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Abstract 

Task-cuing paradigms are typically taken to explore control of 
task-set.  However, they can be construed as requiring not selection 
of a task-set, just retrieval of a cue+stimulus-->response (CSR) 
mapping. In this paper we considered performance in a task-cuing 
paradigm in which participants saw a color cue that indicated 
whether they should classify a digit as odd/even or high/low using 
one of two responses.  Half the participants were instructed in 
terms of tasks (Task group) whilst the others were required to learn 
the CSR mappings without mention of tasks (CSR group). 
Predicted performance under CSR conditions was modeled using 
an APECS connectionist network. Both the model and CSR group 
produced small switch costs, mostly due to incongruent stimuli, 
and large congruency effects that reduced with practice. In 
contrast, the Task group produced a larger switch-cost and a 
smaller, stable congruency effect. 

Keywords: task-switching, connectionist modeling, conditional 
discriminations, associative learning 

Introduction 
We often think of our behaviour as being governed by 

both higher-level cognitive control processes and lower-
level associative processes (McLaren, Green & Mackintosh, 
1994).  Typically these processes are thought to operate 
simultaneously but with a degree of independence.  This 
paper takes a task-cuing paradigm, typically taken as 
measuring the higher level cognitive control processes 
involved in changing between tasks (Monsell, 2003), and 
asks if the performance typically seen could instead be 
accounted for by lower level associative processes.  This 
paradigm has been used widely to measure control 
processes in areas as diverse as aging (Mayr, 2001) and 
schizophrenia (Meiran, 2000) It is also commonly included 
in brain training packages as a way to improve your ability 
to multitask and pay attention. Given such widespread use, 
it is important to assess if the paradigm actually measures 
control processes at all; it has been argued that it does not 
(Logan and Bundesen, 2003; Schneider and Logan, 2005). 

The response contingencies in many task-cuing 
experiments can be construed without any reference to 
tasks. This paper examines what happens when participants 
approach such an experiment without knowledge of the 
task-sets.  Data and simulation suggest that they can learn 
the statistical structure of the experiment through the use of 

associative learning mechanisms, but their performance 
differs from that of participants construing the situation as 
one requiring task-selection and switching. 

To clarify this, let us consider the task-cuing paradigm 
that we used.  Under standard instructions in this paradigm 
participants are told, for example, that if the background 
circle is blue or green then they should classify the digit 
they then see as odd/even, where odd requires a response 
with the left key and even with the right.  However, if the 
background circle is red or yellow they should classify the 
digit as higher/lower than 5, with a right response for high, 
and a left response for low.  This is the "task-set" construal 
of what is required, as illustrated on the right of Figure 1.  
Yet participants do not need knowledge of these tasks to 
know how to respond, as the color and the number 
combination is completely predictive of the required 
response, e.g. a 4 on yellow will always require a left 
response.  Hence, especially with small stimulus set, it is 
entirely possible for participants in a task cuing experiment 
not to use the task-sets at all, in which case the experiment 
is not measuring task-based control processes.   

In the experiment reported here we compare a group who 
are explicitly instructed to use the task-sets with one that has 
no knowledge of the underlying task-set structure.  In order 
to examine whether, and in what ways, performance differs 

       CSR          Task 

 
Figure 1 on the left shows the way in which the 

experiment was presented in the CSR condition and on 
the right in the Task condition. 
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between the two conditions we will consider three of the 
common effects found within the task-switching literature: 
the switch cost, the reduction in the switch cost with time to 
prepare (RISC effect) and the congruency effect (Monsell, 
2003, Kiesel et al, 2011).   

It is typically found that when participants change from 
performing one task to performing another task there is a 
switch cost; participants are generally slower and less 
accurate on a task-switch trial than a task-repeat trial.  
Participants are also able to reduce this switch cost when 
they are given more time to prepare the task set, i.e. when 
there is a longer time between the cue (colored circle), 
which indicates the task-set, appearing and the stimulus 
(number) appearing the switch cost declines.  Explanations 
of these effects have appealed to task set inertia (Allport, 
Styles & Hsieh 1994) —conflict due to residual activation 
of the previous task set - and/or the need to perform a task 
set reconfiguration process (Rogers & Monsell, 1995) which 
reduces conflict if performed before the stimulus appears. 
But, according to the compound-cuing model of Logan and 
colleagues (Logan & Bundesen, 2003; Schneider & Logan, 
2005) participants simply retrieve the response associated 
with the combination of cue and stimulus, so these effects 
cannot be taken as hallmarks of control.  

In the task-cuing experiment already described, the 
responses for the two tasks are mapped onto the same keys, 
i.e. the left key represents odd and high, whilst the right key 
represents even and low.  Hence for some numbers the 
response is always the same regardless of the task cued, e.g. 
1 always requires a left response; these are called congruent 
stimuli.  For other numbers the response changes with the 
task cued, e.g. 4 requires a left response if the task is 
high/low but a right response if the task is odd/even; these 
are incongruent stimuli.  Typically, it is found that 
participants are faster and more accurate for congruent than 
incongruent stimuli.  As with the switch cost and reduction 
in switch cost (RISC) effect there have been both task-set 
based and non-task-set based explanations of this 
congruency effect.  Some researchers have argued that the 
congruency effect is due to response conflict from the 
currently irrelevant task-set (Kiesel et al, 2011). Other 
researchers have argued that it is caused by associative 
interference, as the incongruent stimuli are linked to both 
responses whilst the congruent stimuli are only linked to 
one (Kiesel, Wendt & Peters, 2007).   

In this experiment we asked whether the switch cost, the 
RISC effect and the congruency effect depend on how the 
participants construe the experiment, i.e. whether in terms of 
tasks or  cue + stimulus to response (CSR) mappings. 

In addition to considering these standard task switching 
effects we also considered the effect of introducing novel 
stimuli (cf. Rogers & Monsell, 1995). This is particularly 
relevant for assaying the difference between switching 
among stimulus-classification task rules versus applying a 
single set of learned CSR rules.  For participants using tasks 
there should be little impact of introducing new stimuli.  
There might be a slight novelty effect, but they should be 

able to treat the new stimuli in the same way as the old, 
continuing to apply the same classification rules. However, 
participants with no knowledge of the task-sets have no way 
of knowing how to respond to the novel numbers; they 
should be reduced to learning how to respond by trial and 
error, and one would expect performance on the new 
numbers to be dramatically worse than performance on the 
old numbers.   

Modeling 
As summarized above there is plenty of evidence to 

suggest how participants typically perform in a task-cuing 
paradigm with knowledge of the tasks (Monsell, 2003, 
Kiesel et al, 2010).  In order to attempt to predict how 
participants would perform in the task-cuing experiment 
described above without knowledge of the task-sets we 
simulated performance using an associative model. The 
mappings for the congruent stimuli are shown in outline in 
Table 1.  It is immediately evident that they should be easily 
captured by an associative model, as the stimuli in isolation 
predict the correct response. 
  Cues (Color) 

  W 
(blue) 

X 
(green) 

Y   
(red) 

Z 
(yellow) 

A (1) L L L L 

B (3) L L L L 

C (6) R R R R 

 

Stimuli 

(Digit) 

D (8) R R R R 
Table 1 The associative structure of the congruent trials.  

L indicates a left R a right response.  Boldface rows indicate 
example initially trained stimuli; the others introduced later 

The incongruent stimuli, shown in Table 2, are more of a 
challenge for an associative model.  There is evidence from 
rabbits (Saavedra, 1975) and humans (Livesey et al, 2011) 
that, although these stimuli are harder to learn than the 
congruent stimuli, they can be learned. However, a single 
layer error-correcting model, e.g. Rescorla-Wagner (1972) 
would be unable to learn this structure.   
  Cues (Color) 

  W 
(blue) 

X 
(green) 

Y   
(red) 

Z 
(yellow) 

E (2) R R L L 

F (4) R R L L 

G (7) L L R R 

 

Stimuli 

(Digit) 

H (9) L L R R 
Table 2 shows the associative structure of the incongruent 

trials using the conventions employed in Table 1. 
In addition to the difference in performance on 

incongruent and congruent trials, one might also expect 
effects of cue equivalence (Honey & Ward-Robinson, 2002; 
Hodder, George, Kilcross & Honey, 2003).  These studies 
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trained rats or humans (respectively) with the same 
contingencies as the incongruent trials.  They found that 
cues that indicated the same outcome from stimuli became 
equivalent e.g. here W and X would become equivalent as 
would Y and Z, in that there would be a greater degree of 
generalization between W and X than W and Y.  Honey and 
Ward-Robinson (2002) found that a modified connectionist 
model was able to account for their data by allowing the 
same hidden unit to carry the mappings for equivalent cues.  
We used a model from the same class as their chosen model. 
The model is known as APECS (McLaren, 1994, 2011; 
LePelley & McLaren, 2001) and has a good record in 
modeling human learning and memory. APECS has the 
basic characteristics of a back-propagation network 
(Rumelhart, Hinton and Williams, 1986), i.e. it is a standard 
feedforward error correcting system with input, hidden and 
output layers that has been modified in two key ways:   

Learning algorithm and rates The APECS learning 
algorithm allows the learning rates to change in an adaptive 
manner.  On each trial, the hidden unit with the largest error 
receives a higher learning rate than the other hidden units.  
This effectively means that one (or a few) hidden unit(s) is 
(are) selected to carry each mapping from input to output.  

Bias The APECS group of models also includes an 
adaptive bias whose learning rate is varied to prevent 
catastrophic interference to old learning occurring when 
new information is learnt (McCloskey and Cohen, 1989).  
The adaptive bias lowers the chances of the same hidden 
unit being used by a different mapping and hence prevents 
the previous learning being over-written.   

Modeling Method 
Sequencing As in the experiment below, one third of trials 

were "switch" trials (defined with respect to the task-set 
representation). The cue changed color on every trial, and 
either of two colors signaled each task. The number of times 
a given stimulus appeared in a given task on a repeat or 
switch trial was constrained.  There were 14 blocks of 49 
trials in total.  For the first 10 blocks only 4 stimuli were 
possible, whilst for the last 4 blocks 8 stimuli were possible. 

Representation and Architecture The 4 cues and 8 digit 
stimuli were represented discretely with one input unit 
coding for each. The responses were also represented 
discretely, and the model was trained to 0.9 for the correct 
response and 0.5 for the wrong one. It was trained to auto-
associate the input with the output, with certain output units 
active only if a specific input unit was active. The network 
had three layers: 16 input units, 14 hidden units and 18 
output units. 

Learning parameters The fast learning rate was set to 0.8 
whilst the slow learning rate for the unselected units was 
0.0005.  For the bias the learning rate for selected hidden 
units was 0.5 and for others was 0.005.  

Output The output of the model was assessed by 
subtracting the difference between the actual activations of 
the two response output units (desired response – undesired 
response) from the target difference (0.4). On this measure 
larger scores mean worse performance.  

Modeling Results 

 
The results were analyzed across block pairs 2-5 (as block 

pair 1 was a practice block) using an ANOVA with the 
factors, block pair, congruency, and switch. 

Task switches There was a small but significant effect of 
"task switch"; the model's performance was worse on switch 
than repeat trials (switch: 0.075, repeat: 0.055), 
F(1,31)=49.5, p<0.001 — see Figure 2.  

Congruency There was a large and significant effect of 
congruency; the model's performance was worse on 
incongruent than congruent trials (congruent: 0.095, 
incongruent: 0.035), F(1,31)=168.5, p<0.001. 

Switch by congruency. The switch cost was significantly 
larger for incongruent trials (0.04) than the congruent trials 
(-0.002), F(1,30)= 10.4, p<0.01. 

Acquisition effects. Overall performance reliably 
improved from block pair 2 to 5 (Figure 2), F(3, 93)= 44.3, 
p<0.001.  The two-way interaction between block pair and 
congruency was significant F(3, 93)= 43.3 ,p<0.001 This 
interaction can be seen in Figure 2 which shows the 
congruent stimuli being learnt quickly whilst the 
incongruent stimuli take longer to learn.   

Transfer to new stimuli The effect of transfer was 
analyzed by comparing the performance on the newly 
introduced stimuli with that on the old stimuli in block pairs 
6 and 7.  As expected, the model found the novel stimuli 

 
Figure 2 shows the performance of the model plotted as 

the difference between the desired output difference (0.9-
0.5) and the actual output difference – hence 0.4 
represents no learning whilst 0 represents perfect 
learning. The points are plotted by block pair, congruency, 
switch and new stimuli.  Darker lines represent 
incongruent stimuli (IC) with diamonds representing the 
originally trained stimuli and triangles the transfer stimuli 
(New). Lighter lines represent congruent stimuli, with 
squares representing the originally trained stimuli and 
circles the transfer stimuli (New).  Dotted lines represent 
switch trials (Sw) and solid lines repeat trials (Rep). 
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(0.189) much harder than the previous stimuli (0.089), 
F(1,31)=509, p<0.001. 

Modeling Discussion 
The model predicts a large congruency effect which 

varies over blocks, a small switch cost which is only present 
in the incongruent trials and a significant disadvantage for 
newly introduced stimuli.  This gives a clear indication what 
we might expect from participants if they were performing 
on an associative basis. It is also different from the typical 
task-cuing results where the switch cost is usually larger 
than the congruency effect. We now consider the empirical 
data obtained from participants trained on this task under 
Task or CSR instructions. 

Behavioral Method  
Participants The participants were 35 psychology 

undergraduates (mean age = 20.3 years, 7 males) at the 
University of Exeter. Participants took part for course credit 
and a bonus payment, which was contingent on their 
performance (average payment £2.04, range £1.50-£2.50).  

Stimuli The task cues were circles (6.7º of visual angle), 
filled with: blue (RGB: 0, 0, 255), red (RGB: 255, 0, 0), 
green (RGB: 0, 255, 0) or yellow (RGB: 255, 255, 0); in the 
center of the cue, the digit stimulus was then displayed in 
60-pt Courier bold font (1.3º of visual angle). The two sets 
of digits used were 1,4,7,8 and 2,3,6,9 – these sets were 
used as on average the values are the same distance from 5 
(the criterion value for 'high'/'low'. An iMac was used to 
display the stimuli using Matlab 2008a with Psychtoolbox. 

Design and procedure The sequencing was constrained in 
the same way as for the model, with the addition of a 
variable CSI that was alternated by blocks to give a long 
CSI of 1200 ms and a short CSI of 100 ms. For the first 
block pair, participants were given a piece of paper with 
correct responses in the format of the relevant Task or CSR 
diagram (as in Figure 1); in addition participants in the Task 
condition were given standard task-set instructions verbally 
and on-screen, whereas participants in the CSR condition 
were directed to learn cue+stimulus  response mappings 
on the basis of trial by trial feedback.  

After 5 block pairs the second set of four stimuli was 
introduced in addition to the set already in use.  No mention 
of the new numbers was made prior to their appearance.  
Participants were debriefed using a structured questionnaire, 
and replaced if their reported strategy differed from that 
instructed, i.e. if they induced the tasks in the CSR group, or 
failed to use the tasks as instructed in the Tasks group. Two 
participants in the Task group (who did not mention using 
tasks) and one participant in the CSR group (who induced 
one of the tasks) were replaced in this way. 

Behavioral Results 
The results were analyzed using an ANOVA as for the 

model, with the additional between-subjects variable of 
instructions and within subjects variable of CSI. 

Task switches and instruction. There was a much larger 
switch cost in the Task group (160 ms) than in the CSR 
group (18.6ms), F(1,30)=16.0, p<0.001 — see Figure 3. The 
switch costs were reliable for the Task group, F(1,15) = 

22.4, p<0.001, and nearly reliable for the CSR group, 
F(1,15) = 3.24, p=0.092. For errors, there was a near reliable 
interaction between instruction group and task 
switch/repeat, F(1,30)=3.13, p=0.087: the switch cost for the 
Task group was a reliable 2.9%, F(1,15)= 11.9, p<0.01, and  
for the CSR group 1.2%,also reliable, F(1,15)=5.46, p<0.05. 

Preparation and instruction. As Figure 3 shows, 
preparation reduced the RT switch cost in the Task group 
from 213 ms (4.5%) in the short-CSI blocks to 107 ms 
(1.4%) in the long CSI blocks, this was significant in the 
RTs, F(1,15)=6.23, p<0.05 and nearly so in the errors, 
F(1,15)=3.96, p=0.065.  There was no such effect in the 
CSR group, for whom the switch cost was 16 ms (0.9%) in 
the short-CSI blocks and 21 ms (1.5%) in the long-CSI 
blocks F<1. The interaction was reliable in the RTs, 
F(1,30)= 5.67, p<0.05 and nearly significant in the errors, 
F(1,30)=3.91, p=0.057. Participants in the Task condition 
also showed a general preparation effect, whereby if only 
the task-repeat trials are considered they were faster with a 
long-CSI (611ms) than with a short-CSI (853ms), F(1,15) = 
63.8, p<0.001.  For the same contrast the CSR group was 
slightly, but not reliably, slower in the long-CSI (776ms) 
than at the short-CSI (745ms) condition, , F(1,15) = 2.55.  

Congruency and instruction. RT and error rate showed 
(Figure 3) a much larger effect of congruency in the CSR 
group (346 ms, 7.4%) than in the Task group (91 ms, 6.1%); 
the interaction was highly reliable for RTs,  F(1,30)=23.9, 
p<0.001, but not for error rate, F<1.  In separate analyses, 
the congruence effect was reliable for both the Task group, 
F(1, 15) =6.26, p<0.05, for RTs, and F(1,15)=33.8, p<0.001, 
for errors, and  the CSR group, F(1,15) = 84.5, p<0.001, for 
RT, and F(1,15)=11.3, p<0.01, for errors. 

Switch by congruency. In agreement with the model the 
switch cost was larger for incongruent trials for the CSR 
group (30ms, 2%) than congruent trials (7ms, 0.4%). 
Similarly for the Task group the switch cost was larger for 
incongruent trials (161ms, 4.8%) than congruent trials 
(69ms, 1.1%). There was an overall significant interaction 
between task switch and congruency in the errors, F(1,30)= 
10.4, p<0.01, but not in the RTs.  This effect did not differ 
between the two experimental conditions in the error data or 
RTs. 

Acquisition. Overall performance improved from block 
pair 2 to 5 (Figure 4), and this was reliable in RTs and 
errors, F(2.7,79.6)=43.3, p<0.001, F(2.7, 79.6)=4.60, 
p<0.05. The three-way interaction between block pair, 
congruency and instructions was significant in the RTs only, 
F(2.7, 79.6)= 7.35 ,p<0.01 and marginally so in the errors, 
F(2.7, 79.6), 2.23, p=0.095.  Separate analyses revealed a 
highly significant block pair by congruency interaction in 
the CSR condition, RT: F(2.3,34.6)= 9.40, p<0.001, errors: 
F(2.3,34.6)=6.94, p<0.05, but not in the Task group, F<1.  
This interaction can be seen in Figure 4 which shows the 
congruent trials being learnt quickly by the CSR group 
whilst the incongruent trials took longer to learn, a pattern 
similar to the predictions made by the model. 
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Introduction of new stimuli. Figure 4 also illustrates that 
the two groups were differentially affected by the 
introduction of novel stimuli at block pair 6. The new 
stimuli seem to be accommodated with ease by the Task 
group, but for the CSR group they clearly cause problems, 
especially incongruent stimuli. As for the model, the effect 
of new stimuli was analyzed by comparing the performance 
on the novel stimuli with that on the old. As expected, the 
CSR group was more affected by the introduction of new 
stimuli; their RT (error rate) was much larger for the new 
stimuli 1201 ms (21.7%) than the old stimuli 946 ms 
(4.1%), whereas in the Task group performance on the new 
stimuli, at 780ms (7.5%) was more equivalent to that of the 
old stimuli, 731 ms (4.8%).  This difference was supported 
by a significant interaction in both the RTs, F(1,25)=23.8, 
p<0.001 and errors, F(1,30)=37.7. 

Discussion 
There was a clear difference in the performance of the 

two groups.  The Task group exhibited a large switch cost, 
which was substantially reduced by the opportunity to 
prepare.  In contrast, the CSR group had a smaller switch 
cost,  which derived largely from the incongruent stimuli 
and was unaffected by CSI.  The CSR group had a much 
larger congruency effect, which was modulated with 
practice because congruent stimuli were learnt much faster 
than incongruent stimuli.  In contrast the Task group 
exhibited a smaller congruency effect which was much 
more stable over practice. 

These differences in the performance of participants with 

and without knowledge of the task-sets suggest that there is 
merit in theories of performance in task-cuing paradigms 
that appeal to task-set. However, given that participants who 
had no knowledge of the tasks showed significant "switch 
costs" and congruency effects also indicates that these 
phenomena are not per se indices of top-down control of 
task-set (as Logan & Bundesen, 2003, have also argued, for 
different reasons).  Hence, part of the switch cost seen in the 
Tasks group might have the same source as for the CSR 
group, and the congruency effect in the Task group might be 
an ameliorated version of that seen in the CSR group, with 
top down task-set control helping to shield against 
associative interference (Dreisbach & Haider, 2009).  
However, the marked differences in performance between 
the groups — the much larger switch cost and its reduction 
with preparation in the Tasks group, and the much larger 
congruence effects in the CSR group — clearly suggested a 
qualitative difference in processing strategy between them. 
The effects of practice and transfer, with the CSR group's 
rapid learning of the congruent stimuli and difficulty with 
the transfer test contrasting with the relatively stable switch 
costs over practice, and good transfer for the Tasks group, 
also pointed to a substantial difference in processing 
strategy between groups, and highlights one of the 
advantages of a task-set strategy – the ability to generalize 
to novel cases.   

Moreover, the data of the CSR group seem in agreement 
with the behavior of an associative learning network.  All of 
the effects predicted by the model were present in the CSR 

 
Figure 3 shows switch cost reductions in switch cost and the congruency effect, for the Task and CSR groups. 
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group: a large congruency effect and its modulation by 
practice, a modest "switch cost" due mostly to the 
incongruent stimuli, and a marked disadvantage in coping 
with new stimuli.  This is certainly consistent with the 
suggestion that this group's performance was dependent on 
associative learning. We conclude that there is evidence to 
suggest that when participants perform in a task-cuing 
paradigm without knowledge of the tasks, they produce a 
distinctive pattern of results which is in line with the 
predictions of an associative model. If one is interested in 
using task-cuing to measure control processes, it may be 
wise to check for use of a CSR strategy, and to use 
conditions (e.g. larger stimulus sets) that discourage it. 
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Figure 4 shows the performance over block pairs in the 

same way as Figure 2. 
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