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Mean value theorems for L-functions over
prime polynomials for the rational function field
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and JONATHAN P. KEATING (Bristol)

1. Introduction. It is a much studied problem in analytic number the-
ory to obtain asymptotic formulae for the moments of families of L-functions.
For the family of quadratic Dirichlet L-functions L(s, x4), where x4 is a real
primitive Dirichlet character modulo |d| defined by the Kronecker symbol
Xxd(n) = (%), the problem is to establish asymptotics for

(1.1) S L(1/2.xa)",
d<X

in the limit as X — oo and where the sum is over positive fundamental
discriminants d (the corresponding sums over negative values of d are also
of interest). For k = 1,2, Jutila [8] established the asymptotic formulae

(1.2) S T L(1/2,xa) ~ a1 X log X
d<X
and
(1.3) 3T L(1/2,xa)? ~ e2 X (log X),
d<X

where ¢; and co are computable constants given in terms of Euler products
and factors involving the Riemann zeta function. For £ = 3, Soundarara-
jan [12] proved that

(14) Z L(1/2’ XSd)3 ~ C3X(10g X)ﬁa
d<X
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where d is an odd, square-free and positive number, so that ygs is a real,
even primitive Dirichlet character with conductor 8d, and c3 is a constant.
Recently, Soundararajan and Young [13] established under the Generalized
Riemann Hypothesis an asymptotic formula for the fourth power moment
for this family of L-functions, i.e.,

(1.5) 3T L(1/2, xs0)" ~ e4X (log X)1°
d<X

where ¢4 is a computable constant. No other asymptotic values are known
for the mean values of quadratic Dirichlet L-functions at the centre of the
critical strip.

Using results from Random Matrix Theory, Keating and Snaith [9] have
put forward a conjecture for the leading order asymptotic for all moments of
quadratic Dirichlet L-functions which agrees with the results listed above.

CONJECTURE 1.1 (Keating—Snaith). For k fized with (k) > 0, as

GUA DVTHRFD  esye
Jaorr )T e ’

(1.6) + Z (1/2,x8a)" ~ ax,sp

O<d<X
as X — oo, where

(1—1/p)kt+D)/2 /(1 -1
=2 k+2/2H 1/f1/p (( /\/17)

Fr+1/yp)7F 1
2 +p>

and G(z) is Barnes’ G-function.

Conjectures for the lower order terms are presented in [5] and [6].

A similar problem involving moments of quadratic Dirichlet L-functions
was considered by Goldfeld and Viola [7], who have conjectured an asymp-
totic formula for

(1.7) >, L/2,x),

p<X
p=3 (mod 4)

n

where x,(n) = (5) is defined by the Legendre symbol. In this context Ju-
tila [8] established the following asymptotic formula:

(1.8) > (logp)L(1/2,xp) = leogX + O(X (log X)?).
p<X
p=3 (mod4)
It is natural to ask about higher moments for the family of quadratic Dirich-
let L-functions associated to x,. This problem has the same flavour as that
involving the mean values of quadratic Dirichlet L-functions over fundamen-
tal discriminants and we formulate it as follows:
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PROBLEM 1.2. FEstablish asymptotic formulas for

(1.9) Y L1/20)"

p<X
p=3(mod4)

when X — oo and k > 1.

In this paper we study the function field analogue of this problem in
the same spirit as the recent result obtained in [3] for the first moment of
quadratic Dirichlet L-functions over the rational function field Fy (7). Our
aim is to obtain asymptotic formulae for the first and second moments for
the function field analogue of Problem as developed in the next section.
Higher moments are studied in [2].

2. Statement of results. Before stating our main results we estab-
lish some notation and some preliminary facts about quadratic Dirichlet
L-functions for function fields.

2.1. Zeta function of curves. We start with F;, denoting a finite field
of odd cardinality, A = [F¢[T] the polynomials in the variable T" with coeffi-
cients in Fy, and k = [F(T) the rational function field over F,. Let C be any
smooth, projective, geometrically connected curve of genus g > 1 defined
over the finite field F,. Artin [4] defined the zeta function of the curve C as

> u” 1
(2.1) Zo(u) = exp<n§:jl Nn<c>n), < 2

with N, (C) := Card(C(F,;)) the number of points on C' where the coordi-
nates are in a field extension Fyn of F, of degree n > 1. It turns out that, as
shown by Weil [14], the zeta function associated to C'is a rational function
of the form

Lo (u)
(1—u)(1l—qu)’
where Lo (u) € Z[u] is a polynomial of degree 2¢g that satisfies the functional
equation

(2.2) Zo(u) =

(2.3) L) = (qu?)Lo (1)

qu
The Riemann Hypothesis for curves over finite fields, established by

Weil [14], asserts that the zeros of L¢(u) all lie on the circle |u| = ¢~ /2, i.e.,
29
(2.4) Lo(u) = [J(1 = oju)  with |a;] = /g for all j.

Jj=1
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2.2. Essential facts about F,[T]. In this paper we denote the norm
of a polynomial f € A by |f] := q38) for f # 0 and |f| = 0 for f = 0, and
we call a monic irreducible polynomial P € A a prime polynomial.

The zeta function of A = F,[T] will be denoted by (a(s) and is defined
in the following way:

1 e
(2-5) CA(S) = Z \f|5 = H (1 _ ’p’ ) 1, 9{(3) > 1.
feA P monic
f monic irreducible

In this case the zeta function (4(s) is simply given by

1
(2.6) Ca(s) = T
The fact that this has a simple pole and no zeros leads to the analogue of
the Prime Number Theorem for polynomials in A = [Fy[T:

THEOREM 2.1 (Prime Polynomial Theorem). If w4(n) denotes the num-
ber of monic irreducible polynomials in A of degree n, then

2.7) ram) =L ¢ o(qn/2>.

n n

2.3. Quadratic Dirichlet L-function for yp. Let P € A be a monic
irreducible polynomial. We denote by xp the quadratic character defined in
terms of the quadratic residue symbol for F,[T7:

(2.8) win = (%)

where f € A. For more details see [10, Chapters 3, 4]. We will make use of
the quadratic reciprocity law for polynomials in A:

THEOREM 2.2 (Quadratic reciprocity). Let A, B € Fy[T] be relatively
prime and A # 0 and B # 0. Then

(2.9)
AN _ (B Ly aesayaes) _ (B _pywa-naas-ne,
B A A

The L-function attached to the character xp is defined by

o xp(f) _xr(Q) - <
(2.10)  L(s,xp) := 2 = er;[mc (1 aF > . R(s) > 1.

f monic irreducible

Henceforth we consider P to be a monic irreducible polynomial such that
deg(P) is odd and ¢ = 1 (mod 4). Then [10, Propositions 4.3, 14.6 and 17.7]
L(s, xp) is a polynomial in u = ¢~* of degree deg(P) — 1 and

(2'11) L(SaXP) :‘C(uaXP) :LCP(U)7
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where L¢,(u) is the numerator of the zeta function associated to the hy-
perelliptic curve given in affine form by

(2.12) Cp:y* = P(T),
with
(2.13) P(T) =T*" 4 ag,T* + -+ a1T + ap

a monic irreducible polynomial in A of degree 2g + 1.
The following proposition is quoted from Rudnick [I1] and the main
ingredient to establish it is the Riemann Hypothesis for curves,

PROPOSITION 2.3. If f € A is monic, deg(f) > 0 and f is not a perfect

square then

P prime
deg(P)=n

(2.14)

2.4. The main results. We now present the main results of this paper.

THEOREM 2.4. Let Fy be a fized finite field of odd cardinality with ¢ =1
(mod 4). Then for every ¢ > 0 we have
P
(215) Y (og, IPDL(L/2 xp) = L (1og, [P+ 1)+ O( P+,
P monic
irreducible
deg(P)=2g+1
This theorem also appears as part of the Ph.D thesis [I] of the first
author. This is the exact function field analogue of Jutila’s result (|L.8]) for
number fields. Note that the function field theorem above has a saving in

the error term when compared with the number field result (|1.8)).

THEOREM 2.5. Using the same notation as before, for a fized finite
field Fy we have

(2.16)
11
> L(1/2,xp)? = — ——|P|(log, | P|)? P|(log, | P])).
P rronic (1/2,xp)" = 51 ooy 1T logq [P+ O(1P|log, [ P]))
irreducible

deg(P)=2g+1
We have the following corollary:

COROLLARY 2.6.
|P|
2.17 1> -—.
(217) 2 (o, |])?

P monic
irreducible
deg(P)=2g+1

L(1/27XP)7£0
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Proof. From Theorems [2.4] and [2.5 we have

(2.18) Y. L(1/2.xp) ~ k[P
P monic
irreducible
deg(P)=2g+1
and
(2.19) > L(1/2,xp)* ~ ka| P|(log, | P|)?,

P monic
irreducible
deg(P)=2g+1

where k; and ks are the constants given in the above theorems. By the
Cauchy—Schwarz inequality it follows that the number of monic irreducible
polynomials P with deg(P) = 2g + 1 such that L(1/2, xp) # 0 exceeds the
ratio of the square of the quantity in to the quantity in . "

3. The first moment. Setting D = P in Lemma 3.3 from [3], we may
write L(1/2,xp) as

(3.1)  L(1/2,xp) = Z > xe(fi)g "/2+Z > xelf2)e

n=0 f; monic m=0 fy monic
deg(f1)=n deg(f2)=m

We need to average both double sums on the right-hand side of (3.1)) over
monic irreducible polynomials of degree 2g 4+ 1. However, they are clearly
related and we will only need to calculate one of them to obtain the result

for the other. Therefore we will focus on the average of the first double sum
in (3.1)). We can write this as

32) > > xe(f)g?

n=0 f; monic

deg(f1)=n
S DU SERTATLLED SED SERIAY
n=0 fi monic n=0 f1 monic
deg(f1)=n deg(f1)=n

fi=0 fi0

3.1. Square contributions—the main term. In this section we focus
our attention on the average of the first double sum on the right-hand side
of (3.2)). The main result is

PROPOSITION 3.1.

> Z > xe(f)g = log|P|‘P|([g]+1>+0(10\g/@|g>’

Pmonic n=0 f; monic q |

irreducible d —
deg(P)=2g+1 G%CEQ)D "

where [z] denotes the integer part of x.
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Proof. We have

> Z > xe(fi)e qun/Q > Z xp(l?)

'P?Onﬁ n=0 f1 monic 2‘ J lI(n) nic /o Pd bl
irreducible = n eg(l)=n irreducible
deg(P)=2gt1 BN =2 o) 2y
= Z BN ORD U
I monic Pm
Q\n deg(l )—n/2 1rredu01ble
deg(P)= 2g+1
(PD)=
g
—n/2
P SUAED DD DI
n=0 I monic P monic
2|n deg(l)=n/2 _irreducible
deg(P)=2g+1

where we obtain the last line from the fact that deg(P) = 2g + 1 > deg(l).
Making use of the Prime Polynomial Theorem [2.1] we can write

Yoo > xelfg™?

Pmonic n=0 f; monic
irreducible deg(f1)=n

deg(P)=2g+1 =0
g
_ Zq_”/Q Z 2ot o got1/2
i 29 +1 29 +1

n=0 ! monic

2|n deg(l)=n/2

q29+1 l9/2] g+1/2 l9/2]
P

2,9 1 m =0

e ol

In an analogous way we can prove

PROPOSITION 3.2.

g—1
o> > xelf)g ™

Pmonic m=0 fs monic
I <[9_1} 1) 9< \/|]| g>.
log, |P| 2 log, | P|

irreducibl =
sagAEple, dealfa)=m
3.2. Contributions of non-squares. In this section we prove the fol-

lowing result.
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PROPOSITION 3.3.

39/2+1/2
_ q
> Y Y wtrt=o( ).
P monic n=0 f; monic q

irreducible de =n
deg(P)=2g+1 ?EJ;)D

Proof. Let fi € Fy[T] be a fixed monic non-square polynomial such that
deg(f1) < deg(P) = 2g + 1. By the quadratic reciprocity law, Theorem
we have

(3.3) <£> — (_1)%(2%1 deg(f1) (2)

q—1
Note that the sign (—1) 2 29D deef1 ig the same for all monic irreducible
polynomials P of degree 2¢g + 1, so

oo | O s )

P monic P monic
irreducible irreducible
deg(P)=2g+1 deg(P)=2g+1

Thus we can write

> i > XP(fl)q_n/2<<i S Y (J;;)‘

) Pﬁlor}]iacl n=0 f1 monic n=0 f1 monic P glor}%)cl
irreducible de =n de =n irreducible
deg(P)=2g+1 %e&’;i)g %cg’;)u deg(P)=2g+1

and using the bound for character sums over prime polynomials given in
Proposition [2.3] we have

’ /2 ’ /2 g7t/
-n —-n
SIS DERTATELDS YRS SRR
. ngcrilll;le n=0 f; monic n=0 f1 monic
del&%)ZQQ-l—l de%f(lj;[)j:n deg(f1)=n

\Y ‘P’ qg/2. -

log, |P|

We can prove a corresponding estimate for the dual sum in (3.1)) using
the same approach. In the end we have

PROPOSITION 3.4.
g-1 3g/2+1/2
Z Z Z xp(f2)g ™ = O<qu|P‘9>'
Pmonic m=0 fs monic gq

irreducible de =m
deg(P)=2g+1 gf(zf;?]
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3.3. Proof of the theorem for the first moment. We are now in a
position to prove Theorem [2.4

Proof of Theorem [2.4. We can write

Y. (logg|PDL(1/2,xp)

P monic
irreducible
deg(P)=2g+1

g g—1
= Y g PH(X X xela Y. Y xe(f)a ).

P monic n=0 f; monic m=0 fs monic

irreducible — =
glxeducible | deg(f1)=n deg(f2)=m

Making use of Propositions [3.1 we establish that

1

S tog, PDza/2xe) = 1PI( |] + [£5 | +2) o)
P monic
irreducible

deg(P)=2g+1

and using
g g—1
3.5 = I |l =g—1
6 HE R
and
log  |P 1
(3.6) g—i—l—ngH—i-z

we conclude the proof of the theorem. m

4. The second moment. In this section we prove Theorem

4.1. Secondary lemmas. We will need some auxiliary lemmas before
we proceed to the proof of Theorem

The starting point is a representation for L(1/2,xp)? which can be
viewed as the analogue of the approximate functional equation for a quadra-
tic Dirichlet L-function (Lemma 3 in [8]). In this case there is no error term
and the formula is exact.

LEMMA 4.1. Let xp be the quadratic Dirichlet character associated to
the monic irreducible polynomial P € A. Then

xp(f1)d(f xp(f2)d(f
41 La2xeP= 3 %/glu > %/22)
f1 monic f2 monic
deg(f1)<2g deg(f2)<2g—1

where d(f) is the divisor function for polynomials f € A (see [10] p. 15]).
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Proof. We have L(s,xp) = Lc, (u). So

1 2
(12) Lo = (@) Loy )

qu
Writing Le, (u)? = 3229 a,u” we obtain

4g

4g 4g
(43) Zanun _ (qu2)g(qu2)g Z amq "™ = Z amq29—mu4g—m
n=0 m=0

Equating coefficients we find that a, = a4g,nq"_29 and so we can write
2g—1
(4.4) Lo, (u Z anu”™ + ( qu Z amq "u ™.

From L(s,xp)? we see that the coefficients a,, are given by

f monic
deg(f)=n
where
(4.6) af)y= > L
hiho=f

h1,ho monic

—-1/2

Therefore writing s = 1/2, i.e. u = ¢ , in (4.4)) proves the lemma.

Our next lemma is quoted from Rosen [10, Proposition 2.5].

LEMMA 4.2.
(4.7) > dlf) < g™
f monic
deg(f)=n

The next lemma is a minor modification of Theorem 17.4 in [10].

LEMMA 4.3. Let f : AT — C and let (s(s) be the corresponding Dirichlet
series. Suppose this series converges absolutely in the region R(s) > 1 and
is holomorphic in the region {s € B : R(s) = 1} except for a single pole of
orderr at s = 1, where AT denotes the set of monic polynomials in F,[T| and

b= {8 €T g S S log@}'

Let o = limg1(s — 1)"C¢(s). Then there is a 6 < 1 and constants c_; with
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1 < i <7 such that
T .
n+i—1 ,
@ e (L e (")) o,
deg(D)= =1
The sum in parentheszs s a polynomial in n of degree r—1 with leading term

log(q)" a1

(r—1)!
LEMMA 4.4. Let f be a monic polynomial in A =F4[T]. Then
1
(4.9) Y. df) =5 s myd"n® + Og"n).
f monic A( )
deg(f)=n

Proof. We consider the Dirichlet series associated to d(f?):

2 d(p*  d(P*
o= 32 G = T (0 o+ o )

f monic P monic
irreducible
-3 1 s)3
-1 (1 i <|P|s<|P|s EVERN (T 1>2>> - ?Ez)s)-
P monic A
irreducible

From ([2.5) the sum converges absolutely for 2i(s) > 1, is holomorphic on
the disc {u = ¢~ € C: |u| < ¢~} for some § < 1, and (s(s) has a pole of
order 3 at s = 1. We now apply Lemma [4.3] to obtain

(4.10) Y d(?) = logQ) ag"n? + O(g"n),
f monic
deg(f)=n
where
3 _
(4.11) o= lim(s —13ealsl __a-1

s—1 Ca(2s)  qlloggq)® "

4.2. Preparation for the proof. From Lemma L(1/2,xp)? can
be written as two similar sums. Our main aim is to average, over the prime
polynomials, the first sum on the right-hand side of (4.1). We start by
writing

(4.12) yo  xeldh)

f1 monic |f1’1/2
des(f1)<2g
B xp(f1)d(f1) xp(f1)d(f1)
BRI Zan P P e
f1 monic 1 f1 monic 1
deg(f1)<2g deg(f1)<2g

fi=0 fi£0
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4.3. The main term. The following proposition is established in this
section.

PROPOSITION 4.5.

xp(f1)d(f1)
P%wc flgmc |f1|1/2

irreducible <
deg(P)= 2g+1deg(f1) 29

11 P
12 Ca(2) log, | P]

| P| 2>
+1)(29 + 1 +0< .
glg+1)(29+1) logq|P|g

Proof. We have

Z Z XP’fl‘l/Q )_Z e Z d(f1) Z xp(f1)

S s I o O
deg(P)=2g+1 gfllm g SBL1/=n deg(P)=2g+1
g
= g™ > At > L
m=0 I monic P monic
deg(l)=m irreducible

deg(P)=2g+1
We again make use of the Prime Polynomial Theorem to obtain
Z Z xp(f1)d(f1)
1/2
P monic f1 monic ’fl‘ /

irreducible <
deg(P)=2g+1 deg(fl) 29

_ |7
_1ogq\PyZ S oA +0<1qu‘P‘Zq > d(12)>.

[ monic [ monic
deg(l)=m deg(l)=m

Invoking Lemma [4.3] we obtain the following equation:

xp(f1)d(f1)
Z Z ’f1‘1/2

Pfinoni)c1 f1 monic
BT s
g g
_ P11 S m? (|P\ Z) <\/|P|Zm2>
log, [P| 2 €a(2) ~= log, |P| log, |P| =
Pl 1 1

P >
= — +1)(2g+1) + O< . m
log, |P] 12 a9 T DRI+ DO 559

In a similar way we can prove
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PROPOSITION 4.6.

3 3 xp(f2)d(f2)
1/2

P Z@onéﬁ f2 monic |f2‘ /

ack( )21 )20

b PR )
O(log’ﬂmg?)'

4.4. Contributions of non-squares. The main result in this section
is the following proposition.

PROPOSITION 4.7.

P anﬁ f1 monic
irreducible de <9
deg(P)=2g+ gf(lf;é)EI g

Proof. We have
(f1)d(f1) d(f1)

P monic f1 monic f1 monic

> ()

P monic

irreducibl irreducibl
deg(%)uclqi deg]slf;é)<29 degf(lf;é)DSQg deg(%)Ii:Qgil
V|P|
29 +1 Z n/2 Z d fl
f1 monic
deg(f1)=n

TR + 1 2”2 " < |Pla.

where we have used Proposition 2.3]in the ﬁrst hne and Lemma [£.2] in the
second. m

Similarly we have

PROPOSITION 4.8.

>y kgl oo

P monic f2 monic

irreducible <92g—1
deg(P)=2g+1 eg(?;mg

4.5. Proof of the theorem for the second moment. We are finally
in a position to prove Theorem
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Proof of Theorem [2.5, We can write
> L(/2,xp)

P monic
irreducible
deg(P)=2g+1

= xr(f)d(f1) XP(fW(f?))
: Pg):nic < flgo:ﬂic |f1|1/2 " fzgo:nic |f2‘1/2 ‘

irreducible < <2g—

Making use of Propositions we establish that

1 1 |P|
S L2 =

P 12 €a(2) log, |P|
irreducible

deg(P)=2g+1

om0 [ (o)

+0O(/Plg).

We use

[QQ;KH [2g2_1D<1+2[292_1D = (g - Dg(29 - 1)

9(g +1)(29 + 1) + (9 — 1)g(29 — 1) = 4¢° + O(9)
and after some simple arithmetical manipulations this gives the desired for-
mula. =

and
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