies that the problem of finding food 
can be meaningfully studied in isolation. 

We find that a decision rule subject to a cost of flexi-
bility may evolve to be fairly crude, but by virtue of its 

simplicity it incurs only a small cost. By generalising 
across similar sets of conditions the evolved rule per-
forms reasonably well in comparison to the optimal 
strategy, suffering only a small reduction in survival 
unless conditions are very challenging. Furthermore, 
when food is abundant the evolved decision rule causes 
the animal to store far more fat than would be optimal, 
which has implications for our understanding of obesity 
in humans. We discuss the insights from this approach 
for the future development of models of behaviour 
based on decision-making mechanisms that animals 
may actually utilise.  

1  Materials and Methods 

1.1  The model 
We describe the individual-based model following 

the ODD standard protocol (Grimm et al., 2006). 
1.2  Purpose 

The purpose of the model is to assess the effect of 
including costs in the design of a mechanism controlling 
energy storage in response to food availability, and 
comparing a simpler mechanism to the fully flexible 
optimal strategy. Specifically, we are interested in the 
relationship between the probability of finding a food 
item in each time step spent foraging, γ, and the thre-
shold level of reserves below which the animal forages 
and above which it rests. 
1.3  State variables and scales 

Each individual has a level of energetic reserves, x, 
where x = 0, 1, 2, ... xmax, and this can change within its 
lifetime. Each individual has a set of 20 genetic traits 
(hereafter ‘genes’) that each control the threshold x* 
over a particular range of γ: gene 1 controls behaviour 
for 0.25 ≤ γ < 0.275, gene 2 controls behaviour for 
0.275 ≤ γ < 0.3, and so on. Each of these genes can spe-
cify any value of x* between 0 and xmax; thus the result-
ing relationship between x* and γ can be non-linear and 
non-monotonic. Note that we use the term ‘genes’ as a 
clear way to describe how the rule is stored; we are not 
suggesting that this is how the strategy is coded in real 
animals. During the course of evolution, we allow the 
genes to change value and become active or inactive. If 
a gene is inactive, the individual is assumed to be insen-
sitive to variation in γ at that point; thus it adopts the 
same forage/rest threshold as for the first active gene 
immediately below it. (The reverse case, where the 
threshold for an inactive gene takes same value as the 
first active gene immediately above it, gives the same 
results). We do not allow the first gene (or equivalently, 
in the reverse case, the last gene) to be switched off.  
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Each individual in each generation has a given proba-
bility of finding food in each time step, γ. The value of γ 
is drawn independently at the start of each generation 
and determines the food availability experienced by all 
members of the population in that generation. γ is a 
uniform random variable with minimum γmin and maxi-
mum γmax. We assume that γ is constant during an indi-
vidual’s lifetime and that individuals are sensitive to the 
value of γ, adopting the optimal forage/rest decision 
corresponding to that level of food availability. Howe-
ver, γ has been variable during evolutionary history, so 
individuals have the capacity to respond appropriately 
to other values of γ (which their descendants may sub-
sequently encounter). Such a scenario may occur in 
annual species where the value of γ fluctuates randomly 
from year to year (for a related problem, see Collins et 
al., 2006). 
1.3  Process overview and scheduling 

The model has two nested loops. Each individual has 
a lifespan of 2,000 time steps. After all individuals have 
either died or survived for 2000 time steps, the next 
generation is created. The animal uses c units of energy 
in metabolism every time step, and if its reserves reach 
zero the animal is assumed to have died of starvation. If 
the animal forages in a given time step, with probability 
γ it finds a food item that contains r units of energy. If 
foraging, there is a risk of mortality from predation that 
depends on energetic reserves. Individuals decide to 
forage or rest depending on their current reserves and 
the food availability γ, according to the decision rule 
specified by their genotype.  
1.4  Design concepts 

Emergence. An individual’s strategy is encoded by 
their set of genes, whose values are completely free to 
evolve. The only constraint placed on the strategy is that 
we assume a cost: the incurred cost of flexibility is 
proportional to the total number of genes that are active 
(g), such that the total metabolic cost paid by individual 

i per time step is i
i

g
p c

G
   , where G is the total 

number of genes and κ is the cost of maximum flexibil-
ity (i.e. if all genes are active). Therefore, the number of 
active genes is a proxy for flexibility. 

Sensing. All individuals are assumed to have perfect 
knowledge of the values of the ecological variables (e.g. 
γ) and their current level of energetic reserves (x).  

Interactions. The 2000 individuals do not interact 
with each other, either directly or indirectly (e.g. by 
consuming food). 

Stochasticity. Finding food is a stochastic process. A 

food item is found in a given time step with probability 
γ if the individual chooses to forage.  

Adaptation. Over generations, the strategy encoded 
by the genes in the population leads to higher survival.  

Fitness. Each generation lasts for 2000 time steps. 
For each individual, we record the time step at which 
they die (of starvation or predation), or if they survive 
for the full 2000 time steps. 
1.5  Initialisation 

In the first generation, we initialise genetic values in 
one of two ways. In some runs all individuals have only 
one active gene, with value xmax/2. In other runs all 
genes are active and set to the optimal values found by 
dynamic programming. Each generation all individuals 
are initialised (at time t = 0) with reserve level x = 50.  
1.6  Input  

Other aspects of the environment are constant across 
all our analyses: maximum reserves (xmax = 200), size of 
food items (r = 4), intensity of predation (a = 0.001) and 
the baseline metabolic energy usage (c = 1). 
1.7  Submodels 

Predation. For individual i with current reserves xi, 
the probability of being killed by a predator while fo-
raging, μi, is 

 
max

1 i
i

x
a

x


 
  

 
              (1) 

where a is a parameter reflecting the intensity of preda-
tion. Equation (1) reflects our assumption that heavier 
animals (larger x) are more vulnerable to predation 
while foraging (Lee et al., 1996; Witter et al., 1994). 
This seems reasonable for most birds and could easily 
be modified to reflect different patterns of mass-depen-
dent predation in other taxa (e.g. fish). We assume that 
while resting the animal is safe from predators.  

Energy. If the animal is not killed by a predator, its 
reserves change from one time step t to the next ac-
cording to 

 ( 1) ( )  i
i i

g
x t x t c r

G
             (3a) 

if it forages and finds food, and 

 ( 1) ( ) i
i i

g
x t x t c

G
              (3b) 

otherwise, subject to max0 ix x  . Note that there is no 

additional energetic cost of reserves or foraging activity.  
Reproduction. We evolve the genetic values X1, 

X2, …, X20 by standard methods of asexual reproduction 
with mutation, assuming non-overlapping generations 
(Hamblin 2013). For each individual in the next genera-
tion we randomly select two potential parents (with re-
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placement); of these two candidates, the one that sur-
vived the longest produces the offspring (or if the lifes-
pans were equal, a parent was chosen at random). This 
is repeated until all 2000 offspring have been created. 
Each offspring inherits the 20 genes of its parent, with 
the possibility of mutation. With a fixed probability mx 
per gene per generation, the genetic value Xj for gene j 
(j = 1, 2, …, 20) increases or decreases (with equal 
probability) by one unit, subject to 0 ≤ Xj ≤ xmax. With a 
further fixed probability mg each gene may become in-
active if it is currently active, or active if it is currently 
inactive. For a gene j that switches to being active, the 
corresponding foraging threshold Xj initially takes the 
same value as the first active gene below it and thus the 
strategy initially remains insensitive to changes in food 
availability over the range influenced by the gene, until 
a mutation occurs that changes Xj. We iterated this 
process for one million generations, by which time the 
populations tended to be almost monomorphic in the 
number of active genes (g) and the values of most 
genes.  
1.8  Optimal strategy  

In finding the optimal strategy we consider an inde-
finite series of discrete time steps and assume that the 
animal is adapted to minimise the long-term sum of two 
sources of mortality: starvation and predation. The op-
timal strategy is a series of look-up tables, one for each 
possible value of γ, that tell the animal whether to fo-
rage or rest given its current reserves x. For comparison 
to the evolved mechanism (i.e. the genetically encoded 
strategy, explained above) we find the optimal decision 
(forage or rest) at integer values of reserves x (0 ≤ x ≤ 
xmax) for 21 evenly spaced values of γ between 0.25 and 
0.75 (i.e. 0.25, 0.275, …, 0.725, 0.75), using standard 
dynamic-programming methods (Clark and Mangel, 
2000; Houston and McNamara, 1999). The individual’s 
reserves change from one time step t to the next ac-
cording to 

 ( 1) ( )  i ix t x t c r           (2a) 

if it forages and finds food, and 

 ( 1) ( )i ix t x t c              (2b) 

otherwise, subject to max0 ix x  . This process gives 

a threshold value of reserves for each γ, x*(γ), below 
which the animal forages and above which it rests (cf. 
Houston and McNamara 1993). 
1.9  Simulation experiments 

To assess the performance of the evolved rule (after 
one million generations) we simulated a population of 
2,000 individuals following that rule and tracked their 

survival for 2,000 time steps. We initialised all individ-
uals with reserve level x = 50. Simulations ran for each 
of 21 values of γ evenly spaced between γmin and γmax. 
We assessed how the cost of flexibility affects survival 
by simulating four alternative scenarios using different 
cost functions: 

(a) Cost of evolved flexibility. A metabolic cost is 
paid for every gene that is active under the evolved stra-

tegy, whereas inactive genes are cost-free ( ip   

ig
c

G
 ). 

(b) Cost of full flexibility. A metabolic cost is paid for 
every gene regardless of whether it is active or inactive, 
i.e. individuals pay a cost equivalent to having all 20 

genes active (pi = c + ). 
(c) Cost of unconstrained flexibility. A metabolic cost 

is paid for each gene that would be active if the strategy 
were not subject to any costs during its evolution. Pre-
liminary analysis showed that under cost-free conditions 
the strategy has on average 12 genes active, so we take 

this cost to be
12

20ip c   . 

(d) Cost-free flexibility. No metabolic cost is paid for 
active or inactive genes, i.e. flexibility is cost-free (pi = 
c). 

For each of these scenarios we ran 10 replicate si-
mulations. For each replicate we recorded the number 
of survivors after 2,000 time steps, and used this to in-
vestigate the effects of κ, γ, the cost of the inaccuracy of 
the evolved rule, and the cost of flexibility that is ac-
tually paid by comparing the above scenarios to one 
another and to the optimal strategy found by dynamic 
programming. A summary of the simulations we ran is 
shown in Table 1.  

2  Results 

The number of genes and their values converged 
across the replicate simulations, and populations were 
generally as close to monomorphic in their decision 
rules as the mutation–selection balance allowed. There-
fore we present in each case the mean rule used by each 
population. This represents the mean values of Xj when 
switched on in >99% of the population. Whether we 
initialised the population with a single active gene or 
with 20 active genes at their optimal values, or whether 
the genes affected values of γ above or below them, had 
no significant impact on the number of active genes that 
evolved (Fig. 1) nor the values of those genes. 

When there was no cost of active genes (κ = 0) the 
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evolved rule still had an average of eight inactive genes. 
This occurred because the 12 active genes approximate 

the optimal strategy reasonably closely (Fig. 2A) and 
there is very little selective pressure on the inactive  

 

Table 1  Summary of the strategy-finding procedure and simulations  

Level Number of values or replicates Values 

Cost of flexibility 13 0.0, 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.2, 0.3, 0.5. 

Strategy replicates 10 - 

Food availability γ  21 0.25, 0.275, … 0.725, 0.75 

Simulated flexibility cost 4 
Cost paid for: zero genes (cost-free flexibility), 12 genes (unconstrained flexibili-
ty), 20 genes (full flexibility) or gi genes (evolved flexibility) 

Simulation replicates 10 -  

Total simulations 109, 200  

Each level is part of a hierarchy such that we ran a total of 109, 200 simulations of evolved populations. 
 

 
 

Fig. 1  Mean (± 1 SD) number of active genes as a function of the cost of flexibility κ  
The bars are shaded according to whether the algorithm was initialised with just one active gene (white and dark grey bars) or with all 20 active 
genes of the optimal strategy (light grey and black bars) and whether the threshold for inactive genes matched that of the first active gene above it 
(dark grey and black bars) or below it (white and light grey bars). 

 

 

Fig. 2  Optimal strategy (red line) and the mean (black line)
± SD (grey shading) evolved rule from 10 replicate simulations
specifying the foraging threshold x* in relation to the envi-
ronmental food availability γ, under (A) zero cost (κ = 0), (B)
small cost (κ = 0.05) and (C) high cost (κ = 0.5) of flexibility 
The evolved rule approximates the optimal strategy, but the inaccuracy
increases as the cost of flexibility increases. When κ = 0 only 12–14 genes
remain active but the rule is close to optimal. When κ = 0.05 four of five
genes give a decent match but the rule results in insufficient reserves at
low γ and excess reserves at intermediate to high γ. This effect is even stron-
ger when κ = 0.5 and only one or two genes are used, and the reserves are
maintained at more than five times the optimal level when γ is high. 
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genes, because their loss by mutation has a negligible 
impact on survival (whereas their reactivation is initial-
ly selectively neutral; see Methods). However, popula-
tions did vary in which genes were active (Fig. 3A), 
because similar rules can be achieved in many different 
ways when the majority of genes are active. As ex-
pected, an increase in the cost of flexibility, κ, causes a 
decrease in the number of active genes (Fig. 1). 

The average evolved rule when κ = 0.05 shows clear 
deviations from the optimal strategy (Fig. 2B), because 
individuals have on average only four active genes (Fig. 
1), mostly concentrated where food availability γ is low 
(Fig. 3B). The active genes have values close to the 
optimal strategy, which therefore means that at higher 
values of γ the animal attempts to carry more reserves 
than is optimal. When κ = 0.5 this tendency is even 
clearer: the evolved rule has just one or two active 
genes (Fig. 3C) and the animal attempts to carry re-
serves fivefold larger than is optimal at high γ (Fig. 2C). 

We assessed survivorship for the evolved strategy 
under the four implementations of the incurred cost of 
flexibility p (see above). Survival decreases with κ at an 
accelerating rate if the cost of full flexibility (equivalent 
to 20 active genes) or unconstrained flexibility (equiva-
lent to 12 active genes) is paid; when κ = 0.1 around 
80% of individuals die within 2,000 time steps when γ = 
0.3 (Fig. 4A). By contrast, when individuals only pay a 

cost for their evolved level of flexibility, their survivor-
ship is almost as high as when flexibility is cost-free. 
These patterns are similar at higher values of γ, when 
more individuals survive (Fig. 4B, C). The cost-free and 
evolved flexibility conditions are almost as successful 
as the optimal strategy when γ > 0.3 (Fig. 5A). That is, 
although the evolved rule is a coarse approximation of 
the optimal strategy at high food availability and indi-
viduals store far too much energy, survival is not greatly 
reduced. The cost of an inaccurate mechanism is greater 
for higher κ (i.e. fewer active genes), but the pattern is 
otherwise similar (Fig. 5B). Note that relative survivor-
ship under the evolved rule is influenced by which 
genes tend to be active, as shown by the decrease and 
then increase in Fig. 4A as γ increases from 0.3. 

3  Discussion 

Animals do not have unlimited flexibility for res-
ponding to variation in their environment, but instead 
are likely to use simple rules for making decisions 
(Hutchinson and Gigerenzer, 2005; McNamara and 
Houston, 2009; Fawcett et al., 2013). A critical aspect of 
the environment that animals must respond to is the avail-
ability of food, and there is a long history of models of 
adaptive behaviour that predict how animals should use 
stored energy reserves to cope with stochasticity in 
finding food (Houston and McNamara, 1999; Brodin, 

 

 

Fig. 3  Frequency across 10 simulations of active
genes 
The γ value immediately above which each gene controls forag-
ing behaviour is shown on the horizontal axis, and the shading
indicates the number of simulations for which this gene was
active in (i) more than 99% (on; black), (ii) less than 1% (off;
white) and (iii) between 1% and 99% (mixed; grey) of the popu-
lation. Genes at low γ are more likely to be active because the

optimal strategy is very steep at low γ. 
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Fig. 5  Survival as a proportion of the number of survivors following the optimal strategy in relation to the environmental 
food availability γ, for (A) small (κ = 0.05) or (B) large (κ = 0.5) costs of flexibility (for comparison, the grey lines show zero 
cost of flexibility). 
The evolved mechanism is not very costly (cf. ‘cost-free’) and, despite the inaccuracy of the mechanism at high γ resulting in excess reserves, sur-
vival is not greatly reduced. 

 

2007). We have evolved a rule for controlling behaviour 
in a simple model of energy reserve use, where the ob-
jective is to minimise the long-term rate of mortality. 
We find that the evolved rule is much less responsive 
than the optimal strategy to small changes in food av-
ailability. Even when we assumed no cost to flexibility, 
limited flexibility (12 genes) evolves. This is sufficient 
to make the evolved rule very close to the optimal stra-
tegy (20 gradations). Therefore the inactivity of some 

genes has a very small impact on survival, especially as 
each level of food availability occurs on average once in 
20 generations. As a consequence, drift allows genes to 
become inactive. Furthermore, there is asymmetry in 
the effect of mutations. If a gene becomes inactive there 
may be no selection against the mutated rule for many 
generations and it will be weak if nearby genes are ac-
tive. On the other hand, if a gene is switched on it takes 
the value of a nearby (lower γ) gene and so there is ini-

Fig. 4  Survival of individuals using the evolved

rule as a function of the cost of flexibility  under

different levels of food availability: A. γ = 0.3, B. γ
= 0.5, C. γ = 0.7 
The different lines show survivorship in the simulations
when individuals pay a cost equivalent to zero genes
(‘cost-free’), 20 genes (‘full’), 12 genes (‘unconstrained’)

and the evolved number of genes g (‘evolved’). 
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tially no selection for it, until it mutates to a lower value 
(since the optimal strategy is monotonically decreasing), 
whereas mutation to a higher value will be selected 
against. As a result, far fewer than all the genes remain 
switched on after many generations.  

Of greater significance is the pattern of active genes 
that evolves under a small cost of flexibility (κ = 0.05, 
Fig. 2B). Deviations from optimality at low food avail-
ability (γ) have a bigger effect on survival than at high γ, 
which is why the evolved rule is more fine-grained at 
low γ (30% of maximum flexibility at γ < 0.5) than at 
high γ (6% of maximum flexibility at γ ≥ 0.5). Hence 
we predict that under conditions where animals are at-
tempting to use resources to survive, they will be more 
responsive to changes in the food supply when the food 
supply is poor than when it is rich. This occurs because 
of the shape of x*(γ), which decreases with γ at a dece-
lerating rate. This in turn depends on the probability of 
going without food for a long time, which as a power 
function of (1 − γ) is also a decelerating function. Thus, 
we expect this shape to apply generally to scenarios in 
which the main objective is to maximise survival, and 
so animals should be more responsive to changes in 
food availability when food is scarce. However, if the 
fitness function were not merely based on survival, but 
also for instance involved reproduction, its shape could 
be very different (McNamara et al., 1991), which might 
favour a different pattern of behavioural flexibility un-
der the evolved rule. This should be the focus of future 
work.  

The decision rule that evolves for κ = 0.05 uses only 
around four genes (20% of maximum flexibility) and so 
is reasonably crude, but despite this it suffers only a 
small reduction in survival: the probability of surviving 
is much closer to that achieved by the optimal strategy 
than it is under high flexibility costs. Thus, by adap-
tively reducing its flexibility to respond to changes in 
the foraging conditions, the evolved mechanism can 
achieve close to the same level of performance as the 
optimal strategy; any further improvements in fit to the 
optimal strategy would be outweighed by the costs of a 
more complex, flexible mechanism. We see that there is 
robust performance even when flexibility costs are high, 
which reduces the number of active genes but still al-
lows the forager to perform almost as well as the opti-
mum under most conditions. This results from the 
strong asymmetry in the cost of deviating from the op-
timal target level of reserves. If the animal attempts to 
store too much fat the reduction in survival is smaller 
than that from attempting to store too little fat. Note that 

the values of active genes tend to lie on the optimal 
strategy curve (Fig. 2B), such that the threshold for in-
active genes is typically slightly higher than optimal 
(note that the reverse is true when inactive genes take 
the value of the first active gene above them). In con-
trast, there is very little deviation from optimality in the 
direction of smaller reserves. This asymmetry is most 
clear when food is abundant (and so the optimal reserve 
level is low), and less prominent at low food availability 
(due to the stronger survival costs). Thus, the evolved 
strategy deviates from the optimum, but only in the di-
rection that is least costly for survival. This is an exam-
ple of errors in behavioural strategies being associated 
with low canonical cost (McNamara and Houston 1986; 
Houston et al., 1992) 

Besides being less costly than the completely flexible 
optimal strategy, another key benefit of the evolved rule 
is that it generalises across similar conditions. The com-
plex strategies found by dynamic programming cannot 
do this, because the values in each cell of the look-up 
table are, in principle, independent of each other; it is 
only possible to find the optimal decision in a given cell 
by calculating payoffs. By contrast, the evolved rule 
generalises across similar levels of food availability, and 
it does this in a sensible way: it can afford to generalise 
a lot at high food availability, and less so at low food 
availability. If strategies show very strong generalisa-
tion animals might not adjust their behaviour to chang-
ing food availability in a gradual, linear manner, but 
instead show marked changes at critical thresholds. In 
simple terms, they may do one thing if food is very 
scarce and another if food is abundant, with little sensi-
tivity otherwise. Our work highlights that the extent to 
which decision rules generalise (as opposed to specia-
lise) across conditions may itself be under selection 
(Ghirland and Enquist, 2007). In general, we argue that 
the ability to respond in a similar way to similar types 
of conditions, even those that have never been encoun-
tered previously, is likely to be a key property of many 
decision-making mechanisms in real organisms, and has 
implications for understanding animal preferences (En-
quist and Johnstone, 1997) 

However, there are likely to be some conditions in 
which a simple rule fails to perform well. One important 
consequence of inaccuracy in decisions for fat storage is 
obesity, which is a major health problem in many hu-
man societies (Prentice, 2001; Wells, 2006; Friedman, 
2009). The level of food availability in the modern 
Western world is unprecedented during our evolutionary 
history (O’Dea, 1992). At very high levels of food avai-
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lability, our model predicts that animals will store far 
more fat than is necessary. This is because storing too 
much fat is less costly than too little fat, and this asym-
metry is strongest when food is abundant. We suggest 
that obesity may result from an approximate, suboptim-
al mechanism that has not evolved to control body 
weight accurately when food is super-abundant, leading 
to a level of fat storage that is much too high. This is 
consistent with the idea that obesity is common because 
feeding mechanisms do not function appropriately in 
the modern world (Prentice, 2001; Speakman, 2007). 
Furthermore, if the mechanisms controlling fat storage 
in humans and other animals have evolved to be fairly 
crude due to associated costs, sensitivity at low food 
availability is likely to be prioritised. Such a prioritisa-
tion is consistent with the common clinical observation 
that it is very difficult to lose weight on low-calorie 
diets (Heymsfield et al., 2007), to which any survival 
mechanism will be highly sensitive. Our work may 
therefore shed some light on both the incidence and 
persistence of obesity in human societies (Prentice, 
2001; Wells, 2006; Friedman, 2009). 

We have made an initial step towards studying the 
evolution of flexible mechanisms for behaviour. We 
have shown that incorporating the potential costs of 
flexibility may shed light on the errors made by real 
animals in making decisions. In doing so, we have illu-
strated a general principle about animal behaviour fo-
cussing on the paradigmatic ‘small bird in winter’ (Li-
ma,1986; McNamara and Houston, 1990; Houston and 
McNamara, 1993), but further developments should 
reflect other species and different scenarios. Elsewhere 
(Fawcett et al., 2014) we have highlighted the role that 
ecological complexity may play in influencing the 
strategies that animals use to make decisions. Genetic 
algorithms are a good way to investigate how mechani-
sms for behaviour might evolve: they simulate the con-
straints on what can evolve, such as the fitness of in-
termediate stages and the mutation-selection balance, 
whilst giving a solution that is not optimal but is likely 
to approximate optimality given these constraints (see 
Giske et al., 2013; Giske et al., 2014 for more complex 
examples). Genetic algorithms also allow greater flex-
ibility in the types of mechanisms that can be explored. 
We hope that this work inspires further studies that in-
corporate mechanistic constraints into the theory of 
animal decision-making.  
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