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ABSTRACT

The dynamics of dry atmospheric general circulation model simulations forced by seasonally varying Newtonian
relaxation are explored over a wide range of two control parameters and are compared with the large-scale circulation
of Earth, Mars, and Titan in their relevant parameter regimes. Of the parameters that govern the behavior of the
system, the thermal Rossby number (Ro) has previously been found to be important in governing the spontaneous
transition from an Earth-like climatology of winds to a superrotating one with prograde equatorial winds, in the
absence of a seasonal cycle. This case is somewhat unrealistic as it applies only if the planet has zero obliquity or
if surface thermal inertia is very large. While Venus has nearly vanishing obliquity, Earth, Mars, and Titan (Saturn)
all have obliquities of ∼25◦ and varying degrees of seasonality due to their differing thermal inertias and orbital
periods. Motivated by this, we introduce a time-dependent Newtonian cooling to drive a seasonal cycle using
idealized model forcing, and we define a second control parameter that mimics non-dimensional thermal inertia of
planetary surfaces. We then perform and analyze simulations across the parameter range bracketed by Earth-like
and Titan-like regimes, assess the impact on the spontaneous transition to superrotation, and compare Earth, Mars,
and Titan to the model simulations in the relevant parameter regime. We find that a large seasonal cycle (small
thermal inertia) prevents model atmospheres with large thermal Rossby numbers from developing superrotation
by the influences of (1) cross-equatorial momentum advection by the Hadley circulation and (2) hemispherically
asymmetric zonal-mean zonal winds that suppress instabilities leading to equatorial momentum convergence. We
also demonstrate that baroclinic instabilities must be sufficiently weak to allow superrotation to develop. In the
relevant parameter regimes, our seasonal model simulations compare favorably to large-scale, seasonal phenomena
observed on Earth and Mars. In the Titan-like regime the seasonal cycle in our model acts to prevent superrotation
from developing, and it is necessary to increase the value of a third parameter—the atmospheric Newtonian cooling
time—to achieve a superrotating climatology.
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1. INTRODUCTION

In a classical prescription, all diabatic heat sources in a model
atmosphere are reduced to Newtonian cooling, that is, to a
linear relaxation of the potential temperature, Θ, to a prescribed
profile Θe:

∂Θ
∂t

= −Θ − Θe

τr

. (1)

The forcing profile, Θe, is a function of latitude and height but is
normally assumed constant in time, with a single timescale, τr

(also normally a function of space but not time), parameterizing
the rate of heating/cooling. By implication, the climate system
is assumed to have a substantial reservoir of heat capacity that
averages over the seasonal cycle of insolation that results from
Earth’s finite obliquity. This is a decent, first-order assumption
for Earth, where the oceans have considerable thermal inertia
that moderates the seasonal cycle; however, it precludes the
study of seasonal climate phenomena such as the monsoon, in
which the inter-tropical convergence zone (ITCZ) is carried tens
of degrees off the equator over continents. Furthermore, many
planetary atmospheres have very strong seasonal cycles, and
the steady forcing profile completely fails for Mars and Titan,

whose solid surfaces with low thermal inertia produce strong
seasonal cycles even with an Earth-like obliquity.

Idealized studies of Earth’s general circulation have long
employed Newtonian cooling to approximate steady forcing
of the dynamics, and indeed Held & Suarez (1994) introduced
a now-standard benchmark calculation based on this type of
model forcing. The simulated states of independently developed
numerical atmospheric models (general circulation models, or
GCMs) forced in this manner can be compared to demonstrate
whether or not the models converge to the same answer. Plumb &
Hou (1992) and others have studied seasonal conditions under
the assumption that the climate system responds to seasonal
changes in a quasi-steady fashion, i.e., the applied forcing is
hemispherically asymmetric but steady in time. However, an
idealized GCM forced by Newtonian cooling with a generalized
seasonal cycle that could apply both to Earth and other planets
has thus far not be developed, and that is one of the goals of this
paper.

Time-dependent models of the Earth and planetary atmo-
spheres do of course exist. Thus, for example, and motivated
by the dynamics of Earth’s monsoons, Schneider & Bordoni
(2008) developed a time-dependent Newtonian cooling temper-
ature profile, Θe, that carries the ITCZ tens of degrees off the
equator. However, their forcing scheme was not general enough
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to be applied to the other terrestrial planets. Also, numerical
simulations of Mars, Titan, and other planets (e.g., Haberle
et al. 1993; Wilson 1997; Forget et al. 1999; Mitchell et al.
2006; Mitchell 2012; Newman et al. 2011; Rannou et al. 2006;
Tokano et al. 2001; Schneider et al. 2012; Lebonnois et al. 2012)
have usually focused on direct integration of radiative transfer,
convection, and other column processes forced by seasonally
varying insolation.

In a companion paper (Mitchell & Vallis 2010, hereafter
MV10), a steady forcing scheme was used to study a wide
range of planetary circulation regimes, roughly spanning the
parameter space from Earth-like to Titan-like. We identified the
thermal Rossby number, Ro, as an important control parameter
on the resulting wind structure in steady state. Superrotating
wind states, with the equatorial atmosphere spinning faster than
the planetary surface, only develop for values of Ro larger than
unity. While superrotation could in principle be generated and
maintained by either vertical or horizontal Reynolds stresses, a
key finding of MV10 is that horizontal stresses dominate.

This paper builds on the results described in MV10, and our
particular aim is to explore the importance of a seasonal cycle in
determining whether an atmosphere will spontaneously develop
superrotation. While this approach is quite distinct from planet-
specific modeling studies, whose primary aim is realism with
respect to observations, we nevertheless critique our idealized
model simulations in the relevant parameter regimes against
large-scale, seasonal phenomena observed on Earth, Mars,
and Titan. In the latter step, our intent is (1) to demonstrate
how a simplified modeling study can lead to fundamental
physical insight into mechanisms that are often obscured by
model complexity, and (2) to demonstrate that the contrasting
circulation regimes of Earth, Mars, and Titan can be understood
in a unified context by filling in the gaps between them while
varying a minimal set of model parameters. Read (2011) has
also looked at planetary regimes, but without trying to reduce
the model behavior to a minimal number of parameters.

The paper is organized in the following way. In Section 2,
we introduce the parameter controlling the seasonal cycle and
present the simulated temperature fields as a function of our
control parameters. In Section 3, we further analyze the suite
of simulations and characterize their climatological behavior.
Earth, Mars, and Titan are put into the context of our non-
dimensional numbers in Section 5, and the simulations are
critiqued against observed large-scale, seasonal phenomena on
these bodies. We conclude in Section 6. A full description of
the model is relegated to a series of appendices.

2. IDEALIZED SEASONS WITH TIME-DEPENDENT
NEWTONIAN COOLING

To derive a physically motivated prescription of a time-
dependent Θe, we begin by deriving the surface temperature of
a slab surface in radiative equilibrium with a specified pattern
of time-dependent insolation, neglecting the back-radiation
from the atmosphere. As insolation warms different areas of
the surface, we assume that convection communicates the
low-level heat source through the troposphere so that Θe

follows a specified lapse rate. A threshold is then applied,
so that temperatures nowhere drop below a specified value,
which both produces an isothermal stratosphere (200 K as
in Held & Suarez 1994) and keeps winter pole temperatures
from falling to unrealistic levels. As the next section shows,
surface temperatures of the forcing profile, Θe, derived in this
manner exactly follow the specified insolation pattern if there

is negligible heat capacity in the slab surface. If the surface
heat capacity is non-negligible, on the other hand, the seasonal
cycle of Θe has the physically realistic feature that temperature
changes are both reduced in amplitude and offset in phase from
the insolation.

2.1. Formulation of the Horizontal Structure
of the Time-dependent Forcing Profile

We adopt a forcing profile of insolation that varies in latitude,
ϕ, as

Se = Re So

[
1 +

ΔS

3
(1 − 3 sin2 ϕ + 6 sin ϕ eiϕ1(t))

]
, (2)

where So[1 + ΔS/3] is the annual- and global-mean insolation,
ΔS parameterizes the fractional meridional insolation gradient,
and Re denotes the real part, which we take to be implicit in the
formulae that follow. The time-dependent term, 6 sin ϕeiϕ1(t),
represents the latitude of maximum diurnally averaged insola-
tion. We split Equation (2) into annual-mean (with overbars)
and variable (with primes) components:

Se = S + S ′ (3)

S = So

[
1 +

ΔS

3
(1 − 3 sin2 ϕ)

]
(4)

S ′ = 2SoΔS sin ϕ eiϕ1(t). (5)

We introduce the seasonal cycle by setting ϕ1 = ωt , where ω =
2π/P is the orbital frequency that drives the peak insolation
from one pole to the other in a year. We neglect atmospheric
back-radiation and require equilibrium between the annual-

mean insolation and surface infrared radiation, S = σT
4
s , where

the annual-mean surface temperature is T s . Assuming ΔS � 1,

T s � To

[
1 +

ΔS

12
(1 − 3 sin2 ϕ)

]
, (6)

where To = (So/σ )1/4. The surface temperature has the desir-
able feature that annual-mean forcing profile temperatures are
identical, regardless of the strength of the seasonal cycle (see
Figure 2).

Next, we assume a surface with heat capacity per unit area, C,
to be approximately in radiative equilibrium with the insolation
and neglect the back-radiation from the atmosphere,

C
dTs

dt
= S − σT 4

s . (7)

Time-mean radiative fluxes must balance, S = σT
4
s , and so

linearizing about T s , we arrive at an equation for the time-
dependent surface temperature perturbation,

dT ′
s

dt
= S ′

C
− T ′

s

τf

, (8)

where we have introduced the thermal inertia of the surface as
the timescale

τf = C

4σT
3 . (9)
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Figure 1. Zonal-mean, lowest-model-layer temperatures from the simulation (shaded, Kelvin) and forcing profile (lines, same color scale) over the last 360 days of
1080-day integrations for our suite of model control parameters α and Ro, as labeled. An Earth-like climate is near the top-left corner (Ro = 0.01, α = 0 or 0.25),
while a Titan-like climate is in the lower-right corner (Ro = 10, α = 10). A Mars-like climate is near the second panel of the rightmost column (Ro = 0.1, α = 10).

(A color version of this figure is available in the online journal.)

We non-dimensionalize with t = t∗/ω, S ′ = SoS
′,∗, and

T ′
s = ToT

′,∗
s ; defining α = (ωτf )−1, the perturbation, non-

dimensional surface energy equation is (dropping the asterisks)

dT ′
s

dt
+ αT ′

s = α
Δs

2
sin ϕ eit , (10)

where we have made use of the identity So = σT 4
o . Equation (10)

has the solution

T ′
s = α

ΔS

2

sin ϕ

i + α
eit . (11)

The time dependence of surface temperatures is controlled by
a non-dimensional surface thermal inertia, α ≡ (ωτf )−1. In
dimensional form, the solution is

Ts = max

{
T ∗, To

[
1 +

ΔH

3
(1 − 3 sin2 ϕ)

+ 2ΔH

α sin ϕ

i + α
eiωt

]}
, (12)

where ΔH = ΔS/4. As in Held & Suarez (1994), we have
applied a threshold, T ∗, so that temperatures do not drop to
unreasonable values in the winter hemisphere. There are two
non-dimensional numbers from our derivation based on the
surface energy equation: α and ΔH . Because Earth, Mars, and

Titan all have similar obliquities (relative to the ecliptic), we hold
ΔH fixed. Note that our derivation allows specification of surface
thermal inertia through α in a manner that self-consistently
introduces time-dependent temperature perturbations and their
attendant phase shift relative to the seasons.

A range of scenarios is represented by the lines in Figure 1.
If the thermal inertia timescale, τf , is long compared to a
year (e.g., α = 0.25 in the second column of Figure 1),
the surface temperature approximately follows Ts = To(1 −
α2ΔH sin ϕei(ωt+π/2)). In this case, temperature perturbations lag
the forcing by 90◦, and their amplitude is reduced by a factor
of 1/α. In the opposite limit (e.g., α = 10 in the right column
of Figure 1), Ts = To(1 + 2ΔH sin ϕeiωt ), and the forcing profile
is in lockstep with the variation of the latitude of maximum
insolation. Intermediate regimes have muted seasonal cycles
and phase lags (e.g., α = 0.75).

2.2. Specification of the Vertical Structure of the Forcing Profile

Using the surface temperatures from Equation (12), we
specify the stratification of the Newtonian cooling forcing
profile by setting it to be a specified deviation from dry adiabatic
(as in MV10), ΔΓ, where

ΔΓ = Γd − Γ = g

cp

+
dT

dz
, (13)
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Figure 2. Zonal- and time-mean (days 721–1080) model temperatures (shaded, Kelvin) and forcing temperature profile (lines) arranged as in Figure 1.

(A color version of this figure is available in the online journal.)

where Γ ≡ −dT /dz is the lapse rate and Γd ≡ g/cp is the dry
adiabatic lapse rate, that is, the lapse rate that is convectively
stable in a dry atmosphere. It is convenient to define the potential
temperature (a measure of entropy)

θ = T

(
po

p

)κ

, (14)

and it is easily shown (e.g., Vallis 2006) that the dry adiabatic
lapse rate corresponds to a profile with ∂θ/∂z = 0. The radiative
equilibrium profile is then specified to be

Te(t) = max

{
T ∗, Ts(t)

(
p

po

)κ(1−ΔΓ/Γd )
}

. (15)

If the forcing temperature were to be dry adiabatic, we would
set ΔΓ = 0, but the atmospheres of Earth, Mars, and Titan are
a little more stable than that, so we choose ΔΓ/Γd = 0.6. Here
the minimum temperature, T ∗, serves the purpose of capping
the troposphere with an isothermal stratosphere.

Tables 1 and 2 summarize the model forcing scheme and
parameters for the numerical experiments in this study. Figure 1
displays the zonal-mean, lowest-model-layer temperature of the
forcing profile (lines) and the model (shading; all on the same
color scale to facilitate comparison) over the last 360 days of
1080-day integrations. The simulations are arranged from left
to right by increasing seasonality, α, and from top to bottom by
increasing thermal Rossby number defined as in MV10, Ro =

RΔH /(2Ωa)2. Simulated latitudinal temperature gradients are
largest at small Ro and large α. Note, however, that although a
large α imposes a strong latitudinal temperature gradient (lines),
it does not guarantee large simulated temperatures gradients; a
large Ro simulation (bottom row) always has weak temperature
gradients. This is a result of an expansion of efficient lateral heat
transport of the tropics that creates a global “weak temperature
gradient” regime (Sobel & Bretherton 2000). Figure 2 displays
the time- and zonal-mean temperature of the forcing profile
(lines) and the model simulations averaged over the last 360 days
of 1080-day integrations (shading), arranged as in Figure 1.
We note that the time- and zonal-mean forcing temperatures
are identical for all cases (by construction). There is a clear
progression toward a more barotropic state, with isotherms
aligned horizontally, as Ro is increased (down columns). A
stronger seasonal cycle (α increasing from left to right) produces
more complicated behavior in the annual mean. For instance,
the Ro = 1 (and perhaps the Ro = 0.1) case appears to have
enhanced latitudinal temperature gradients (more baroclinicity)
for larger values of α. This feature may be the result of enhanced
winter-hemisphere temperature gradients, as is the case for
Earth and Mars. The relevance of strong winter-hemisphere
temperature gradients for Mars’ seasonal cycle is discussed in
Section 5.2.

Tables 3 and 4 display non-dimensional and dimensional
parameters, respectively, for Earth and Titan. Roughly speaking,
an Earth-like climate is near the top-left corner of Figures 1
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Table 1
Summary of Idealized Time-dependent Forcing

Equations for Idealized Momentum and Thermal Forcing
∂(u,v)

∂t
= · · · − r(σ )(u, v) ∂T

∂t
= · · · − τr (ϕ, σ )−1(T − Te(ϕ, σ ))

Te = max
{
T ∗, To

[
1 + ΔH

3 (1 − 3 sin2 ϕ) + 2ΔH
α sin ϕ
i+α

eiωt
]

σκ(1−ΔΓ/Γd )
}

r = kf max
(

0,
σ−σb
1−σb

)
τ−1
r = ka + (ks + ka) max

(
0,

σ−σb
1−σb

)
σ = p/p0

Constants

kf = 1 day−1 ka = 40 days ks = 4 days

T0 = 285 K ToΔH = 60 K T ∗ = 200 K

κ = 2/7 σb = 0.7 ΔΓ/Γd = 0.6

Ω = 7.3 × 10−5 s−1 p0 = 1000 mb ω = 2π/360 days−1

Constants that recreate an Earth-like circulation: (Ro, α) ∼ (0.01, 0)

a = 6.4 × 106 m α = 0

Constants that recreate a Titan-like circulation: (Ro, α) ∼ (10, 10)

a = 2.8 × 105 m α = 10 ka = 4000 days, ks = 300 days

kf = 1/10 days−1

Table 2
Experiment Design, Keeping Earth-like Rotational (Ω = 7.27 × 10−5 s−1)

and Orbital Frequencies (ω = 2 × 10−7 s−1) Fixed

Ro a α τf

(km) (s)

10 280 0 1020

10 280 0.25 2 × 107

10 280 0.75 6.7 × 106

10 280 10 5 × 105

1 800 0 1020

1 800 0.25 2 × 107

1 800 0.75 6.7 × 106

1 800 10 5 × 105

3 512 0 1020

3 512 0.25 2 × 107

3 512 0.75 6.7 × 106

3 512 10 5 × 105

0.1 3200 0 1020

0.1 3200 0.25 2 × 107

0.1 3200 0.75 6.7 × 106

0.1 3200 10 5 × 105

0.01 6400 0 1020

0.01 6400 0.25 2 × 107

0.01 6400 0.75 6.7 × 106

0.01 6400 10 5 × 105

Table 3
Estimated Non-dimensional Numbers for Earth and Titan

Earth Titan

Ro 2 × 10−2 10.5
E 1.6 × 10−1 2.2 × 10−3

(τ ∗)−1 3 × 10−2 5 × 10−4

α 3.5 × 10−2 >10

Table 4
Dimensional Parameters for Dynamical Regimes Similar to Earth and Titan

Earth-like Titan-like

Ω (s−1) 7.3 × 10−5 4.5 × 10−6

ω (s−1) 2 × 10−7 6.7 × 10−9

a (km) 6371 2575
τo (s) 1.4 × 107 2.2 × 108

τf (s) 2.9 × 104 8.64 × 105

r(s−1) 3.2 × 10−7 2 × 10−8

To (K) 285 94
ToΔH (K) 60 20

and 2 (Ro = 0.01, α = 0 or 0.25), while a Titan-like climate
is in the lower-right corner (Ro = 10, α = 10). A Mars-
like climate is near the second panel of the rightmost column
(Ro = 0.1, α = 10). These particular cases are revisited in
Section 5.

3. MEAN STATES AND PARAMETER
REGIMES OF SIMULATIONS

Figure 3 shows the zonal-mean zonal winds averaged over
the last 360 days, arranged by parameter values as in Figure 1.
Several trends are worth noting. First, wind speeds decrease
with increasing α in nearly all cases (the one exception being
at Ro = 0.01, α = 0). This is to be expected as a strong,
cross-equatorial flow at solstices causes westward acceleration
at the equator. Superrotation develops as Ro increases, with the
transition at Ro = 1 identified in MV10. Figure 4 summarizes
these results in a regime diagram of the vertical-mean equatorial
wind. By focusing on the vertical mean equatorial wind, we
isolate superrotation that develops as the result of horizontal
momentum fluxes, not vertical ones (as, for instance, in the
quasi-biennial oscillation, QBO). Somewhat surprisingly, a
large region of the parameter space superrotates, although only
a small fraction at low α does so strongly. The right panel shows
a zoom of this region, which makes clearer the trend toward
stronger superrotation for larger Ro.

Superrotation is not robustly established for large α, appar-
ently for two reasons: strong seasonality (1) reduces the average
angular momentum of the atmosphere at all latitudes including
the jets and (2) prevents eddy momentum flux convergence from
accelerating equatorial winds. We discuss these two effects in
detail below.

Under the influence of a strong seasonal cycle, the ITCZ
experiences large excursions away from the equator. The Hadley
cell is responsible for supplying the surface angular momentum
that is transferred to the atmosphere in the frictional boundary
layer into the frictionless free troposphere. Under steady forcing,
the ITCZ stays fixed on the equator, where surface angular
momentum is maximal. In seasonal cases, the ITCZ spends
much of the time off the equator, where the surface angular
momentum is lower than at the equator. As a result, the average
angular momentum imparted to the free troposphere is smaller
in a seasonal case than in a steady case (for discussion of this
effect on Titan, see Mitchell 2008; Mitchell et al. 2009). Figure 5
displays the vertical-mean equatorial wind speed, Ueq (top),
and lowest-model-layer pressure velocity (bottom) over the last
360 days of the Ro = 10 cases. Any positive value of Ueq in the
top row indicates superrotation. Warm colors in the lower row
indicate the presence of upwelling by the ITCZ, and cold colors
indicate downwelling. As α increases (to the right), the average
value of Ueq decreases and shows more seasonal variation.
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Figure 3. Zonal- and time-mean (days 721–1080) zonal winds (gray scale in m s−1; zero-wind line marked with bold white) and overturning stream function (lines
with maximum labeled in kg s−1 arranged as in Figure 1).

Figure 4. Vertical-, zonal-, and time-mean (days 721–1080) equatorial zonal winds, Ueq, arranged as in Figure 1. The bold black line marks Ueq = 0, the solid-body
value. (The right panel is a zoom-in of the left panel along the y-axis.)

To understand the decreasing magnitude of Ueq, we appeal to
the connection between the surface and atmosphere through
friction. The surface, being a solid-body rotator, has a maximum
value of angular momentum at the equator. Since the Hadley
cell is responsible for communicating surface friction out of the
boundary layer into the nearly frictionless free troposphere, the
latitude of Hadley cell upwelling (ITCZ) determines the surface
value of angular momentum that is imparted to the atmosphere.
As the Hadley circulation diverges from this latitude at upper
levels, air parcels conserve their angular momentum so that
upper-level equatorward flow results in a deceleration of winds
and poleward flow an acceleration of winds. Thus, a reduction

in the average value of Ueq is consistent with the transport of
low angular momentum air into the free troposphere by the
seasonally migrating ITCZ (although see Figure 12 for the
influence of the strength of Hadley cell overturning).

The seasonal cycle in Ueq itself may indicate seasonal vari-
ation in the eddy activity responsible for equatorial accelera-
tion. To explore this further, Figure 6 shows the acceleration of
the zonal-mean momentum by eddy flux convergence (a mea-
sure of the acceleration of the zonal-mean flow by horizontal
Reynolds stresses), S = −(a cos2 φ)−1∂φ(u′v′ cos2 φ) (top), in
the last 360 days of the seasonal Ro = 10 cases; the zonal-
mean zonal wind, ū (bottom), at the 400 hPa level is shown for
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Figure 5. Top: vertical- and zonal-mean equatorial zonal winds, Ueq, in the Ro = 10 cases. Bottom: lowest-layer, zonal-mean vertical mass flux [103 kg m−1 s−1] for
the last 360 days of the simulation. Different values of α are as labeled by column.

(A color version of this figure is available in the online journal.)

Figure 6. Top: zonal acceleration by the meridional convergence of zonal-mean eddy momentum flux (10−6 m s−2) averaged over the 0–424 hPa levels for the last
360 days of integration of our Ro = 10 cases, with α increasing to the right as labeled. The vertical lines on the rightmost panel bracket a time of significant but
transient equatorial eddy acceleration in the α = 10 case. Bottom: zonal-mean zonal winds (m s−1) averaged over the 0–424 hPa levels over the same period. A
Gaussian smoothing kernel of six day half-width was applied to the time domain for all fields.

comparison. Henceforth, overbars indicate zonal means and
primes departures from the zonal mean. In the presence of a
seasonal cycle, this form of decomposition allows the possibil-
ity of time dependence/transience in both the eddy and mean
components of the zonal momentum flux. As α is increased (to
the right in Figure 6), a strong seasonal cycle becomes apparent
in both ū and S, and the pattern and strength of S strongly cor-
relate in time with ū. In fact, equatorial acceleration in strongly
seasonal runs (α = 10) is a unique feature of hemispherically
symmetric conditions, when the zonal-mean zonal winds are
nearly symmetric about the equator.

The transiency of equatorial eddy stresses during equinoxes
motivates a closer inspection of these times. Figure 7 displays

the eddy momentum flux convergence at 424 hPa during days
200–210 (marked as vertical lines in the upper-right panel of
Figure 6) as a function of latitude and phase speed of the zon-
ally asymmetric modes in the Ro = 10, α = 10 case. The
zonal-mean zonal winds at this level are overplotted. This type
of diagram allows one to inspect for critical lines, where the
phase speed of waves giving rise to the eddy stresses is equal
to the zonal-mean zonal wind. Quasi-linear theory suggests that
the presence of critical lines causes waves to break and de-
posit their pseudomomentum into the mean flow (see MV10
for a full description). If the modes responsible for the eddy
stresses were pure Rossby waves sourced at mid- or high lat-
itudes, they could not have propagated much past the critical

7
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Figure 7. Convergence of the zonal-wavenumber-1 eddy momentum flux
cospectrum as a function of latitude and phase speed averaged between 0 and
424 hPa for the Ro = 10, α = 10 case (acceleration in white) and zonal-
mean zonal winds (blue line) during days 200–210 (the 10-day span marked in
Figure 6). The cospectrum is calculated by fast Fourier transform of the zonal
and meridional winds in the 10 day interval centered on day 204 and at the
424 hPa level, after Randel & Held (1991).

(A color version of this figure is available in the online journal.)

lines at ∼±40◦ latitudes. Instead, as in MV10, a coherent, global
mode that spans both sides of the critical lines is present that
decelerates mid- and high-latitude winds and accelerates equa-
torial winds, albeit with less global coherence than the mode
in MV10. Figure 8 displays the 424 hPa geopotential height6

and winds at day 205 filtered to retain only zonal-wavenumber
1 features, i.e., fluctuations that have one wavelength at each
latitude circle. Interacting modes are clearly identifiable, a high-
latitude Rossby-like wave and an equatorial Kelvin-like wave.
The global mode has the same general appearance as the one
identified in MV10 as being responsible for the acceleration of
equatorial winds during spinup of the Ro = 10 case (without
seasons), except that it now has some hemispheric asymmetry.
A significant implication is that equatorial superrotation may
require a persistent zonal-mean state that is nearly symmetric
about the equator.

Taken together, these results indicate an important role for
the seasonal cycle in the development and maintenance of
superrotation by (1) diluting the angular momentum supply to
the free troposphere and (2) producing only transient phases at
equinox with zonal-mean winds that allow the global mode in
Figure 8 to accelerate equatorial winds.

4. THE ROLE OF BAROCLINIC INSTABILITY

Baroclinic instability is well known as the source of Earth’s
mid-latitude weather systems, and it arises in rotating systems in
which there is a horizontal temperature gradient and a fairly ma-
ture theory exists for it (e.g., Pierrehumbert & Swanson 1995;
Vallis 2006). The instability converts potential energy into ki-
netic energy, and in so doing it generates Rossby waves that
may propagate away from the disturbance. Wave mean-flow
theory then describes how these Rossby waves may influence
the zonal wind structure. In a quasi-linear perspective, Rossby
waves generated in the mid-latitude baroclinic zone propagate
equatorward and break in the subtropical surf zone, where

6 Geopotential height is the height in m of a pressure surface above sea level
calculated assuming a constant gravitational acceleration, g, and is
proportional to an ln-pressure weighted, vertical integral of the temperature.

Figure 8. 424 hPa, zonal-wavenumber-1 geopotential height anomaly at day
205 of the Ro = 10, α = 10 case.

meridional shear creates a critical layer that prevents further
wave propagation into the tropics (Randel & Held 1991). The
wave propagation and breaking effectively “suck” momentum
from this subtropical region and deposit it in the mid-latitude
jet. Because these waves provide a negative torque to the zonal-
mean zonal winds in the subtropics, their presence may pre-
vent the development of equatorial superrotation (even if other
instabilities are present that accelerate equatorial winds; Held
2000). In a superrotating state, however, the subtropical crit-
ical layer lifts and the tropics become “transparent” to prop-
agating Rossby waves (see Figure 8 in MV10). If a mecha-
nism existed to accelerate equatorial winds, even Earth’s atmo-
sphere might achieve a superrotating steady state, a concept that
is supported by some idealized simulations (Suarez & Duffy
1992; Saravanan 1993). Rossby waves generated by baroclinic
instability in mid-latitudes otherwise inhibit the development
of superrotation through their negative torque applied to the
zonal-mean flow in the subtropical surf zone. We might, there-
fore, expect superrotation to be anti-correlated with baroclinic-
ity.

Baroclinic supercriticality, SC = Lβ/LR , is a measure of the
nonlinearity of the inverse turbulent energy cascade from the
Rossby deformation radius, LR, to the Rhines scale, Lβ , and
it serves as a scalar measure of the degree of baroclinicity in
our simulations. Figure 9 shows baroclinic supercriticality (SC)
plotted against superrotation index SI, where

SI(t) =
∫ π

−π
([u] cos ϕ + cos2 ϕ) cos ϕdϕ∫ π

−π
cos3 ϕdϕ

, (16)

for our suite of simulations. A clear anti-correlation is present,
i.e., increasing degree of superrotation with decreasing baro-
clinic SC. Strong superrotation with SI > 1.2 only exists in
the subcritical regime (SC < 1). Closer inspection of the non-
seasonal cases reveals a monotonic trend toward increasing SI
for increasing Ro. However, there is a non-monotonic trend in
baroclinic SC with Ro; peak SC occurs at Ro ∼ 1 and decreases
to both larger and smaller values of Ro.

Therefore, in addition to a weak seasonal cycle, weak baro-
clinicity is a necessary but insufficient condition for the devel-
opment of spontaneous superrotation. A weak Hadley cell also
appears to be a necessary but insufficient condition (dias Pinto
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Figure 9. Superrotation index vs. the diagnosed baroclinic supercriticality (after
Schneider 2004) averaged over the last 360 days of our simulations. Comma-
separated values in the legend indicate the value of Ro and α, respectively.

(A color version of this figure is available in the online journal.)

& Mitchell 2014), but these anti-correlations do not illuminate
what is responsible for equatorial acceleration. Simulations at
intermediate Ro indicate a role for Kelvin-like waves in accel-
erating equatorial zonal winds, which brings into question the
prevailing idea that barotropic instability is responsible for the
generation of superrotation (Potter et al. 2013). What is obvi-
ously lacking is a description of the wave instability responsible
for acceleration of equatorial zonal winds, and this is left to
future work (P. Wang & J. L. Mitchell 2014, in preparation).

5. RELEVANCE TO SOLAR SYSTEM BODIES

We now discuss the realism of our idealized calculations and
how, in the appropriate parameter regimes, they relate, or fail to
relate, to the solar system bodies of Earth, Mars, and Titan.

5.1. Earth

The summer monsoon is an important signal of Earth’s
seasonal cycle in the tropics, and it is interesting to see to
what extent the model, a dry one, can reproduce aspects of it.
As shown in Figure 10(b), the lowest-model-layer temperature
forcing (colored lines) of our Ro = 0.01, α = 0.25 case is
similar to the seasonal cycle in (Schneider & Bordoni 2008).
Figure 10(a) displays the lowest-layer, zonal-mean vertical
mass flux, and panel (b) shows the lowest-layer, zonal mean
temperatures over the last 360 days of this simulation. The ITCZ
migrates 20◦–30◦ off the equator into the summer hemisphere;
however, it does so in a somewhat smoother (in time) fashion
than found in the abrupt, eddy-mediated monsoon transition
seen in the Asian monsoon sector (Bordoni & Schneider 2008)
and in other idealized, dry simulations (Schneider & Bordoni
2008). Inspection of the zonal-mean meridional stream function
(black lines) and zonal-mean atmospheric angular momentum
(gray lines) in Figure 10 during the summer monsoon reveals
that the winter Hadley cell is far from angular momentum
conserving (black and gray lines would otherwise be parallel).
In reanalysis, the monsoonal circulation has its maximum value
in the summer hemisphere and is close to angular momentum
conserving (Bordoni & Schneider 2008). This shortcoming of

Figure 10. Earth-like Ro = 0.01, α = 0.25 case. (a) Lowest-layer, zonal-mean vertical mass flux [104 kg m−1 s−1] for the last 360 days of the simulation. (b) As
in (a) for the zonal-mean, lowest-layer temperature. (c) Mean meridional stream function (black lines, 20 × 109 kg s−1 contour interval; minimum value labeled in
109 kg s−1) and atmospheric angular momentum (gray lines, Ωa2/10 contour interval) averaged over days 150–200 (marked by vertical black lines in panels (a)
and (b)).

(A color version of this figure is available in the online journal.)
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Figure 11. Mars-like Ro = 0.1, α = 10 case. (a) Baroclinic supercriticality, SC, at 70◦N (black) and 70◦S (gray) latitudes and arbitrary longitude for the last 360 days
of the simulation. (b) Zonally asymmetric component of the surface pressure, p′

s , at the time of maximum SC at 70◦N latitude in panel (a). (c) As in (a) for the
mass-weighted zonal- and vertical-mean eddy kinetic energy, [EKE]. (d) As in (b) at the time of maximum [EKE]. (e) The superrotation index, SI, for the last 360 days
of the simulation. (f) The surface pressure at Viking 1 and Viking 2 latitudes (Hess et al. 1980) and an arbitrary longitude.

our simulation may be due to the fact that we have not included
a convection scheme to mimic the release of latent heat in our
dry GCM.

A strong, winter Ferrel cell is also quite clear in Figure 10(c),
indicating the enhancement of winter-hemisphere baroclinic
instability.

5.2. Mars

At roughly half Earth’s radius and nearly equivalent length
of day, Mars is perhaps the most dynamically similar body
to Earth with a thermal Rossby number of Ro ∼ 0.1. The
thin Martian atmosphere and solid, dry surface, however, allow
large seasonal changes in surface temperature and winds. The
surface pressure also varies seasonally on Mars, but this effect is
beyond the scope of our idealized approach. For typical values
of surface thermal inertia, I � 100 J m2 K−1 s−1/2 (Putzig et al.
2005), surface temperature, To � 220K, and forcing frequency
of Martian year, ω � 3 × 10−10 s−1, we find a characteristic
value of αMars � 20 (see the Appendix for derivation). The most
Mars-like simulation in our suite is the Ro = 0.1, α = 10 case.

Mars is known to exhibit rather regular-looking baroclinic
eddies with small zonal wavenumber (1–2; Collins et al. 1996),
as well as dust storms that are at times global. Relative to Earth,
small-wavenumber eddy activity is a natural outcome of Mars’
smaller size and thus larger Ro. A less obvious and somewhat

counterintuitive feature of the Martian circulation regime is an
enhancement in baroclinic SC. Figure 11(a) shows a time series
of baroclinic SC at 70◦N/S latitudes (black/gray lines) of the
last 360 days of the 1080-day simulation. The area of maximum
SC switches from one hemisphere to the other with seasons,
peaking in the winter hemisphere at ∼4.5. The counterintuitive
aspect is the presence of regular, zonal-wavenumber 1–2 eddies,
as evidenced in surface pressure anomalies at the time of peak
70N-latitude SC in Figure 11(b). The presence of such regular,
wave-like eddies at high values of SC implies that the Rhines
scale is larger than the planet, and the inverse energy cascade
has been arrested at planetary scales. This dynamical property of
Mars’ atmosphere may allow it to develop intense mid-latitude
“storms” (lacking moisture) at global scales without inducing a
turbulent cascade, as observed (Collins et al. 1996).

Figure 11(c) shows the mass-weighted vertical- and
zonal-mean eddy kinetic energy, [EKE], at the same latitudes.
There is a positive correlation in time between rising values of
SC and the local eddy kinetic energy, which indicates that the
winter hemisphere experiences stronger eddy activity. Surface
pressure asymmetries are strongest at peak [EKE], as shown in
Figure 11(d). The time series of SI, Figure 11(e), demonstrates
an anti-correlation with [EKE] and SC, although low values of
SI may also be produced by the strong, negative torque from the
cross-equatorial Hadley circulation.
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Figure 12. Zonal-mean zonal winds and stream functions are shown for two Titan-like Ro = 10, α = 10 simulations as a function of season and in the annual mean,
with lines and shading as in Figure 3. Top: our nominal simulations. Bottom: a simulation with 10 times longer frictional time, kf , and 100 times longer Newtonian
cooling time, τr .

It is noteworthy that despite small values of both SC and
[EKE] at 70◦S latitude (in the summer hemisphere), the distur-
bances in the surface pressure are seen globally in Figure 11(d)
when [EKE] peaks in the winter (northern) hemisphere. Global
dust storms are known to occur prior to and during the winter
solstice (Hess et al. 1980), and we speculate that this may be
similar to the strengthening baroclinicity in the winter hemi-
sphere jet streams in our idealized simulations. In fact, the
surface pressure at 70◦N/S latitudes (and arbitrary longitude)
shown in Figure 11(f) demonstrates that fluctuations by eddies
are responsible for 4% changes, similar to the values observed
by the Viking 1 and 2 landers (Hess et al. 1980), albeit at much
lower total pressures. Although peaks in eddy activity occur
at both solstices in our model, Mars’ large hemispheric topo-
graphic asymmetry may be responsible for the predominance
of global dust storms during the northern winter solstice versus
the southern.

5.3. Titan

Inspection of the Ro, α = 10 case in the lower-right panel
of Figure 3 reveals that the seasonal cycle has prevented
the development of superrotation, thus failing in our primary
criterion for “Titan-likeness.” Motivated by the extremely long
radiative cooling time in Titan’s atmosphere, we performed
an additional Ro, α = 10 simulation with 100 times longer
atmospheric Newtonian cooling time, τr , and 10 times weaker
boundary layer (Rayleigh) friction, kf . Figure 12 displays
monthly mean snapshots at each season (left four panels)
and the annual average (right panel) of the zonal-mean zonal
winds (gray scale, same scale as Figure 3) and meridional
stream function (lines) for two Titan-like simulations with
Ro, α = 10. The top row displays the final year of our nominal
simulation, while the bottom row shows the final year of a 60 yr
simulation with 10 times the frictional time, kf , and 100 times
the Newtonian cooling time, τr . In both cases, the Hadley
circulation clearly reverses direction with seasons, switching
from counterclockwise (dashed lines) in the spring and summer
to clockwise (solid lines) in the fall and winter, and is dominated
by the cross-equatorial “winter cell.” Yet the impact of the
Hadley circulation on upper-level winds in the bottom row
is muted relative to the top row and appears primarily as an
intensification of the winter jet stream. We can understand this
by comparing the strength of the meridional stream function
(labeled in kg s−1 in the annual mean), which is 100 times
weaker in the bottom row, roughly in inverse proportion to the
increased Newtonian cooling time. The sluggish overturning is

further apparent in the phase lag of zonal wind accelerations
in the bottom versus the top row. A weak Hadley cell limits
the negative, seasonal torque on equatorial winds supplied in
the form of cross-equatorial advection of momentum at upper
levels, allowing equatorial superrotation to persist.

6. CONCLUSIONS

Comprehensive planetary GCMs are generally specifically
designed to simulate only one particular planetary body, whereas
idealized GCMs can, because of their simplicity, in principle
be used to study a broad range of atmospheric circulation
regimes. Until now, however, idealized GCMs have lacked a
generalized seasonal cycle that can be studied over a broad range
of planetary regimes. Motivated by the fact that Earth, Mars,
and Titan all have pronounced seasonal cycles in insolation,
we have developed an idealized, dry atmospheric GCM with a
generalized seasonal cycle. The model thermal forcing is that
of a Newtonian relaxation toward a specified, time-dependent
temperature profile. The time-dependent forcing temperature
profile is specified by requiring a slab surface to be in local
radiative equilibrium with an idealized form of the seasonal
pattern of diurnal-mean insolation. This approach allows the
strength of the seasonal cycle of the model simulations to
be tuned through a control parameter, α, a non-dimensional
measure of surface thermal inertia. (Please see Table 1 for a
summary of our forcing scheme.)

We then explored the dynamics of the idealized model over a
wide range of two control parameters, Ro and α, roughly span-
ning the range that encompasses Earth, Mars, and Titan. We paid
particular attention to the parameter regime that allows sponta-
neous superrotation to emerge. We found that only a relatively
small amount of seasonality is necessary to suppress superrota-
tion, apparently for two reasons: (1) the cross-equatorial flow of
the Hadley circulation tends to produce equatorial easterlies, and
(2) a hemispherically asymmetric zonal wind profile suppresses
the global instability that converges momentum on the equa-
tor. The extreme sensitivity of our modeled winds to a seasonal
cycle demonstrates the importance of the atmospheric thermal
inertia, which increases with increasing optical thickness and
decreasing temperatures.7 In the case of Titan (and Venus), a
large atmospheric thermal inertia results in a sluggish Hadley
circulation with a long overturn time. The result is a dimin-
ished effect of the seasonal cycle on the winds. Indeed, we find

7 In the optically thick regime, thermal inertia scales as τatm ∝ κirp
2
s /T

3
for

an atmosphere with surface pressure ps, characteristic infrared opacity κir, and
temperature T .
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that increasing the Newtonian cooling time (a proxy for atmo-
spheric thermal inertia) of our model atmosphere allows strong
superrotation to emerge in the presence of seasonal Hadley cell
reversals. Through diagnosing baroclinic SC, we also demon-
strated that baroclinic instability is a significant impediment to
the development of superrotation, presumably through the neg-
ative torque in the subtropical “surf zone” from the breaking of
equatorward-propagating Rossby waves. The mechanism of the
global instability giving rise to equatorial acceleration in our
simulations has yet to be identified.

We compared our simulations in parameter regimes relevant
to Earth, Mars, and Titan to observed large-scale phenomena on
these planets. For the Earth-like regime (Ro = 0.01, α = 0.25;
Figure 10), a monsoon-like circulation carries the ITCZ roughly
20◦ in latitude into the summer hemisphere. The seasonal
cycle in low-level mass flux, however, does not undergo abrupt
transitions as in observations. Inspection of the degree of angular
momentum conservation in the winter Hadley cell indicates that
the nonlinear (inviscid) regime is not achieved in our seasonal
model, which disagrees with reanalysis (Bordoni & Schneider
2008), and the lack of this eddy-mediated regime transition is
likely the cause of a relatively smooth seasonal cycle of the
ITCZ.

For the Mars-like regime (Ro = 0.1, α = 10; Figure 11),
a very strong seasonal cycle occurs in all diagnostics. Like
Mars, this regime exhibits very regular baroclinic waves with
zonal wave numbers 1 and 2. Somewhat counterintuitively,
the baroclinic SC is quite large in this regime, which should
indicate a strong turbulent cascade; however, the Rhines scale
is larger than the planetary scale, and so the cascade is arrested.
Intense, global storms are a distinct feature of the Mars-like
regime, and while their intensities are strongest in the winter
hemisphere, the surface pressure perturbations are felt globally.
This intensification of winter storms may be analogous to the
mechanism responsible for Mars’ global dust storms.

For the Titan-like regime (Ro = 10, α = 10), our model
fails to produce strong superrotation. The atmospheric thermal
inertia of Titan is much larger than for Earth or Mars, and we
find that we can recover strong superrotation in the Titan-like
regime by significantly increasing the Newtonian cooling time
of the atmosphere, τr . When this additional parameter is varied,
Figure 12 demonstrates that a pronounced seasonal cycle in
the Hadley circulation does not prevent the development and
persistence of strong superrotation.
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NNX12AI71G and the IBM Einstein Fellowship from the Insti-
tute for Advanced Study. G.K.V. and S.F.P. acknowledge support
from the NSF under grant No. AGS-1144302, and G.K.V. also
acknowledges the Wolfson Foundation and the Royal Society.

APPENDIX A

MODEL DESCRIPTION

A.1. Primitive Equations

We begin with the primitive equations subject to Rayleigh
friction and Newtonian cooling

∂u

∂t
= − u

a cos ϕ

∂u

∂λ
− v

a

∂u

∂ϕ
− ω

∂u

∂p
+

uv

a
tan ϕ

+ 2Ωv sin ϕ − 1

a cos ϕ

∂Φ
∂λ

− ru (A1)

∂v

∂t
= − u

a cos ϕ

∂v

∂λ
− v

a

∂v

∂ϕ
− ω

∂v

∂p
− u2

a
tan ϕ

− 2Ωu sin ϕ − 1

a

∂Φ
∂ϕ

− rv (A2)

∂Θ
∂t

= − u

a cos ϕ

∂Θ
∂λ

− v

a

∂Θ
∂ϕ

− ω
∂Θ
∂p

− Θ − Θe

τr

(A3)

∂ω

∂p
= − 1

a cos ϕ

∂u

∂λ
− 1

a cos ϕ

∂

∂ϕ
(v cos ϕ) (A4)

∂Φ
∂p

= −RT

p
. (A5)

We non-dimensionalize the equations as follows: t =
2Ωt∗; p = p∗ps; (u, v) = (u∗, v∗)U ; ω = ω∗Ups/a; Φ =
Φ∗2ΩUa; and

(Θ, T ) = (Θ∗, T ∗)
2ΩUa

R
. (A6)

(Note that U = (RT0ΔH/2Ωa).) Making the substitutions above
into the primitive equations and dropping asterisks without
ambiguity,

∂u

∂t
= −Ro

(
u

cos ϕ

∂u

∂λ
+ v

∂u

∂ϕ
+ ω

∂u

∂p
+ uv tan ϕ

)

+ v sin ϕ − 1

cos ϕ

∂Φ
∂λ

− Eu (A7)

∂v

∂t
= −Ro

(
u

cos ϕ

∂v

∂λ
+ v

∂v

∂ϕ
+ ω

∂v

∂p
− u2 tan ϕ

)

− u sin ϕ − ∂Φ
∂ϕ

− Eu (A8)

∂Θ
∂t

= −Ro

(
u

cos ϕ

∂Θ
∂λ

+ v
∂Θ
∂ϕ

+ ω
∂Θ
∂p

)
− Θ − Θe

τ ∗

(A9)

∂ω

∂p
= − 1

cos ϕ

∂u

∂λ
− 1

cos ϕ

∂

∂ϕ
(v cos ϕ) (A10)

∂Φ
∂p

= −T

p
, (A11)

where
(τ ∗)−1 = (2Ωτo)−1, (A12)

E = r

2Ω
, (A13)

and

Ro = U

2Ωa
= RT0ΔH

(2Ωa)2
(A14)

are non-dimensional numbers governing the flow.
The complete list of non-dimensional numbers is τ ∗,E, Ro,

Δh, and α.
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A.2. Numerical Integration

We integrate the dry primitive equations using GFDL’s
Flexible Modeling System (Gordon & Stern 1982) at T42
resolution with 20 vertical levels spaced evenly in pressure. A
fourth-order hyperviscosity is applied to dissipate energy at the
grid scale. A small amount of vertical diffusion with a coefficient
of ν = 0.01 m2 s−1 acts to smooth grid-scale noise.

APPENDIX B

DERIVATION OF α FROM MEASURED
THERMAL INERTIA

We define the thermal inertia of a surface material,

I =
√

ρck, (B1)

with density ρ, specific heat c, and thermal conductivity k. The
skin depth (in m) of a sinusoidal thermal wave with frequency
ω is

δ =
√

k

ωρc
. (B2)

From these, we estimate the thermal damping time,

τf = cρδ

4σT 3
o

, (B3)

and the seasonal control parameter,

α = 4σT 3
o δ

k
(B4)

= 4σT 3
o

I
√

ω
. (B5)
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