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1  Tinbergen’s Vision 

More than any other single work, Niko Tinbergen’s 
landmark paper “On aims and methods of ethology” 
(Tinbergen, 1963) shaped the scientific study of animal 
behaviour and continues to be a guiding influence on 
the field (Manning, 2009; Barrett et al., 2013; Bateson 
and Laland, 2013; Dawkins, 2014; Strassmann, 2014; 
Taborsky, 2014). Building on the work of Huxley 
(1942), Tinbergen identified four broad, complementary 
questions we can ask about a behaviour, which in mod-
ern terms can be phrased as follows: How does the be-
haviour arise from underlying psychological, physio-
logical and molecular processes (mechanism)? How 
does the behaviour develop within the organism’s life-
time (ontogeny)? How does the behaviour affect the 
organism’s fitness (adaptive significance)? How has the 
behaviour changed over evolutionary history (phyloge-
ny)? Each of these questions forms a major area of con-
temporary research on animal behaviour (Barnard, 
2004). 

As well as differentiating these key research ques-
tions, Tinbergen (1963, p. 411) insisted that ‘a compre-
hensive, coherent science of Ethology has to give equal 
attention to each of them and to their integration’ (our 
emphasis). Yet, by and large, his four questions have 
been studied in parallel, neglecting the close links be-
tween them. For example, research on the adaptive sig-
nificance of behaviour, the primary focus of behavioural 
ecology (Taborsky, 2014), has been largely separate 
from genomic and transcriptomic studies on the mole-
cular mechanisms underpinning behaviour (e.g. Soko-
lowski, 2001), although there are signs that this is be-
ginning to change (O’Connell and Hofmann, 2011; 
Ledón-Rettig et al., 2013; Zuk and Balenger, 2014). 
While the four questions refer to different levels of ex-
planation and should not be confused with one another 
(Bolhuis, 2009; Scott-Phillips et al., 2011; Dickins and 
Barton, 2013; Hogan, in press), it can be misleading to  

study them in isolation. Recognition is growing that the 
four aspects of behaviour may interact and influence 
one another, requiring formal integration of ‘proximate’ 
(mechanistic and ontogenetic) and ‘ultimate’ (adaptive 
and phylogenetic) perspectives (McNamara and Houston, 
2009; MacDougall-Shackleton, 2011; Laland et al., 2013; 
Hofmann et al., 2014; Monaghan, 2014; Lefebvre, in 
press). As Strassmann (2014) has argued, some of the 
most insightful studies of animal behaviour have fused 
two or more of Tinbergen’s questions. 

2  Evo-mecho 

The survival value of behaviour was a subject close 
to Tinbergen’s heart and the emergence of behavioural 

ecology as a vibrant research field was one of the clear-
est impacts of his legacy (Taborsky, 2014). Yet the suc-

cess of the adaptationist perspective in explaining beha-

viour led to other levels of explanation being neglected 
(Dawkins, 1989). In focusing on optimal behavioural 

phenotypes, standard approaches in behavioural ecology 
make the implicit assumption that behaviour is uncon-

strained by the psychological, physiological and mole-
cular mechanisms that produce it (the ‘phenotypic gam-

bit’ [Grafen, 1984] and the ‘behavioural gambit’ [Faw-

cett et al., 2013]). This ignores the fact that natural se-
lection can only modify behaviour by modifying the un-

derlying mechanisms. To address this problem, McNa-
mara and Houston (2009) advocated the integrated 

study of adaptive significance (‘function’) and mechani-

sm. This approach, dubbed ‘evo-mecho’ (McNamara 
and Houston, 2009), investigates the evolutionary prop-

erties of the mechanisms themselves, rather than their 
behavioural outcomes. 

It is important to recognise that the evo-mecho ap-
proach means more than conducting mechanistic studies 
of behaviour alongside studies of adaptive significance. 
Opening up the ‘black box’ of underlying mechanisms 
and examining the contents will not, in general, lead us 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43097418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


222 Current Zoology Vol. 61  No. 2 

 

to a deeper understanding of adaptation (Zuk and Ba-
lenger, 2014). Rather, evo-mecho demands that we ex-
plicitly integrate two of Tinbergen’s questions, by con-
sidering how evolution has shaped the psychological, 
physiological and molecular mechanisms that produce 
behaviour. This is an ambitious goal, but there are signs 
that researchers are embracing the challenge. In this 
special issue of Current Zoology we document some of 
the recent developments, showcasing an emerging line 
of research that directly addresses the evolution of me-
chanisms underlying behaviour. 

What precisely is meant by a ‘mechanism’? Here we 
adopt a broad, inclusive view, reflected in the contri-
buted articles, which address the evolution of a dazzling 
array of phenomena all linked to behaviour: hormones, 
genetic architecture, sensory organs, cognitive maps, 
cross-inhibitory drives, foraging strategies, search rules, 
spatial memory, associative learning, brain structure, 
mental representations and neural morphology. Thus the 
term ‘mechanism’ captures all of the internal processes 
that influence the expression of a particular behaviour—  
as Tinbergen (1963, p. 416) put it, ‘physiology of beha-
viour … all the way down to molecular biology’. In this 
we also include psychological constructs such as emo-
tional states, learning rules and cognitive biases, which 
are linked to patterns of behaviour and—although Tin-
bergen might not have approved (Manning, 2009)—   
can be studied from an adaptive perspective (e.g. Giske 
et al., 2013; Trimmer et al., 2013; Dridi and Lehmann, 
2014; Fawcett et al., 2014). 

3  Key Questions 

The collection of articles here arose from a two-day 
meeting on ‘The Evolution of Behavioural Mechanisms’ 
(www.tinyurl.com/winterasab2013), which we (TWF, 
ADH and Pete C. Trimmer) organised in conjunction 
with the Association for the Study of Animal Behaviour 
(ASAB) on the 50th anniversary of Tinbergen’s (1963) 
classic paper outlining the four questions. The meeting 
attracted a diverse mix of behavioural biologists, psy-
chologists, neuroscientists and computer scientists all 
interested in the fusion of adaptive and mechanistic 
perspectives on behaviour. Empirical and theoretical 
approaches were both well represented and we have de-
liberately recreated that balance here, alongside review 
articles that develop and critically evaluate fundamental 
concepts of evo-mecho. Among the key issues discussed 
are: What are the limits to adaptive behaviour? How do 
the costs of neural tissue constrain behaviour? How do 
simple mechanisms allow behavioural flexibility? How 

does cognition interact with the environment? What are 
the evolutionary origins of advanced cognitive pro-
cesses? In addressing these questions our special issue 
spans the full gamut of mechanisms, from gene se-
quences all the way to consciousness and creativity. 
3.1  What are the limits to adaptive behaviour? 

Behaviour may be constrained from reaching pheno-
typic optima by the limits and costs imposed by under-
lying mechanisms (DeWitt et al., 1998), or even by the 
details of the underlying genetic architecture itself 
(Moran, 1964). Versace (2015, THIS ISSUE) discusses 
how genomic resequencing combined with experimen-
tal evolution is revealing the genetic limits of beha-
vioural adaptation, directly challenging the phenotypic 
gambit (Grafen, 1984). As a case study, she outlines an 
application of this approach to investigate the evolutio-
nary dynamics of associative learning in Drosophila. 
Another constraint on optimal behaviour is the cost of 
switching between two actions that cannot be performed 
simultaneously, which is investigated in a mathematical 
model by Marshall et al. (2015, THIS ISSUE). Reviving 
the old ethological concept of ‘drives’ (Hinde, 1956), 
Marshall et al. show that cross-inhibition between com-
peting motivations can help to reduce costly dithering 
and improve the efficiency of behaviour. The broader 
importance of trade-offs in constraining behavioural 
evolution is explored in more depth by Bastiaans and 
Swanger (2015, THIS ISSUE). They present a cross-    
classification of the major types of life-history trade-   
offs (allocation, acquisition and specialist–generalist, 
based on Angiletta et al., 2003) and three types of me-
chanism that may generate variation between individu-
als in the resolution of those trade-offs: genetic poly-
morphism, developmental (irreversible) plasticity and 
short-term (reversible) plasticity. Bastiaans and Swan-
ger then apply this framework to a particular case study, 
the role of juvenile hormone in trade-offs in insect de-
velopment, life history and behaviour. 
3.2  How do the costs of neural tissue constrain  
behaviour? 

Greater complexity or flexibility in behaviour may 
require a higher investment in the brain and other neural 
tissue that supports it; natural selection will favour a 
level of investment that optimally balances the benefits 
against the unavoidable energetic costs (Atwell and 
Laughlin, 2001). Three articles in our special issue con-
sider the extent to which behavioural adaptations are 
related to differences in the brain, in terms of its overall 
size, gross structure and neural morphology. Corral-   
López et al. (2015, THIS ISSUE) use artificially se-
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lected lines of guppies Poecilia reticulata to investigate 
whether evolutionary changes in brain size affect male 
sexual behaviour. Their findings raise questions about 
the extent to which male courtship in this species is a 
cognitively demanding behaviour. Soares et al. (2015, 
THIS ISSUE) present a preliminary analysis of the co-
variation between brain measurements and cooperative 
behaviour across four labrid fish species, finding evi-
dence for differences in the size of specific brain re-
gions but not in overall size. They argue that the cogni-
tive demands associated with cooperative cleaning inte-
ractions have resulted in selective investment in certain 
brain regions at the expense of others. Finally, Robinson 
et al. (2015, THIS ISSUE) perform a phylogenetically 
controlled analysis using six lizard species to show that 
the relative use of visual versus chemical displays has 
evolved in concert with the density and size of neurons 
in brain areas associated with those communication 
modalities. 
3.3  How do simple mechanisms allow behavioural 
flexibility? 

Selection for efficient performance has resulted in 
mechanisms that can achieve a remarkable degree of 
behavioural flexibility despite their apparent simplicity. 
Pfuhl et al. (2015, THIS ISSUE) explain how the simple 
auditory system of moths—comprising no more than 
four sensory cells—underpins flexible and context-   
dependent behavioural adaptations to escape from echo-
locating bats. They also discuss the higher-level pro-
cessing mechanisms in the brain that enable the moths 
to integrate multimodal cues. Higginson et al. (2015, 
THIS ISSUE) model the trade-off between the costs and 
benefits of flexibility in foraging behaviour, comparing 
a genetically evolved rule (subject to metabolic costs) 
against the optimal strategy found by dynamic pro-
gramming. Their analysis reveals that, although the 
costly evolved rule is less accurate than the optimal 
strategy, the ability to generalise behaviour across simi-
lar sets of conditions gives it a key advantage in com-
plex environments, where the situations encountered by 
individuals may have never been experienced by their 
ancestors. Continuing the theme of behavioural flexibi-
lity, Hesselberg (2015, THIS ISSUE) reviews the web-   
building behaviour of orb-web spiders, which, despite 
the apparent constraint of a small brain, can precisely 
adjust the geometry of their web to fit the local spatial 
surroundings. Although the web itself is complex and 
highly structured, it may be a product of relatively sim-
ple rules for responding to information from the pre-
viously laid threads. 

3.4  How does cognition interact with the environ-
ment? 

The next set of articles all highlight the point that 
mechanisms can only be understood in terms of how 
they interact with and exploit statistical features of the 
environment (see also Fawcett et al., 2014). Sulikowski 
and Burke (2015, THIS ISSUE) present a critique of the 
problem-solving tasks commonly used to investigate 
cognitive mechanisms in the laboratory, arguing that 
they often lack appropriate ecological context and fail to 
replicate the informational properties of the natural en-
vironments in which those mechanisms evolved. They 
advocate a more ecologically informed approach that 
considers how the informational properties of a task 
interact with the functional goals of the animal to pro-
duce observed behaviour. Arbilly (2015, THIS ISSUE) 
discusses the use of individual-based simulation models 
to investigate the evolution of learning and decision 
rules. Because details of the learning process are speci-
fied explicitly in these models, the costs of learning and 
the dynamics of information flow emerge from an indi-
vidual’s interactions with its (physical or social) envi-
ronment rather than being imposed externally, which 
can alter predictions in interesting ways. Taking one 
such simulation approach, Kolodny et al. (2015, THIS 
ISSUE) show how ‘creative’ behaviour—novel sequen-
ces of actions that are adaptive on average—can arise 
from an internally represented network that learns about 
statistical regularities in the environment. 
3.5  What are the evolutionary origins of advanced 
cognitive processes? 

The special issue concludes with two articles explor-
ing the evolution of mental representations. Hills and 
Butterfill (2015, THIS ISSUE) present evidence for a 
homology between foraging for resources in the exter-
nal environment and foraging for items stored internally 
in memory, both of which may involve area-restricted 
search. They propose that certain forms of internal 
search allow individuals to predict the outcome of fu-
ture actions, but that this relies on the ability to distin-
guish real from imagined outcomes, which is arguably a 
precursor of self-awareness. Ramírez and Marshall 
(2015, THIS ISSUE) formally evaluate Trivers’s (2011) 
self-deception hypothesis, which posits that individuals 
can more effectively deceive others by first deceiving 
themselves. Their model explores the conditions under 
which it is advantageous for individuals to form a bi-
ased perception of their own fighting ability, under the 
assumption that honestly revealing this self-perceived 
ability is less costly than signalling dishonestly. 
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The diverse contributions to this special issue of 
Current Zoology present a snapshot of cutting-edge de-
velopments in evo-mecho research, which we hope oth-
er researchers will be inspired to build on and push the 
field in new directions. All of the articles raise more 
questions than they answer, which is a strong sign of a 
fruitful research endeavour. Together, they offer a com-
pelling argument for the insights to be gained from an 
integrated approach that synthesises studies of the adap-
tive significance of behaviour and its mechanistic un-
derpinnings. 
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