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Summary

1. Plants use light as a source of both energy and information. Plant physiological responses to
light, and interactions between plants and animals (such as herbivory and pollination), have evolved
under a more or less stable regime of 24-h cycles of light and darkness, and, outside of the tropics,
seasonal variation in day length.
2. The rapid spread of outdoor electric lighting across the globe over the past century has caused an
unprecedented disruption to these natural light cycles. Artificial light is widespread in the environ-
ment, varying in intensity by several orders of magnitude from faint skyglow reflected from distant
cities to direct illumination of urban and suburban vegetation.
3. In many cases, artificial light in the night-time environment is sufficiently bright to induce a
physiological response in plants, affecting their phenology, growth form and resource allocation.
The physiology, behaviour and ecology of herbivores and pollinators are also likely to be impacted
by artificial light. Thus, understanding the ecological consequences of artificial light at night is criti-
cal to determine the full impact of human activity on ecosystems.
4. Synthesis. Understanding the impacts of artificial night-time light on wild plants and natural vege-
tation requires linking the knowledge gained from over a century of experimental research on the
impacts of light on plants in the laboratory and glasshouse with knowledge of the intensity, spatial
distribution, spectral composition and timing of light in the night-time environment. To understand
fully the extent of these impacts requires conceptual models that can (i) characterize the highly
heterogeneous nature of the night-time light environment at a scale relevant to plant physiology; and
(ii) scale physiological responses to predict impacts at the level of the whole plant, population, com-
munity and ecosystem.

Key-words: circadian, ecophysiology, light cycles, light pollution, photoperiodism, photopollution,
physiology, sky glow, urban ecology

Introduction

Light plays a central role in the physiology and ecology of
plants. Plants use light both as a resource, via photosynthesis,
and as a source of information. The timing, intensity and
spectral composition of natural cycles of light provide cues
for regulating circadian rhythms, seasonal phenology and the
expression of phenotypic variation, including growth form
and resource allocation. These cycles have provided a strong
selective pressure for millennia. Since the early 20th century,
the widespread use of outdoor electric lighting associated with
human settlements, industry and transport networks has
altered these natural daily and seasonal cycles of light across
much of the globe (Cinzano, Falchi & Elvidge 2001), not just

in urban environments but also in natural ecosystems (Bennie
et al. 2015a; Gaston, Duffy & Bennie 2015). Meanwhile,
there is an increasing recognition of the value of frequently
illuminated habitats such as roadside verges and hedgerows
(Tikka, H€ogmander & Koski 2001; Hovd & Skogen 2005;
Cousins 2006; Le Viol et al. 2008; Hanley & Wilkins 2015),
domestic gardens (Davies et al. 2009; Goddard, Dougill &
Benton 2010) and urban ecosystems (Angold et al. 2006) for
plant and pollinator biodiversity and maintenance of ecosys-
tem services, including human health and well-being (Gaston,
�Avila-Jim�enez & Edmondson 2013). It has been estimated
that 238 000 hectares of road verge alone exist in Britain,
more than twice the area of natural or semi-natural grassland
in the wider countryside (Plantlife 2013). These habitats are
often directly illuminated by artificial light throughout the
night, or intermittently lit by vehicle headlights. However,*Correspondence author. E-mail: j.j.bennie@exeter.ac.uk
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even reviews of the ecological effects of roads seldom give
much attention to artificial light at night (Spellerberg 1998;
Trombulak & Frissell 2000; Coffin 2007; although see Black-
well, DeVault & Seamans 2015). Many other natural or semi-
natural habitats may be directly lit from artificial light sources
at their margins when they are adjacent to human settlements,
industry or roads. Even remote areas may be affected as mea-
sureable levels of artificial light reflected and scattered in the
atmosphere (‘skyglow’) are detectable tens to hundreds of
kilometres from urban centres, particularly under overcast
conditions (Kyba et al. 2015). Cinzano, Falchi & Elvidge
(2001) concluded that ‘mankind is proceeding to envelop
itself in a luminous fog’, after calculating that some 18.7% of
the World’s terrestrial surface (excluding Antarctica) could be
considered as experiencing light pollution. This figure is far
higher for some countries – 84.7% of the United Kingdom,
for example, or 100% of the Netherlands.
Some measureable degree of artificial light at night is clearly

the norm, rather than an exception, across the land surface of
many developed countries, but such figures mask a high
degree of spatial heterogeneity; while the scattered light from a
city may illuminate natural vegetation to levels approaching
that of moonlight, localized direct illumination from vehicle
headlights or roadside street lighting will be several orders of
magnitude brighter. Many natural or semi-natural habitats thus
experience artificial light at night at levels congruent with
those that cause physiological effects on plants. There is an
extensive literature on the effects of artificial manipulations of
light conditions on plants, dating from the 17th and 18th cen-
turies (Hunt 1854; Darwin 1881), and it is well-established that
light at night, even of short duration or at low intensities, can
have marked physiological effects (Smith 1982). Surprisingly,
despite a growing awareness of the impacts that disruption of
natural light cycles may have on animals (Longcore & Rich
2004; Gaston & Bennie 2014) and plant–animal interactions
(MacGregor et al. 2014), much less work has been published
on the unintended ecological impacts of artificial light at night
on wild plants and natural vegetation (although see Briggs
2006 for a review of potential physiological mechanisms). In
this study, we argue that there is a pressing need for plant ecol-
ogists to define ecologically meaningful measures of artificial
light in the natural environment and to develop understanding
of the thresholds and dose–response relationships of light-sen-
sitive processes in plants, particularly at low light intensities.
Furthermore, we must improve understanding of the effects of
low-intensity light at night in terms of ecological, as well as
physiological, processes including competition, herbivory, pol-
lination, reproduction and dispersal.

How much artificial light is there in the
environment?

Understanding the ecological impacts of artificial light
requires information on the intensity, spatial pattern, spectral
distribution, duration and timing of the artificial light to which
wild plants are exposed. This is not straightforward, as any
comparison of light levels in the environment is somewhat

complicated by high degrees of temporal and spatial hetero-
geneity, and the wide range of spectral power distributions of
lighting systems in use (Gaston et al. 2012). Furthermore,
there is no single measure of light intensity that is suitable for
quantifying the varying physiological effects of artificial light
on plants. In physical studies, the intensity of solar energy on
a surface (solar irradiance) is typically measured as an energy
flux density with SI units of W m�2. These radiometric units,
which measure power from the electromagnetic spectrum (in-
cluding light), are distinct from photometric units, which
describe the measurement of light in terms of its perceived
brightness. Hence, the visible light flux on a surface is
described in terms of illuminance, rather than radiance, as not
all wavelengths are visible to the human eye. In order to con-
vert measures of irradiance to illuminance, the energy flux
must be weighted by a luminosity function, which describes
the sensitivity of human visual perception to different wave-
lengths of light between 400 and 700 nm (Sharpe et al.
2005). The SI unit of illuminance is lux (lx), equal to one
lumen (lm) per metre squared, where a lumen is the unit of
luminous flux, which is the amount of visible light emitted by
a source.
Figure 1 shows a range of illuminances measured in vege-

tation the UK. At the upper end of the scale, the leaves of
trees adjacent to street lights or in the beam of car headlights
may be exposed to thousands of lux while typical stable
ground level illuminances of roadside vegetation (directly
beneath street lights) are around 50 lux. Skyglow within cities
has been recorded at levels of 0.1–0.5 lux (Eisenbeis 2006),
and decreases with distance from central urban areas, with
detectable levels up to 10s to 100s of km (Biggs et al. 2012).
Undesirable light at night, or light pollution, is often mea-

sured in other units. To measure the brightness of the night
sky (including skyglow), astronomers often use the logarith-
mic magnitude scale, which was developed to compare the
apparent brightness of stars; for example, Sirius, the brightest
star in the sky, has magnitude �1.5 which is equivalent to an
illuminance of 10�5 lx. When used to describe the brightness
of the sky due to light pollution, measurements are typically
taken vertically for a small portion of the sky (Davies et al.
2013; Kyba et al. 2015) and expressed as brightness per solid
angle of the sky dome (magnitude per square arcsecond). A
direct conversion into a measure of illuminance is problem-
atic, however, since skyglow is strongly anisotropic, usually
much brighter towards the horizon in the vicinity of towns
and cities.
While radiometric measurements are essential for calcula-

tions of the energy balance of a surface, and photometric
measures are useful for assessing the relative brightness of
light to the human eye, in isolation neither is an ideal mea-
sure for assessing the ecological impact of light, particularly
where that light derives from sources with a range of different
spectral signatures. In this study, we use photometric units
such as lux (lx) as a standard unit of comparison for light
measurements – this has the advantage of allowing a direct
comparison to levels of illuminance required for human activ-
ity. However, we stress that illuminance is only useful as a
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proxy for the biological effects of light when information on
the spectral power distribution of light, and the action spectra
of the response, is also available. In ecological studies, the
physiological pathway, and hence the spectral sensitivity of
the photoreceptors involved, will often be unknown. Wher-
ever possible, sample spectra and/or descriptions of the type
of light source should be provided.
Correlated colour temperature (CCT) is frequently used as

a description of spectral power distribution for vision-lighting
systems. The CCT of a light source is the temperature (K) of
an ideal blackbody radiator that radiates light of a comparable
hue to the source. As a description of the spectral power dis-
tribution, and hence the biological effects, of a light source
CCT is only meaningful when the source approximates a
blackbody, as is the case with the sun, flames or incandescent
bulbs. For other light sources, CCT gives an approximation
of the aesthetic appearance of white light (from ‘cool’ blue
lights to ‘warm’ orange), but is a poor indicator of the spec-
trally dependent response of photoreceptors.
A final factor to consider when measuring light in ecologi-

cal studies is the orientation, field of view and angular
response of the sensor, compared to the geometry of light-
sensitive plant organs. Typically, light sensors have a field of
view approaching 180° and are cosine corrected, so that the
measured flux approximates that on a planar surface; com-
monly they will be mounted in situ horizontally, effectively
measuring the flux on a horizontal plane. In this case, light

sources positioned horizontally from the sensor, for example
at or near the horizon, will make a small contribution to the
measured flux. This is appropriate for a flat surface such as a
leaf parallel to the sensor plane. However, interception of
light by the organs of a plant may occur at a range of angles,
including horizontally. Depending on the nature of the pro-
cess, incident light fluxes on a horizontal plane, light on a
vertical plane or integrated flux on the surface of a sphere
may be more appropriate.

How do plants sense light?

Since the 19th century, it has been known that a plant’s
response to light can be sensitive to wavelength. Hunt (1844,
1854) identified that the extreme red portion of the spectrum
was associated with flowering and that blue light induced ger-
mination of seed, independently of the broad spectral range of
light associated with the ‘decomposition of carbonic acid’
(photosynthesis). During the 20th century, several plant pig-
ments involved in these and other responses were identified,
and action spectra for several such photoreceptor pigments
have been defined; for example cryptochrome has been shown
to respond to light between 390 to 530 nm (violet to blue/
green; Ahmad et al. 2002); phototropins respond primarily to
blue light (Christie 2007); and phytochrome primarily to red
and/or far-red light, depending on the form (Casal, Candia &
Sellaro 2014). In algae, a wide range of pigments spanning

(a)

(b)

30 lx

4800 lx

1200 lx

530 lx

300 lx

190 lx

130 lx

100 lx

75 lx

60 lx
50 lx

40 lx

 8 lx 2 lx

0 10 20

0

1

2

3

4

5

6

7

8

9

10

11

12

Distance from lamp base (m)

H
ei

gh
t a

bo
ve

 g
ro

un
d 

(m
)

10 000 100 000100 1 000100.0001 0.001 0.01 0.1 10.00001

Daylight

Twilight

Moonlight

Starlight

Car headlights

Street lighting (tree canopy)

Street lighting (grass verge)

Skyglow

Illuminance (lx)

Fig. 1. (a) illuminance measured in the
horizontal plane from a typical street light
(Phillips Cosmopolis, metal halide lamp). The
intensity of light decays rapidly with distance
to the lamp. (b) comparison of measured
illuminance from natural sources of light to
artificial light sources – axis is on a logarithmic
scale, and bars present approximate ranges
based on field measurements.
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the visible spectrum have been identified (Rockwell et al.
2014).
The best known action spectrum for plants is that of photo-

synthesis; photosynthetically active radiation (PAR), usually
defined as light between 400 and 700 nm, has an action spec-
trum defined by the absorbance spectra of chlorophyll and
carotenoids. Because photosynthesis is a quantum process, the
flux of photons, rather than energy is appropriate, and it is
usually quantified as a photosynthetic photon flux density
(PPFD) with units of lmol photons m�2 s�1. As short-wave-
length photons carry more energy than those at longer wave-
lengths, and both the sensitivity of human vision and that of
photosynthetic pigments vary considerably in their absorption
at different wavelengths, the relationship between irradiance,
illuminance and PPFD is strongly sensitive to the spectral dis-
tribution of the light source. The effect of artificial light at
night on net photosynthesis in the environment is limited due
to the low quantum flux densities associated with outdoor
lighting when compared to daylight. While theoretically urban
skyglow may be sufficient to induce a small photosynthetic
response (Raven & Cockell 2006), in practice measureable
effects on carbon fixation are likely to be limited to situations
where leaves are in very close proximity to light sources
(such as the canopies of trees around street lights), or when
artificial lighting is introduced into naturally dark situations
such as cave systems. In the latter case, the installation of
lighting in caves for tourism is often sufficient to support
Lampenflora, communities of algae, bryophytes and vascular
plants solely reliant on electric lighting as an energy source
(Lef�evre 1974; Johnson 1979) .
In addition to the use of light as an energy source for pho-

tosynthesis, plants utilize a suite of other photoreceptors in
order to sense information about their environment, the time
of day and season of the year. The photosynthetic system
itself is sensitive to light at night, providing a set of sec-
ondary pathways through which artificial light could influence
carbon fixation. Poulin et al. (2014) showed that low levels
of light from a high-pressure sodium street light, at an illumi-
nance equivalent to that observed at the shore of an urban
lakeside (6.6 lux), significantly changed several aspects of the
photobiology of phytoplankton, including decreasing the
intracellular chlorophyll a concentration and the number of
Rubisco molecules per cell. In higher plants, light quality,
even at low fluence rates, is known to affect physical charac-
teristics of the photosystem, such as leaf stomatal density, as
well as the opening of stomata (Smith 1982).
Many photoreceptors have been identified, of which three

main groups have been characterized – phytochromes, cryp-
tochromes and phototropins. Phytochromes, of which phyA
and phyB play the dominant roles, are present in plants in
two forms, Pr and Pfr. The Pr form absorbs light following an
absorbtion spectrum with a peak sensitivity at a wavelength
of around 650–670 nm, in the red portion of the spectrum; on
absorbing light, a molecule in the Pr form converts into the
Pfr form. The Pfr form has a different absorbtion spectrum,
lacking such a distinct red peak but with another peak in the
far-red, at 705–740 nm. On subsequently absorbing light (or

in darkness), the Pfr form is converted back to Pr. Each phy-
tochrome molecule thus acts as a ‘switch’, flipped from one
form to another by different wavelengths of light. Any light
source can be characterized by a ‘phytochrome stationary
state’ (PSS; Sager & McFarlane 1997), an estimate of the rel-
ative proportion of far-red absorbing (Pfr) to total (Pr + Pfr)
phytochrome within tissues at equilibrium under a stable light
source, calculated from the phytochrome cross-sectional area
for each form and the spectral irradiance of the light source.
Since daylight beneath the shade of a photosynthetic canopy
is depleted in red light relative to far-red (Franklin & White-
lam 2005), the PSS is an indication of the degree of shading
by other plants that a plant is experiencing. Phytochrome is
also used to detect photoperiod and hence plays an important
role in the initiation of phenological events such as budburst,
flowering and senescence. Flowering plants are often charac-
terized as falling into one of three groups – short-day plants,
in which flowering is initiated, advanced or promoted when a
dark night-time period is sufficiently long to allow enough
phytochrome in the Pfr form to revert to Pr; long-day plants,
in which the dark night-time period must be sufficiently short
to increase the night-time levels of Pr; and day-neutral plants
which have no detectable effect of darkness on their flowering
phenology, but rely on other environmental cues. The detec-
tion of photoperiod in plants can be very sensitive – Rivera
& Borchert (2001) provide evidence that in the tropics, where
annual variation in day length is less than one hour, photope-
riodism is still used as a seasonal cue for flowering in some
tropical trees. Early experimental work showed that even brief
exposure to red light at night can be sufficient effectively to
interrupt the detection of an unbroken dark period, and pre-
vent flowering in short-day plants, while subsequent exposure
to far-red light can reverse the effects of the interruption
(Borthwick et al. 1952). Intermittent light of certain wave-
lengths may thus be effective in shortening the perceived day
length – indeed, cycling pulses of lights for just six minutes
every half hour can be as effective as continuous light (Run-
kle et al. 1998; Blanchard & Runkle 2010). Low levels of
lights are often effective in inducing a response. Whitman
et al. (1998) found that effects on flowering saturated at
levels as low as < 0.05 and 0.4 mol m�2 s�1 PPFD from a
broad-spectrum white light source, roughly equivalent to
< 3.5–28 lux, and well within levels recorded in roadside veg-
etation. By contrast, Ishikawa et al. (2009) found a fluence-
dosage response in rice in which the degree to which flowering
was suppressed increased with the light intensity supplied.
Detection of photoperiod in plants is not always, if ever, a

simple function of the photoreversible forms of phytochrome,
however. In the facultative long-day plant Arabidopsis thali-
ana, night interruptions from red, far-red or blue light are all
effective in inducing flowering (Goto, Kumagai & Koornneef
1991). Cryptochromes, sensitive to light in the UV-A, violet
and blue portions of the spectrum, act together with phy-
tochromes to regulate the circadian clock, keeping daily
rhythms set to a 24-h cycle of light and darkness. Photoperi-
odic control of flowering integrates both the circadian clock,
and sensing of the length of the dark period; thus, there is an
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interaction between the detection of daily and seasonal cycles,
and between photoreceptor systems. The cryptochrome/pho-
tolyase family of photoreceptors also plays critical roles in
controlling a wide range of light-induced responses in germi-
nation, growth and development, and shade avoidance (Kami
et al. 2010), as well as DNA repair (Fortunato et al. 2015). A
further blue light-sensitive receptor protein, phototropin, is
responsible for phototropism, the growth of plant organs
towards a light source.
Figure 3 shows the spectral power distribution of five types

of lighting frequently used in outdoor street lighting, along
with the relationship between PPFD (photosynthesis), the PSS
(phytochrome) and the relative amount of blue light between
350 and 500 nm (cryptochrome and phototropins).
The detection of light in plants is complex, often relies on

more than one physiological pathway and may have partial
redundancy, so that processes induced by one photoreceptor
system may also be induced or repressed by another system
(Song, Ito & Imazuimi 2010). Furthermore, processes that
rely on light-induced responses such as photoperiodism in
one species or phenotype may be linked to other environmen-
tal cues in others (Basler & K€orner 2012).

How do plants respond to artificial light at
night?

DIRECT EFFECTS

With the exception of a handful of original papers and the
review of Briggs (2006), surprisingly few studies apply
knowledge of the physiological effects of light on plants to
examining the effects of exposure to artificial light in the
environment. This is particularly surprising as experimental

studies have shown that relatively low levels of light (Whit-
man et al. 1998) or light over a short duration (Runkle et al.
1998) can be effective in influencing the response of plants to
photoperiod – such levels are frequently observed under con-
ditions of night-time lighting in the environment (Figs 1 and
2). Furthermore, the high red to far-red ratio of most common
forms of outdoor lighting compared to sunlight make them
particularly effective in disrupting detection of photoperiod
through the phytochrome pathway, while blue-rich LED light-
ing, which is rapidly being adopted in many regions, emits
strongly in the region of the spectrum to which cryptochrome
and phototropins are sensitive (Fig. 3). In the context of light
pollution, these observations suggest several key areas for
research, namely – How widespread are ecologically signifi-
cant physiological effects of artificial light on plants in the
environment? What is the relative contribution of ambient
low-level light (e.g. skyglow), continuous direct illumination
(e.g. street lighting) and intermittent pulsed light (e.g. vehicle
headlights)? And can ecological impacts be mitigated by
selecting light sources with specific spectral characteristics?
Some of the earliest documented effects of artificial light at

night on plants in urban environments concerned the retention
of leaves on deciduous trees in the vicinity of street lights
(Matzke 1936). Certain tree species appear to be more sensi-
tive to direct illumination than others, but it is a common
phenomena in several species planted as urban roadside trees.
In North America, this phenomenon has been recorded in
Populus canadensis, Salix fragilis (Matzke 1936), Populus
nigra, Ulmus americana (Schroeder 1945) and Liquidambar
styraciflua (Briggs 2006). In both Europe and North America,
it is widely observed in Platanus species (Matzke 1936;
Schroeder 1945; Briggs 2006; Fig. 4), and in Europe, it has
been observed in Aesculus hippocastanum and Betula pendula
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Fig. 2. Illuminance from car headlights. (a)
Measured light at set distances in front of a
vehicle (2013 Vauxhall Astra) with high
intensity discharge (HID) headlights. (b)
variation in illuminance measured in roadside
vegetation between sunset and sunrise on a
rural main road with no fixed lighting. Peaks
represent pulses of light from passing
vehicles. Typically, light from these sources
has a high degree of variability, but can
reach much higher magnitudes than those
under street lights (see Fig. 1).
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(Sybille Schroer, pers. obs.). Artificial light may also have a
measureable effect on spring budburst in urban trees; at the
University of Exeter’s Cornwall Campus, near Falmouth,
U.K., budburst occurred up to two weeks earlier on branches
of large-leaved lime trees in the vicinity of LED lighting
(Fig. 5). In New Zealand, Metrosideros excelsa flowers more
profusely next to street lights than between them (Jacqueline
Beggs, pers. obs.) While such dramatic effects on budburst,
flowering and leaf colouring and abscission are frequently
observed in urban trees under direct illumination, very few
scientific studies have described this phenomenon, and the
effects on tree species that are rarely found in urban situa-
tions, and under lower levels of diffuse ambient light and on
herbaceous species with less obvious phenological stages are
poorly known. While these phenomena have been described
predominantly in temperate trees, in seasonal tropical environ-
ments, budburst in trees may respond to changes in day
length of 30 min or less (Rivera & Borchert 2001) and could
be highly sensitive to artificial light at dawn and dusk.
Such changes in leaf and flowering phenology may have

significant effects on the health, survival and reproduction of

plants. Matzke (1936) reported injury from low temperatures
in leaves retained on urban trees under street lights. The tim-
ing of budburst and leaf fall of deciduous trees determines the
exposure to frost damage of photosynthetic tissue (Hanninen
1991; Cannell 1997); it may also determine the exposure to
fungal pathogens in spring (Marc�ais, Kavkova & Desprez-
Loustau 2009) and to herbivores which time their emergence
or activity to the emergence of leaves (Visser & Holleman
2001). The timing of budburst is often determined by interac-
tions between temperature (both spring warmth and winter
chilling) and photoperiod. Photoperiod is thought to be criti-
cal in late-successional species, which tend to trigger budburst
later in the spring than early-successional species, which are
triggered predominantly by temperature and insensitive to
photoperiod (Basler & K€orner 2012; K€orner & Basler 2010).
Cathey & Campbell (1975a,b) found that a wide variety of

ornamental garden plants were sensitive to artificial light at
night, testing a variety of different light types and inducing
marked effects on flowering and growth rates at illuminance
levels comparable to those at which garden plants are fre-
quently exposed (< 5 lux). Both suppression and induction of
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Fig. 3. (a–d) black lines show the measured
spectral irradiances of four contrasting types
of street lights currently used on roads in
Cornwall, UK; ‘white’ LED, metal halide,
high-pressure sodium and low-pressure
sodium. For comparison the grey line shows
a measured spectral irradiance of daylight on
a cloudy day; the dashed grey line shows the
irradiance under a dense canopy of leaves on
the same day. (e, f) show standardized
biological spectral response functions; in e
the black line represents the relative quantum
efficiency (RQE) of photosynthesis, the grey
lines show a standard luminosity function for
human photopic (solid line) and scotopic
(dashed line) vision (CIE 1951; Sharpe et al.
2005), representing the sensitivity of the
human eye to light under normal and low-
light conditions. In (f) the black lines
represent the photochemical cross-sectional
area of two forms of phytochrome Pr (solid
line) and Pfr (dashed line). The grey shaded
area (Cry) represents the approximate region
of the spectrum to which cryptochrome is
sensitive. (g, h) estimate the comparative
impact of the four light sources on plant
photoreceptors; (g) shows the phytochrome
photostationary state (PSS), a measure of the
equilibrium ratio of phytochrome in its Pr
and Pfr forms under constant illumination
from each light source; (h) shows the relative
quantum count of light within the
cryptochrome-sensitive region per unit
illuminance, standardized so that the value
for sunlight equals 1.
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flowering, and enhanced and supressed growth, were found,
depending on species, and the response was greatest under
light sources with a high proportion of red light and a high
red/far-red ratio (such as high-pressure sodium lighting).
Effects of light pollution on agricultural crops have also been
reported, although little scientific work has addressed the
issue; Briggs (2006) reports that bright floodlights from an
Ohio prison prevented normal development of Glycine max
(soya beans) in nearby fields, and Sinnadurai (1981) reported
that Zea mays (maize) crops alongside main roads in Accra,
Ghana, grew rapidly but failed to flower after high-pressure
sodium lamps were installed. Less obvious effects in wild
species may go unnoticed – in an experimental system, we
have found that Lotus pedunculatus, a species in which flow-
ering is known to be sensitive to day length (Forde & Tho-
mas 1966), produced between 10 and 25% fewer flower
heads under night-time artificial light treatments simulating
street lighting (Bennie et al. 2015b).

DARK RECOVERY FROM STRESS

A period of darkness can be crucial for repair and recovery
from environmental stresses. Tropospheric ozone is a major

global pollutant produced by photochemical reactions of pre-
cursors (nitrogen oxides and hydrocarbons) associated with
road traffic (Munir, Chen & Ropkins 2012). Tropospheric
ozone can have severe effects on vegetation (Ashmore 2005),
including foliar injury. Plants at northern latitudes often dis-
play more signs of foliar injury, a phenomenon attributed to
long day lengths impairing repair and defence processes
(Vollsnes et al. 2009). Experimental studies have shown that
constant artificial light at night at levels reported at approxi-
mately 1 lmol m�2 s�1 PPFD (using a fluorescent lamp,
equivalent to around 74 lux and within the range of exposure
of roadside vegetation under street lighting; Fig. 1) signifi-
cantly increased foliar injury due to ozone in three clover spe-
cies (Futsaether et al., 2009). This process is probably
regulated by the phytochrome pathway as it can be induced
by short periods of exposure to red light during the night (5–
30 min) and reversed by subsequent exposure to far-red light
(Eriksen et al. 2012). The combined effects of ozone damage
and night-time illumination (including constant illumination
from street lights or short bursts and high-intensity light from
vehicle headlights) on vegetation near roads have not been
studied.

PLANT–ANIMAL INTERACTIONS

In addition to direct effects on plants, artificial light at night
is likely to influence interactions between plants and animals,
potentially in complex ways. For example, light has been
shown to affect caterpillars of the moth Mamestra brassicae
by decreasing both male caterpillar and pupal mass and
reducing the duration of pupation in both sexes (van Geffen
et al., 2014), as well as reducing activity and mating in Oper-
pphtera brumata (van Geffen et al. 2015). Winter moths are
important herbivores of deciduous trees, causing defoliation
in severe outbreaks (Wesołowski & Rowi�nski 2006). They
typically show strong synchrony in egg hatching with spring
budburst in host trees such as Quercus robur, but environ-
mental change may disrupt this synchrony, leading to mis-
matches in timing between the insect and its host (Visser &
Holleman 2001; Van Asch et al. 2007). Such mismatches in
phenology are likely to occur when species respond individu-
alistically to temperature and photoperiod. Disruption of sea-
sonal light cues by artificial light, population level changes or
aggregation of individuals could modify interactions including
herbivory, pollination and seed dispersal. Both top-down and
bottom-up effects are possible, although few studies have
explicitly looked for evidence of such effects; in an experi-
mental system, artificial light suppressed flowering in the
legume Lotus pedunculatus, apparently leading to a subse-
quent suppression in numbers of the aphid Acyrthosiphon
pisum feeding on flowering shoots (Bennie et al. 2015b).
Street lighting can cause local aggregations of predatory
invertebrates (Davies, Bennie & Gaston 2012), but the subse-
quent effects on herbivorous invertebrates and on plant spe-
cies are unknown.
Many plant species rely on nocturnal or crepuscular polli-

nators and are adapted to some extent for night-flying flower

Fig. 4. Retention of leaves into winter on deciduous trees in the
vicinity of street lighting. The images show a London plane (Platanus
x acerifolia) tree in Liverpool city centre on three dates in 2014. The
entire tree is illuminated by artificial light, but the right hand side
receives direct illumination from street lighting. Autumn coloration
had not taken place and the most brightly lit portion of the crown
retained leaves well into December. Photo: Steven Rawlings.

© 2016 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society., Journal of Ecology

Ecological effects of artificial light at night 7



visitors (Baker 1961). Macgregor et al. (2014) review the
potential effects of light pollution on pollination by nocturnal
Lepidoptera, a group that are strongly attracted to artificial
light (Eisenbeis 2006; van Langevelde et al. 2011; Warrant &
Dacke 2011). The effects are potentially complex – light may
affect Lepidoptera at the population level through effects on
reproduction and mortality and modify their phenology, as
well as by modifying behaviour. Where ‘flight-to-light’ beha-
viour occurs, and insect pollinators are attracted to light, it is
unclear at present to what extent lit vegetation will have a
higher concentration of active pollinators, or whether the pres-
ence of light will act as an ecological trap or have a disrup-
tive effect, reducing pollination rates (Eisenbeis 2006;
Macgregor et al. 2014). In tropical and subtropical regions,
bats may be significant pollinators of certain groups of flow-
ering plants and of particular importance in long-distance pol-
len dispersal (Fleming, Geiselman & Kress 2009), as well as
being important in seed dispersal (Fleming & Heithaus 1981).
Light can act as a barrier to movement for many species of
bats (Stone, Jones & Harris 2009, 2012), effectively fragment-
ing landscapes and potentially acting as a barrier for gene
flow or dispersal in plants (Lewanzik & Voigt 2014). Effects
on pollination may not be limited to nocturnally pollinated
plants – artificial light may disrupt the behaviour and demog-
raphy of diurnal as well as nocturnal animals, and habitats
around roads are increasingly recognized as key habitats for
pollinators (Hanley & Wilkins 2015).

Summary

The effects of artificial light at night on wild plants and natu-
ral or semi-natural ecosystems are of potential ecological sig-
nificance world-wide. However, since the review of potential
physiological mechanisms by Briggs (2006), surprisingly little
research has been published on the impacts of artificial light
in the as an environmental pressure for plants. There is rela-
tively little information available concerning how pervasive
are the ecological impacts of artificial light at night, the rela-
tive contributions of diffuse, direct, constant or intermittent

light sources and how any adverse effects may be mitigated.
We suggest that plant ecologists should address this gap in
knowledge by focusing on four key issues. First, the night-
time light environment of plants in urban, suburban and natu-
ral ecosystems needs to be better characterized. Plants are
exposed to extremely high degrees of heterogeneity in terms
of the intensity, spectral power, timing and duration of light
to which they are exposed, which complicates our understand-
ing of how widespread ecological effects may be. Secondly,
our understanding of the physiological effects of light need to
be expanded into an understanding of the ecological effects,
and we should search for population and community-level
impacts as well as impacts at the individual level. Thirdly,
interactions between direct and indirect effects of artificial
light, for example those mediated through herbivores, pollina-
tors, pathogens or competitors, should be explored. Fourth,
there is a need to put studies of the effects of artificial light
into the context of other stressors such as eutrophication, cli-
mate change, invasive species, chemical pollution, habitat
fragmentation and invasive species. Artificial light will rarely
affect wild plants in isolation, and there is a need not only to
understand the relative importance of light pollution among
other anthropogenic drivers of change, but also to investigate
the combined impact of multiple stressors; roadside vegeta-
tion, for example, may act as a corridor for the dispersal of
non-native species (Tyser & Worley 1992) and will be
exposed to chemical pollution such as tropospheric ozone in
addition to being exposed to artificial light. There is consider-
able potential for making progress in understanding the
impacts of this increasing, but poorly understood environmen-
tal pressure.
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Fig. 5. Leaf out date (recorded when 50% or more of the buds nearest the apex have fully unfolded leaves) of five shoots from each of five
mature small-leaved lime Tilia cordata trees adjacent to a footpath lit by white LED lighting on the university of Exeter’s Penryn Campus in
2014 (one tree and lighting fixture illustrated on 1st April). Night-time illuminance levels were measured at each shoot on an overcast night at
new moon prior to leaf unfolding. Each tree is represented by a different symbol, dashed lines represent regression lines for each individual tree,
solid line represents overall regression line (significant at P < 0.01 with tree as a random effect). Photo: James Duffy.
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