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ABSTRACT

This paper discusses the sensitivity of the horizontal and vertical scales of extratropical eddies when crit-

icality is varied in a dry, primitive-equation, general circulationmodel. Criticality is a measure of extratropical

isentropic slope and when defined appropriately its value is often close to 1 for Earth’s climate. The model is

forced by a Newtonian relaxation of temperature to a prescribed temperature profile, and criticality is in-

creased by increasing the thermal relaxation rate on the mean flow. When criticality varies near 1, it is shown

that there exists a weakly nonlinear regime in which the eddy scale increases with criticality without involving

an inverse cascade, while at the same time the Rossby radius may in fact decrease. The quasigeostrophic

instability of the Charney problem is revisited. It is demonstrated that both the horizontal and vertical scales

of the most unstable wave depend on criticality, and simple estimates for the two scales are obtained. The

authors reconcile the opposite trends of the eddy scale and Rossby radius and obtain an estimate for the eddy

scale in terms of the Rossby radius and criticality that is broadly consistent with simulations.

1. Introduction

The theory of the scale of the energy-containing

eddies in the extratropics for a given time-mean flow

can be regarded as falling between two end members

that we call the linear regime and the turbulent regime.

In the linear regime, we take the eddy scale to be similar

to that of the most unstable baroclinic wave. In Earth’s

atmosphere, the observed energy-containing eddy scale

(spherical wavenumber ; 8) is only slightly larger than

of the most unstable waves, and the eddy turnover time

(;3–5 days) is similar to their inverse growth rate

(Simmons and Hoskins 1976; Valdes and Hoskins 1988).

An estimation for the scale of the most unstable wave

originates from Eady’s (1949) classical work in baroclinic

instability, in which the basic flow is simplified to be in-

dependent of latitude. The Eady model gives a simple

estimate for the most unstable wavelength lm—that it is

only dependent on the Rossby deformation radius LR

according to lm ’ 3.9LR. For Earth’s atmosphere, the

Eady model gives a good estimate for the eddy scale and

eddy turnover time. The Charney model of baroclinic

instability does not give nearly as simple an estimate as

the Eady problem (a problem that we return to later on),

but nevertheless the Rossby radius is often used as an

estimate for the eddy scale and indeed it has been shown

that, for a wide range of mean flows, the Rossby radius

multiplied by an empirical constant gives a decent esti-

mate for the scale of the most unstable waves and eddy

scale (Merlis and Schneider 2009).

In the other end member, the eddy scale is considered

to be determined by geostrophic turbulence. Now, the

baroclinic mode (proportional to temperature in the

two-level quasigeostrophic model) is maintained by

differential heating of the atmosphere and stirred by

the barotropic flow as if it were a passive tracer. Eddy

available potential energy cascades to smaller scales

until it arrives at the scale of baroclinic instability, where

it is converted into barotropic eddy kinetic energy

(EKE; Salmon 1980). The kinetic energy is then cascaded

to larger scales by nonlinear eddy–eddy interactions
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much as in two-dimensional turbulence. Unless halted

by friction or limited by domain size, then, near the

Rhines scale, energy becomes preferentially channeled

into the zonal flow (Rhines 1979; Vallis and Maltrud

1993). Thus, in principle, the energy-containing eddy

scale can be much larger than the Rossby radius. This

conceptual picture generally agrees with the life cycles

of nonlinear baroclinic waves (Simmons and Hoskins

1978), and the inverse cascade is seen in many simula-

tions of both the quasigeostrophic and primitive equa-

tions (Vallis andMaltrud 1993; Larichev and Held 1995;

Held and Larichev 1996; Zurita-Gotor and Vallis 2009;

Jansen and Ferrari 2012).

The regimes in which the above two strands of theory

are relevant can be separated by a nondimensional

number: the criticality j. Criticality is a measure of is-

entropic slope and it can be defined in layered and

continuously stratified quasigeostrophic (QG) and

primitive-equation (PE) models. Criticality has the

cleanest expression in the two-layer QGmodel on the b

plane (Phillips 1954). Here, the nondimensional number

j5U/(bL2
R) determines the linear instability, where U

is the mean thermal wind. The system is baroclinic un-

stable only if j . 1. However, this particular instability

criterion is unique to the two-layer model and in a con-

tinuously stratifiedmodel there is generally nominimum

requirement on criticality for the system to be unstable.

Furthermore, for the full nonlinear model, baroclinic

eddies can develop even if it is linearly stable (Farrell

and Ioannou 1994; Lee and Held 1991). However, crit-

icality can serve more generally as a measure of in-

stability and as a measure of the extent of the inverse

cascade. Generally when j # 1, the inverse cascade is

not important, and the energy-containing eddy scale,

Rossby radius, and Rhines scale are all very similar

(Schneider andWalker 2006). When j� 1, there can be

substantial inverse cascade. In this case, the eddy scale is

much larger than Rossby radius, and an adequate esti-

mate for eddy scale is sometimes found to be the Rhines

scale (Jansen and Ferrari 2012). Although the Rhines

scale may give a good estimate for the eddy scale in the

high-criticality case, it is not an a priori or mean field

estimate because it assumes knowledge of the root-mean-

square velocity at the eddy scale or, in the variant pro-

posed by Vallis and Maltrud (1993), one needs to know

the energy cascade rate. For baroclinic flow we need

a second-order closure to calculate these quantities, such

as that provided by Held and Larichev (1996). They took

the eddy scale Le and the Rhines scale Lb to be similar

and derived a classical scaling to relate them to the mean

field estimates LR and j, such that Le ; Lb ; jLR.

Between the linear regime and the turbulent one,

a theory for eddy scale is less clear. Intuitively, if we

increase criticality from below 1 to much larger than 1,

then we expect the eddy scale to increase from the de-

formation radius to the Rhines scale, but it is less clear

just how the eddies adjust their scales to an increased

criticality and when the inverse cascade becomes de-

veloped. However, there are very few studies on the

relationship between eddy scale and criticality in a PE

model mainly because, in a PE model, the criticality is

difficult to change by perturbing model parameters. In

a PE model, criticality can be intuitively thought of as

the ratio of the potential temperature difference be-

tween subtropics and poles Dhu to that between the

surface and the tropopause Dyu, written as j 5 Dhu/Dyu.

In Earth’s atmosphere, this quantity is well known to

stay at about unity throughout the seasons, even though

the meridional temperature gradient changes signifi-

cantly (Stone 1978). Earth’s atmosphere thus appears to

be in a low-criticality regime in which nonlinear inter-

action does not transfer much energy upscale beyond

the Rossby radius (Boer and Shepherd 1983; Shepherd

1987; Straus andDitlevsen 1999). It has been argued that

such a marginal critical state for Earth’s atmosphere

does not appear by chance; it was first called ‘‘baroclinic

adjustment’’ by Stone (1978) and later Schneider (2004)

and Schneider and Walker (2006) argued that the con-

straint j’ 1 arises using a turbulent closure for potential

vorticity and potential temperature fluxes along with an

assumption about the nature of the eddy diffusivity.

Unlike a QGmodel in which the vertical stratification is

prescribed, in the PE model the macroturbulence ad-

justs its extratropical thermal stratification to a state in

which eddy–eddy interactions are weak. Schneider and

Walker (2006) concluded that the supercritical state j. 1

is unobtainable in the PE model.

However, a number of studies have shown that the

constraint j ’ 1 for a PE model can, in some circum-

stances, be violated, and the criticality can be continu-

ously varied above 1. Zurita-Gotor (2008) first achieved

this by changing diabatic heating rate in a PE dry GCM

forced with Newtonian cooling. To vary the diabatic

heating rate by several orders, Zurita-Gotor only

changed the forcing time scale for the zonal mean flow

and kept the diabatic damping time scale for the eddies

to be the same. He showed that criticality increases

when the diabatic heating rate increases and that there is

nothing special about the state j ’ 1. In a later study,

Zurita-Gotor and Vallis (2009) applied the same dia-

batic forcing technique in a two-level PE model on a b

plane. By using a high diabatic heating rate, along with

adjusting f and b, they obtained the classical25/3 energy

spectrum in the barotropic part of the flow, suggesting

the existence of an inverse cascade. More recently,

Jansen and Ferrari (2012) showed that criticality can be
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continuously varied by changing the thermal expansion

coefficient in a Boussinesq model. When the thermal

expansion coefficient decreases from atmosphere-like

values to ocean-like values, the mean flow transits from

marginally critical (j ; 1) to highly supercritical states

(j � 1). Jansen and Ferrari (2013a) further suggested

that the constraint j ’ 1 can break down because

Schneider’s (2004) formulation of averaging along

isentropes in the surface layer is not consistent with the

turbulence diffusive closure. Their subsequent scalings

for criticality clearly suggested that criticality can vary

with changes in the radiative forcing, and to a greater

extent, with changes in the size and rotation rate of the

planet (Jansen and Ferrari 2013b). The highly super-

critical states are most likely to exist in real geophysical

flows where the planetary radius is much larger than the

Rossby radius. This may account for the possible exis-

tence of inverse cascade in Jupiter’s atmosphere (Choi

and Showman 2011) and in Earth’s ocean (Scott and

Wang 2005).

These studies provide a basis for studying the re-

lationship between eddy scale and criticality in a PE

model. Interestingly, Zurita-Gotor (2008) showed that

when criticality is increased by increasing the diabatic

heating rate, the eddy scale increases while the Rossby

radius decreases. This opposite trend of eddy scale and

Rossby radius is surprising and suggests that the inverse

cascade may increase its extent with criticality. How-

ever, Zurita-Gotor (2008) noticed that the measure of

inverse cascade proposed by Schneider and Walker

(2006), defined as the ratio between eddy available po-

tential energy and baroclinic eddy kinetic energy, does

not clearly support there being a significant inverse

cascade in his simulations.

In this study, we aim to quantify the role of the criti-

cality and the inverse cascade in setting the eddy scale in

dry primitive equation model. (We do not involve our-

selves in the discussion of whether and how states of high

criticality can be reached in a natural way; rather, we

treat criticality as an external parameter that can be

varied using the thermodynamic forcing.) The regime on

which we focus involves criticality varying near unity,

such that the flow transitions from a weakly nonlinear

regime to a strongly nonlinear regime. This regime is

further complicated by the fact that in linear QG in-

stability theory, the most unstable wavelength has a de-

pendency on criticality when criticality varies near 1.

This may provide an additional mechanism for the eddy

to adjust its length scale to an increased criticality

without involving a well-developed inverse cascade. The

classical Charney problem well illustrates this mecha-

nism but fully solving that problem is analytically diffi-

cult and uninformative. Instead, by simple rescaling, we

derive a simple approximate estimate for the most un-

stable wavelength’s dependency on criticality in the

Charney problem, and this work is presented in section

2. The numerical model we use to test the theory is de-

scribed in section 3 as are some numerical experiments.

We use both a full model and a model that is modified to

remove eddy–eddy interactions in order to quantify the

role of the inverse cascade. Section 4 further analyzes

the modeling results. Our overall goal is to understand

the conditions under which, when criticality is varied,

the inverse cascade is responsible for the increase in

eddy scale, or whether we can understand eddy scale

from linear or weakly nonlinear theory; a specific goal

would be to estimate the eddy scale as a function of

Rossby radius and criticality. Section 5 finishes with

some concluding remarks.

2. Notation and linear instability theory

a. Definition of criticality

Following Jansen and Ferrari (2012, 2013a), we define

criticality as

j5

�����
f›yu

bDyu

����� , (1)

where Dyu5 ut 2 us is often called the bulk stability. The

overbars denote temporal and zonal means. In pressure

coordinates, we estimate the bulk stability as

Dy ’2›pu
s
(ps2 pt) , (2)

where the superscript s means that the evaluation is

done near the surface; pt and ps denote the pressure at

the tropopause and surface, respectively.1

In spherical geometry, f and b cannot be adjusted in-

dependently, but the ratio f/b is on the order of the

planetary radius. Therefore, f›yu/b approximates the

potential temperature difference between the sub-

tropics and the pole. The state j; 1 can be interpreted

as an isentrope starting at the surface in the subtrop-

ics and ending at the tropopause near the pole.

1 In Schneider and Walker’s (2006) original paper on criticality,

they defined Dy ’22›pu
s
(pt 2 ps) and derived the constraint j ; 1

under this definition. Jansen and Ferrari (2013a) suggested that

Schneider and Walker’s formulation of averaging along isentropes

in the surface layer is not consistent with the diffusive closure and

dropped the factor 2, noting there is nothing special about the

observed j; 1 as criticality can be varied smoothly. In practice, the

exact value of criticality depends on the latitude at which f and b

are calculated, and also depends on the region one chooses to av-

erage over. Therefore, we also drop the factor of 2.
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Intuitively, criticality can be thought as the isentropic

slope if we plot isentropes in a coordinate such that the

troposphere has the same meridional and vertical

length scales.

b. Most unstable wave’s dependency on criticality

The most unstable wavelength in the simplest Eady

model only depends on Rossby radius. In more realistic

models on a b plane, the most unstable wavelength

usually has some dependency on criticality. For exam-

ple, in the two-layer Phillips model, the most unstable

wavelength increases with criticality, though the de-

pendency is weak. The dependency is much stronger

in a continuous model, especially when criticality is

much smaller than 1, and becomes weaker when criti-

cality increases above 1. In the following, we show this

using the Charney model and derive a simple approxi-

mate relationship between the most unstable wave’s

scale and criticality.

The Charney problem considers the QG instability of

a non-Boussinesq continuously stratified fluid on the b

plane with a rigid bottom boundary condition (Charney

1947; Vallis 2006, chapter 6; Pedlosky 1979, chapter 7).

The QG equation for the perturbation streamfunction

C, linearized about a zonally and meridionally homo-

geneous mean flow U(z), is�
›

›t
1U

›

›x

�
q1

›C

›x

›Q

›y
5 0, (3)

where q and Q are the potential vorticities of the per-

turbation and the mean flow, respectively, and they are

given by

q5=2C1
f 2

r

›

›z

�
r

N2

›C

›z

�
,

›Q

›y
5b2

f 2

r

›

›z

�
r

N2

›U

›z

�
.

(4)

The rigid bottom boundary condition is�
›

›t
1U

›

›x

�
›C

›z
2

›C

›x

›U

›z
5 0, at z5 0, (5)

and the other boundary condition is that the perturba-

tion vanishes at infinity:

C(z5‘)/ 0. (6)

For the Charney problem, further simplifications for

the mean flow and stratification are made. The zonal

flow is assumed to have a constant vertical shear, such

that U(z) 5 (›zU)z, where ›zU is constant. The ver-

tical stratification specified by the Brunt–V€ais€al€a fre-

quency N is assumed to be constant. The density

profile is characterized by a density scale height as r5
r0 exp(2z/Hr). Therefore, we can rewrite Eq. (4) as

q5=2C1
f 2

N2

›2C

›z2
2

f 2

N2Hr

›c

›z
,

›Q

›y
5b1

f 2›zU

N2Hr

,

(7)

where the boxed terms arise from density’s derivative

with respect to height. For a Boussinesq fluid that has no

density variation, all the boxed terms above and in the

following will disappear. As we will see later, the density

variation introduces a significant difference between

non-Boussinesq and Boussinesq flow.

As usual, we nondimensionalize the equation using

x, y5LR(x̂, ŷ) , (8a)

z5Hrẑ , (8b)

t5LR/(Hr›zU)t̂ , (8c)

where hats denote nondimensional quantities and the

horizontal scale is the Rossby radius defined as

LR 5
NHr

f
. (9)

A nondimensional parameter, which we define to be

criticality for the Charney problem, naturally arises after

the nondimensionalization:

j5
f 2›zU

bN2Hr

. (10)

All information on the mean flow (shear, stratification,

density profile, latitude, etc.) is absorbed into this single

parameter j after nondimensionalization, as Eq. (3)

becomes

�
›

›t̂
1 ẑ

›

›x̂

� 
=̂21

›2

›ẑ2
2

›

›ẑ

!
C1

�
1

j
1 1

�
›

›x̂
C5 0,

(11)

and the boundary conditions [Eqs. (5) and (6)] become

›2C

›t̂›ẑ
2

›C

›x̂
5 0, at ẑ5 0, (12)

and

C(ẑ5‘)/ 0. (13)

With the thermal wind relation, we can rewrite Eq.

(10) as
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j’
f

bHr

�����
›yu

›zu

�����
and immediately see its relevance to the criticality defi-

nition in Eq. (1). Compared with the usual definitions for

Rossby radius and criticality in a PE system, the density

scale height replaces the tropopause height in Eqs. (9)

and (10). For Earth’s atmosphere, the tropopause height

and density scale height are of the same order in the ex-

tratropics. Also, with2›pu
s
; g21›zu

s
/rs ;Hr›zu

s
/ps we

can rewrite the bulk stability in Eq. (2) as

Dy ’2›p u
s
(pt 2ps);Hr›zu

sps 2 pt
ps

.

As long as the tropopause pressure is much smaller than

surface pressure, Hr›zu
s
can serve as a lowest-order

estimate for bulk stability. Therefore, we use Eqs. (9)

and (10) as the definitions for Rossby radius and criti-

cality respectively in the Charney problem.

Assuming plane-wave solutions of the form

C5c(ẑ) exp[ik(x̂2 ct̂)] (14)

to the nondimensionalized Eq. (11) and its boundary

conditions [Eqs. (12)–(13)], the equation describing the

vertical structure of the wave is

d2c

dẑ2
2

dc

dẑ
2

 
k22

1/j1 1

ẑ2 c

!
c5 0, (15)

with boundary conditions at rigid bottom and at infinity

c
dc

dẑ
(0)1c(0)5 0, c(‘)/ 0. (16)

For a given pair of j and wavenumber k, the Eq. (15)

and its boundary conditions [Eq. (16)] form an eigen-

value problem.We can solve it to get an eigenfunction c

and eigenvalue c. If the complex part of kc is positive,

then the wave is unstable. Its growth rate is given by kci,

where ci denotes the complex part of c. For a given j,

there exists a unique km for which kmci reaches its

maximum value (kci)max, where the subscript ‘‘max’’

denotes the maximum value of the bracket for k over

(0, ‘) and a definite j. The wave solution [Eq. (14)] with

the wavenumber km is referred as the most unstable

wave. It is often thought that themost unstable wavewill

dominate over other waves at finite amplitude, so the

correspondingmost unstable wavelength gives the energy-

containing eddy scale. Clearly, the most unstable wave-

number km is a function of j.

To see how j controls the most unstable wave, we

rescale the variables as

ẑ5 z*

��
1

j
1 1

�
, c5 c*

��
1

j
1 1

�
,

k5 k*

�
1

j
1 1

�
. (17)

Then the Eqs. (15) and (16) become

d2c

dz*2
2

j

j1 1

dc

dz*
2

�
k*22

1

z*2 c*

�
c5 0, (18)

c*
dc

dz*
(0)1c(0)5 0, c(‘)5 0. (19)

Under this rescaling, the growth rate is unchanged as

kc 5 k*c*, so the most unstable wave in the rescaled

Eqs. (18) and (19) is also related to that in Eqs. (15) and

(16) through the rescaling relation [Eq. (17)]. If the fluid

is Boussinesq, the boxed terms are dropped. Therefore,

Eqs. (18) and (19) have no reference to the mean flow,

and the most unstable wavenumber km* for the rescaled

equations is a constant for any j. Therefore, for the

Boussinesq fluid, rescaling relation [Eq. (17)] gives

the familiar results that the most unstable wave has

horizontal scale proportional to Lm ; f›zU/(bN) and

vertical scale proportional to the Charney height

h 5 f 2›zU/(bN2).

For a compressible fluid, we cannot eliminate the

dependency on the mean flow by this simple rescaling.

But notice that the dependency on j in Eq. (18) is

weak as j/(1 1 j) only varies from 0 to 1 when j varies

from 0 to ‘. Without the rescaling, the original Eq.

(15) has a much higher dependency on j, as 1/j can

vary from 0 to ‘. So we may expect that for the re-

scaled Eq. (18) and its boundary condition [Eq. (19)],

km* is only weakly dependent on j. If so, we can drop

the dependency of km* on j, such that km* (j)’ km* ,

where km* represents a characteristic value of km* . Use

rescaling [Eq. (17)] we get the dependency of km on

criticality as km(j)’ (11 1/j)km* . Finally, we can get

the dimensional most unstable wavenumber for the

original Eq. (3) by adding the length scale described by

nondimensionalization relationship [Eq. (8)]. Con-

verting the wavenumber into wavelength, we get in

dimensional variables that the most unstable wave-

length is

Lm ’C
j

j1 1
LR , (20)

where C5 2p/km* is the approximate constant. Its ver-

tical scale is

hm ’D
j

j1 1
Hr , (21)
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where D is another approximate constant on the order

of 1. To test whether the above scalings offer a good

estimate, we resort to numerical solutions. Before do-

ing this, we note that the rescaling [Eq. (17)] was used

by Lindzen and Farrell (1980a) to obtain an approxi-

mate simple formula for the maximum growth rate.

Also, similar forms of the most unstable wavelength’s

estimate as Eq. (20) exist in the literature. Branscome

(1983) derived the same estimate [Eq. (20)] through

perturbation methods in the short-wave limit (k � 1)

and near the neutral curve separating Charney and

Green modes (the right-side boundary of the growth-

rate contour shown in Fig. 1), and he determined C

to be 12. Wang et al. (1985) obtained a more compli-

cated estimate by using an integral representation

of the solution and a Frobenious series expansion,

and his estimate was later simplified into Lm ; 2pj/

(0.48j 1 1.48)LR (Stone and Yao 1990; Barry Craig

and Thuburn 2002). Above all, the asymptotic limits

for our scaling estimates are well known (Held 1978;

Vallis 2006). When j � 1, both horizontal and vertical

scales of the most unstable wave are linearly pro-

portional to j:

Lm ;O(jLR), hm ;O(jHr), when j � 1.

In this limit, the vertical scale of the wave is much

smaller than scale height, so we refer to such waves as

‘‘shallow waves.’’ When j � 1, the sensitivity of Lm and

hm on j saturates. The horizontal scale is only given by

deformation radius, while the vertical scale is limited by

the density scale height, written as

Lm ;O(LR), hm;O(Hr), when j � 1.

We refer to these waves as ‘‘deep waves’’ as their ver-

tical scale is comparable to the scale height. Our scaling

estimates [Eqs. (20) and (21)] connect the two limits

with a smooth transition.

c. Numerical validation

The nondimensionalized Charney problem described

by Eqs. (15) and (16) are solved numerically for various

values of j and k. As we are interested in the regime j;
O(1), we vary j between 0.1 and 4. Figure 1 is a contour

of the growth rate against inverse wavenumber 1/k and

j, together with two curves showing the numerically

obtained inverse of the most unstable wavenumber 1/km
and our scaling estimate 1/km’ 1.54j/(11 j), where the

constant 1.54 is determined by a least squares fit to give

the best agreement between our scaling estimate and

numerical result. Only the Charney mode regime is

plotted. The other modes have smaller maximum growth

rates compared with the Charney mode (Pedlosky 1979).

Clearly our scaling estimate gives a good approximation

to the numerical results. The difference between the two

is within 0.08. To convert wavenumber into wavelength,

a factor of 2p needs to be multiplied. So in dimensional

variables, our scaling estimate for most unstable wave-

length is

Lm ’ 9:7
j

j1 1
LR .

Figure 2a shows the vertical structure of the most

unstable wave for j 5 1. Three curves are shown, cor-

responding to amplitude of perturbation jcj, heat flux
y 0›zc, and potential vorticity (PV) flux. All of them

are normalized by their maximum values. Generally

for the most unstable wave, the heat flux decreases

rapidly with height. To the lowest order, the vertical

profile of heat flux can be approximated by an expo-

nential decay:

y 0›zc; exp(2z/hu) . (22)

Therefore, we use Eq. (22) as the definition for the

vertical scale of the wave, such that the vertical scale of

the wave hu is the e-folding height of the heat flux. For

the real atmosphere or a primitive equation model, we

replace the heat flux in Eq. (22) by the potential tem-

perature (PT) flux y 0u0. We can find hu by fitting the PT

flux profile to an exponential function. To test our esti-

mate for the vertical scale of the most unstable wave in

FIG. 1. A contour plot showing the growth rate against 1/k and j

for the Charney model. The solid line marks the most unstable

wavenumber determined numerically, and the dashed line shows

our scaling estimate: 1.54j(1 1 j). The horizontal and vertical

length scales are nondimensionalized by LR and Hr, respectively.

The contour interval is 0.02, and it is nondimensionalized by

Hr›zU/LR.
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Eq. (21), we calculate hu from the numerical solutions of

the most unstable wave for different j and plot their re-

lationship in Fig. 2b. The best estimate is hu;Dj/(11 j),

with the parameterD determined to be 1.09.2 Again, our

scaling estimate provides a reasonable approximation to

the numerical results. Their difference is within 0.11.

Because of the analytical difficulty in solving Charney

problem, whose solution involves hypergeometric func-

tions, deriving a more accurate estimate for the most

unstable wavenumber will presumably make the formula

more complicated. Therefore, our scaling estimate is

useful in the sense that it provides a simple estimate for

both practical use and theoretical understanding.

3. Idealized GCM and experiments

a. Model description

We investigate how eddy scale depends on criticality

in an idealized GCM. The GCM is a primitive equation

model of a dry ideal gas atmosphere on a sphere of

Earth’s radius and rotation rate. The primitive equations

are integrated with the spectrum transform method in

the horizontal with resolution T42, and centered dif-

ference scheme in the vertical, with evenly spaced ver-

tical s levels. There is no bottom topography at the

lower boundary. It is forced by idealized Held and

Suarez (1994) physics where radiation is represented by

a Newtonian relaxation of temperature to a prescribed

‘‘radiative equilibrium’’ profile and dissipation is rep-

resented by a Rayleigh damping of the velocities in the

‘‘boundary layer’’ (s $ 0.7). The model setup is very

similar to that described in Zurita-Gotor (2008), except

that we use a thermal relaxation rate of 1/40 day21 in the

free troposphere, which is the original value used by

Held and Suarez (1994), and we use 30 vertical levels.

Criticality is varied by varying thermal forcing. To

vary the thermal forcing by several orders without

damping out the eddies, Zurita-Gotor (2008) suggests

separating the forcing into zonal mean flow and eddy

terms and only varying the forcing time scale on the

mean flow. The thermodynamic equation is then

›T

›t
5 . . . 2 kTT

02 gkT(T2Teq) .

Overbars denote zonal mean fields and primes denote

the deviations from zonal means. The forcing on the

zonal mean flow is increased by g times. Presumably, we

can have a very high forcing rate on themean flow so that

the time-mean temperature field is close to the pre-

scribed profile, while the eddies are still nearly adiabatic.

b. Reduced GCM

To isolate the effects of the inverse energy cascade on

the eddy scale, we use the GCM without nonlinear eddy–

eddy interactions introduced byO’Gorman andSchneider

(2007), which we will refer as the reduced GCM. As

a comparison, the original GCM described above is re-

ferred as the full GCM. The reduced GCM is constructed

from the full GCM by eliminating the nonlinear eddy–

eddy interactions but retaining the eddy–mean-flow in-

teractions. Therefore, in the reduced GCM, there is no

FIG. 2. (a) Vertical structure of the most unstable Charney wave

when j 5 1. Dashed line is jcj, solid line is y0›zc, and dotted line is

PV flux. All three curves are normalized by their maximum values.

(b) hu defined in Eq. (22) vs criticality: solid line is from numerical

results and dashed line is our scaling estimate: 1.09j(1 1 j).

2Held (1978) gave a formally similar estimate for the vertical

extent of eddy PV fluxes. His definition of vertical extent is based

on the e-folding scale of ry0q0. The density profile multiplied to PV

flux limits this vertical extent with an upper bound of density scale

height, whereas in our definition, hu can be larger than density scale

height. That hu saturates when j becomes large is not because of

being limited by density’s decay with height.
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inverse cascade, which is a scale-by-scale energy trans-

fer, but there is still direct energy transfer between eddy

and mean flow (Tobias and Marston 2013). We run the

reduced GCM in parallel with the full GCM. The re-

duced GCM has shown to reproduce many atmospheric

flow features, including the eddy length scale, the 23

slope in energy spectrum, and the jet formation. This is

interpreted as the Earth-like regime being weakly non-

linear (O’Gorman and Schneider 2007).

c. Series of simulations

To vary criticality, we vary the rate of thermal forcing

on the mean flow by changing g. The baroclinicity is

varied by varying dy. For each setting of dy 530, 60, 90,

and 120K, we consider nine different values of g 5 (0.1,

0.2, 0.5, 1, 2, 5, 10, 20, 40). For g5 1 run, the forcing rates

on zonal mean flow and eddies are the same, and we

refer it as the control run.We run each combination of dy
and g in both the full and reduced GCMs. Each simu-

lation is integrated for 1500 days. The first 1000 days are

discarded as spinup and the last 500 days are used to

calculate the flow statistics.

4. Results

A comparison of the basic climatology of the control

run with g 5 1 and dy 5 60K from the full and reduced

GCMs is shown in Fig. 3. The full GCM simulation re-

sembles Earth’s climatology. It has similar magnitude of

zonal wind and eddy kinetic energy [EKE5 (u02 1 y02)/2]
as Earth. We determine the tropopause height using

Schneider’s (2004) definition: that the tropopause is the

boundary layer below which the bulk of the entropy the

atmosphere receives by the heating at the surface is re-

distributed. Schneider’s (2004) definition is based on

isentropic diagnostics, and we use Czaja and Marshall’s

(2006) method to convert fields from pressure co-

ordinates to isentropic coordinates. This tropopause is

lower than the World Meteorological Organization

(WMO) tropopause. We use Schneider’s tropopause for

evaluations of criticality and Rossby radius. Repeating

the calculations using the WMO tropopause does not

change the results much. The reduced GCM can re-

produce the upper-level westerly jets, which are driven

by the eddy–mean flow interactions. But the jets are

narrower in the reduced GCM, and there is an extra jet

in each hemisphere. The EKE in the reduced GCM is

about two times larger than that in the full GCM. These

results are in accordance with O’Gorman and Schneider

(2007). In the following, all simulations are from full

GCM if not specified. We will only use reduced GCM in

the following subsection.

In our study, the tropopause height varies little because

the mean extratropical surface temperature changes little

by our model construction [Eq. (17) in Zurita-Gotor

2008; also see Schneider 2007]. Therefore, the variation of

Dy is mostly due to variation of j›puj, which is a measure

of vertical stability and is set by two competing processes.

The first process is the Newtonian relaxation of the

temperature field to the prescribed radiative equilibrium

profile. As the prescribed profile in extratropics has very

small thermal stratification, this process tends to reduce

the vertical stability. The second process is the baroclinic

eddy activity, which modifies the thermal stratification

(Schneider and Walker 2006, 2008), and in our cases it

increases the stratification above that of the prescribed

profile.

Figure 4 shows that for the runs with g5 1 and varying

dy, the bulk stability [Dy 5 j›pus(pt 2 ps)j] increases

proportionally with the scaled meridional temperature

gradient [Dh 5 j(f /b)›yusj]. This is because when dy in-

creases and other parameters are kept the same, the

meridional temperature gradient and baroclinicity in-

crease, and as a result the eddy activity becomes stron-

ger. The stronger eddies transport more heat upward,

which increases the vertical stability. The temperature

FIG. 3. Mean zonal wind (contours) and EKE (colors) for the control run (g 5 1) with dy 5 60K from (left) full

GCMand (right) reducedGCM. The contour interval for zonal wind is 5m s21, and for EKE it is 100m2 s22. The zero

zonal wind contour is thick, and negative contours are dashed. The tropopause calculated from isentropic diagnostics

is marked by the thick black line, and the WMO tropopause is marked by the thick gray line.
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gradients ›yu
s and ›pu

s
are evaluated at 850 hPa and

averaged over the baroclinic zone, defined as the region

where the PT flux at 850 hPa [y0u0
s
cos(f)] is within 30%

of its maximum. We use superscript s in this section to

denote that the evaluation is done at 850 hPa. The

Coriolis parameters f and b are evaluated at the refer-

ence latitude that is defined as the centroid of the PT flux

at 850 hPa in each hemisphere:

fref 5

ðp/2
0

fy0u0
s
cos(f) dfðp/2

0
y0u0

s
cos(f) df

.

Under these conventions, j 5 Dh/Dy for the control

simulations (g 5 1) is close to 1. These results are in

accordance with Schneider and Walker’s (2006) that

criticality is not sensitive to changes in radiative equi-

librium baroclinicity.

Following Zurita-Gotor (2008), we vary the criticality

by varying g, which controls the thermal forcing rate on

the mean flow. When g increases, the vertical stratifi-

cation transitions from the regime that it is set by eddy

activity to the regime that is set by the thermal forcing.

For the series of runs with fixed dy but increasing g, Dy

initially increases nearly proportional to Dh when g #

0.5 (Fig. 4). This is the regime in which eddy activity

dominates over thermal relaxation in setting the thermal

stratification. In this regime, the criticality stays close to

1. When g further increases above 1, Dy starts to de-

crease while Dh saturates. This is because thermal re-

laxation becomes so strong that it forces Dy and Dh to

approach the values of prescribed profile. For dy 5 90

and 120K, Dh decreases slightly when g is very large

because the PT flux moves slightly toward the equator,

so the reference latitude and f/b decrease slightly.

Ourmajor motivation is to investigate the eddy scale’s

relationship to criticality. As criticality is varied by

varying g, we show the eddy scale Le versus g for runs

with dy 5 60K in Fig. 5a, along with the Rossby radius

LR. The eddy scale and Rossby radius are normalized by

their control values (g 5 1). The eddy scale is calculated

from the ‘‘inverse centroid’’ of the barotropic EKE

spectrum (see appendix A). The Rossby radius is cal-

culated as

LR 5
Np(ps 2 pt)

f
, (23)

where N2
p 52(rsus)21›pu

s
is a vertical stability mea-

sure, evaluated at 850 hPa; ps and pt are the surface

pressure and tropopause pressure, respectively. We av-

erage Np, ps, and pt over the baroclinic zone. This

Rossby radius multiplied by an empirical constant is

shown to be a good estimate for eddy scale for a wide

range of climates whose criticality is close to 1 (Merlis

and Schneider 2009). However, when g varies the

Rossby radius can no longer offer a good estimate for

eddy scale. As shown in Fig. 5a, when g increases the

eddy scale increases monotonically,3 while the Rossby

radius initially increases with a similar trend when g #

0.5 and then decreases steady when g increases above 1.

The decrease in Rossby radius is mainly dominated by

the decrease in Np as shown in Fig. 5b. Again, Np de-

creases because the thermal forcing dominates over

eddy activity in setting vertical stratification when g is

large, so that Np is relaxed toward the prescribed equi-

librium profile. The tropopause height Hp 5 ps 2 pt in-

creases slightly when g is small and then saturates for

large g. If WMO tropopause definition is used, the de-

creasing trend for Rossby radius is even stronger as the

FIG. 4. Dy 5 ›pu
s
(pt 2ps) vs Dh 5 j(f /b)›yusj evaluated at

850 hPa for different combinations of g and dy. The control runs

with g 5 1 but different dy are connected with a black line. Each

series of runs with varying g and with the same dy are connected

with a blue line, and the corresponding value dy is indicated by the

label beside it.

3 In Zurita-Gotor (2008), the eddy scale saturates at largest g,

while in our simulations eddy scale does not saturate. This is mainly

because we calculated eddy scale using the inverse centroid rather

than the centroid of the EKE spectrum, which givesmore weight to

larger scales. Also, the largest thermal forcing rate we used is still 5

times smaller than that used by Zurita-Gotor. This difference does

not change our results much as in both cases the ratio of eddy scale

and Rossby radius does not saturate.
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WMO tropopause height slightly decreases for large g.

If the density scale height is used to evaluate Rossby

radius as that in the Charney problem, then the results

here and in the following would not change much either.

This is because changes in vertical stability dominate

changes in Rossby radius in our simulations. For all se-

ries of simulations with different dy as shown in Fig. 6,

the criticality and eddy scale increases steady with g,

while Rossby radius decreases when g becomes large

enough. For the range of dy and g in this study, criticality

is approximately a function of g.

Why can the eddy scale and Rossby radius have op-

posite trends when criticality varies? One possible ex-

planation comes from the Rhines scale argument. When

thermal forcing is accelerated, eddies become more

energetic. Therefore, it is obvious that the Rhines scale

would increase, which gives the correct trend for the

eddy scale. Quantitatively, the Rhines scale gives a good

estimate for the eddy scale for all the runs as shown in

Fig. 7b. On the other hand, Rossby radius can predict the

eddy scale only when criticality is nearly constant, as can

been seen if we connect the points in Fig. 7a that have

the same g and different dy. However, the Rossby radius

loses its predictive power when criticality varies. The

Rhines scale is calculated as

Lb 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/2)u02bt

b

s

in accordance with Schneider and Walker (2006). The

barotropic velocity ubt is calculated by averaging the

horizontal velocity (including both zonal andmeridional

velocities) vertically from the lowest layer to 150 hPa.

The barotropic EKE [(1/2)u02bt] is averaged over the

baroclinic zone.

It may seem that the increase in eddy scale can be

interpreted as an increase in the extent of the inverse

cascade when criticality increases. However, one needs

to be cautious to make this conclusion, as we show in

section 2 that the most unstable wavelength increases

with criticality, which allows the eddy scale to adjust

without involving an inverse cascade. To quantify the

role of the inverse cascade in determining eddy scale, we

compare the results from the full GCM with that from

the reduced GCM in the following subsection. The re-

duced GCM does not have eddy–eddy interaction, so it

does not support an inverse cascade. In addition, we

calculate the spectral EKE budget for the full GCM

runs. Therefore, we can clearly see how the inverse

cascade contributes to the eddy scale.

a. Role of inverse cascade

The reduced GCM can reproduce many first- and

second-order flow statistics from the full GCM. Eddy

statistics are examined using the barotropic EKE spec-

trum. The spectrum is defined using spherical wave-

numbers (see appendix A). Figure 8 compares the

barotropic EKE spectra for runs with dy 5 60K and

varying thermal forcing g 5 0.1, 1, and 10 from both the

full and reduced GCMs. The shape of the energy spec-

trum in the reduced GCM shares many similarities with

that of full GCM. In wavenumber regime 10–40, all the

full GCM runs exhibit the n23 power-law range. On

the other hand, in the reduced GCM, for g 5 0.1 and 1,

FIG. 5. Results from simulations with dy 5 60K and varying g. (a) Le and LR, both normalized by their control run

values (g 5 1). (b) Hp based on isentropic diagnostics, WMO tropopause height HWMO
p , and Np, all normalized by

their control run values.
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the spectrum exhibits the23 slope. For g5 10, the slope

is shallower than 23 for wavenumber 20–40. This shal-

lower spectrum in the reduced GCM is explained by

O’Gorman and Schneider (2007) as the lack of eddy–

eddy interactions preventing the buildup of energy at

small scales. On the larger scales where wavenumber is

smaller than 10, the energy spectra in the reduced GCM

are generally lower than that in the full GCM, which

suggests that the nonlinear eddy–eddy interaction does

transfer some energy upscale.

It is striking that the eddy scales are comparable in the

full and reduced GCMs. For g 5 1, the most energetic

wavenumbers are both 8 in full and reduced GCMs, so

the eddy scales are very similar in both GCMs. More

interestingly, in the reduced GCM eddy scale increases

with g similarly to that of the full GCM. Figure 9a

compares the eddy scale for all runs from the full and

reduced GCMs. The eddy scales in the full and reduced

GCMs roughly changes proportionally to each other

with a slope close to 1 for g # 10. This suggests that in

FIG. 6. j, LR, and Le as a function of g and dy.

FIG. 7. (a) Best Rossby radius estimate CRLR and (b) Rhines scale estimate CbLb for eddy scale. The empirical

constants CR and Cb are determined to be 2.6 and 3.2, respectively, by a least squares fit to the modeling results. The

legends denote the series of experiments with a certain dy and varying g.
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the full GCM, the eddy scale can increase with criticality

without involving an inverse cascade before it enters the

strongly nonlinear regime. In the high-criticality end

where g $ 10, the eddy scale in the reduced GCM sat-

urates or even decreases while eddy scale in the full

GCM continues to increase. This implies that eddy–

eddy interactions become important in inversely cas-

cading EKE to larger scales.

Another confirmation is from spectral EKE budget

analysis (see appendix B for the methods). We calculate

the average scale at which available potential energy is

converted into eddy kinetic energy, which we refer to as

the EKE generation scale. Figure 9b compares the EKE

generation scale with the eddy scale, both from the full

GCM. The energy generation scale generally increases

proportional to the eddy scale until g increases above 10,

beyond which the energy generation scale saturates.

Therefore, we conclude that when criticality varies

around 1, there exists a weakly nonlinear regime in

which the eddy scale can increase with criticality without

involving the inverse cascade, but the EKE generation

moves to larger scales as well. When criticality increases

above the weakly nonlinear regime, the nonlinear eddy–

eddy interactions become important, and the inverse

cascade plays a role in continuing to increase the eddy

scale. In the weakly nonlinear regime, we need an ex-

planation for why the eddy scale and Rossby radius can

have different trends.

b. Linear instability perspective

Discussions in section 2 suggest that the most unstable

wavelength depends on criticality. When criticality

varies, the Rossby radius is not enough to estimate the

most unstable wavelength. This may solve the apparent

conundrum that the eddy scale and Rossby radius can

have opposite trends when criticality is varied. In the

following, we only use results from the full GCM.

The Charney problem predicts that when the most

unstable wave transitions from being a shallow wave to

a deepwave, it also increases its wavelength. However, if

FIG. 8. For the Earth-like settings with dy 5 60K, V 5 V0, and

r5 a0, and varying thermal forcing g5 0.1, 1, and 10, comparison of

EKE spectrum between the full (solid) and reduced (dashed)

GCMs. The vertical black lines indicate energy-containing wave-

number for the full GCM runs.

FIG. 9. (a) Comparison of Le in the full and reduced GCMs. (b) Comparison of eddy scale and eddy kinetic energy

generation scale (see appendixes A and B for definitions) in the full GCM. The legends denote the series of ex-

periments with a certain dy and varying g.
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the vertical scale of the wave is already so large that it

is comparable to density scale height, the most unsta-

ble wavelength is no longer sensitive to criticality.

Figure 10 shows the eddy flux of potential temperature

[y0u0 cos(f)] for g 5 0.1, 1, and 10 from simulations with

dy 5 60K. The potential temperature flux reaches its

maximum near the surface. For very small g 5 0.1, the

maximum occurs above the surface near 850hPa. This is

probably because of theRayleigh damping in the ‘‘surface

layer’’ that reduces eddy amplitude. For larger g, the

maximum moves toward the surface. Clearly, the vertical

extent of the eddy PT flux gradually increases when g

increases. The change in tropopause height also captures

the increase of eddies’ vertical extent to some degree.

To obtain a quantitative estimate for the change in the

wave’s vertical scale, we calculate the vertical scale of

the wave hu defined in Eq. (22), where hu is the e-folding

scale of the eddy PT flux. Figure 11a shows the vertical

eddy PT flux profile, which is y0u0 cos(f) horizontally

averaged over the baroclinic zone. Clearly when g in-

creases, PT flux decreases with height slower, which

means that the vertical scale of the eddies is larger.

Because for very small g, the PT flux’s maximum is

above the surface, and also the PT flux has a second

maxima in the upper atmosphere near the tropopause,

we only use the PT flux profile between 580 and 820 hPa

to extract the vertical scale of the eddies. This pressure

range is marked by dashed lines in Fig. 11a. In practice,

the ratio of hu to the density scale height Hr is naturally

obtained by a linear regression between lny0u0 cos(f)
and lnp, if we assume that p’ p0 exp(2z/Hr). As shown

in Fig. 11b, hu generally increases monotonically with g.

For g # 10, the vertical scale of the eddies generally

increases toward the scale height as it approaches from

below. This suggests that the eddies can also increase

their horizontal scales linearly as the most unstable wave.

When g increases above 10, the vertical scale of the

eddies either saturates (for dy 5 90 and 120K runs) or

increases above the scale height (for dy 5 30 and 60K

runs), which suggests that the eddies enter the deep wave

regime and the most unstable wavelength loses its sensi-

tivity on criticality. In the deep wave regime, an inverse

cascade is needed to continue increasing the eddy scale.

In the Charney model, the wave’s vertical and hori-

zontal scales increase nearly proportionally to each

other. However, for all series of experiments here,

the vertical scale of the wave generally increases by

about a factor of 3 while eddy scale increases by about

a factor of 1.7 when g increases from 0.1 to 40. This

discrepancy may result from the vertical inhomo-

geneity. In the model, the tropopause provides a dy-

namically relevant boundary layer, which may be

viewed as a rigid lid as a first approximation. If we add

a rigid lid in the Charney problem, in the limit j � 1,

the most unstable wave will approach that in the Eady

problem. In this limit, the vertical scale of the most

unstable wave in our definition approaches infinity, as

the Eady solution is vertically symmetric. Therefore,

the vertical inhomogeneity may allow the vertical scale

to increase faster than its horizontal scale when criti-

cality increases.

The estimate for the most unstable wavelength, in-

cluding its dependency on criticality, is given in Eq. (20)

as Lm ; CLRj/(1 1 j). Although LR decreases when g

increases, the increase in j can still give an increase in

Lm. Therefore, the most unstable wavelength can in-

crease despite the Rossby radius decreasing, giving the

correct trend for eddy scale. As the exact value of crit-

icality depends on the conventions that we used, and

there is a difference between the mean flows in the

Charney model and our simulations, we expect to add

a degree of freedom to criticality before we use Eq. (20).

In the sense that eddy scale scales with themost unstable

wavelength, our eddy scale estimate is

Le;Lm ;CLR

Aj

Aj1 1
,

where A and C are two empirical constants. The criti-

cality in Eq. (20) is replaced by an ‘‘effective’’ criticality

FIG. 10. y0u0 cos(f) (colors) and mean potential temperature

(contours) from simulations with dy 5 60K, and g 5 (top) 0.1,

(middle) 1, and (bottom) 10. The thick black lines denote the

tropopause determined from isentropic diagnostics.
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Aj. Figure 12b shows this estimate versus the eddy scale

from the simulations. The empirical constants are de-

termined by a least squares fit as C 5 8.7 and A 5 0.36.

We see that our estimate is in good agreement with the

simulations. That the effective criticality is smaller than

criticality may partly result from the vorticity gradient of

the jet 2uyy that adds to b (Zurita-Gotor 2007). Com-

pared with Held and Larichev’s (1996) scaling for eddy

scale CjLR, which is also the estimate for the most un-

stable wavelength in the shallow wave limit, our esti-

mate has one more empirical constant A. However, this

is necessary because the dependency of the eddy scale

on criticality is not simply linear. This is seen in Fig. 12a,

where we show the best fit using CjLR, with C de-

termined to be 1.8. This estimate increases too fast with

criticality when criticality is large.

5. Conclusions and discussion

In this paper, we have studied the relationship be-

tween criticality and eddy scale using a dry, three-

dimensional, primitive-equation model. By varying the

FIG. 11. (a) The vertical structure of y0u0 cos(f) averaged over the baroclinic zone and normalized by its maximum

value from simulationswith dy5 60K and g5 0.1, 1, and 10. (b) hu defined in Eq. (22) for all series of simulations with

different dy and varying g, normalized by the scale heightHr. The horizontal dashed lines in (a) denote the pressure

range over which we fit the potential temperature flux profile to an exponential decay with height to get hu.

FIG. 12. (a) Best estimate using CjLR vs observed eddy scale in all runs, with C5 1.8. (b) Best estimate using the

formCLR(Aj)/(11Aj) vs observed eddy scale in all runs, withC5 8.7 andA5 0.36. The legends denote the series of

experiments with a certain dy and varying g.
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Newtonian thermal forcing on the mean flow, the criti-

cality can be varied smoothly. Themain question that we

have tried to answer is what is the role of the inverse

cascade on eddy scale when criticality varies? We

showed that when criticality varies near a value of 1,

there exists a weakly nonlinear regime in which the eddy

scale increases with criticality without involving an in-

verse cascade. When criticality increases beyond this

weakly nonlinear regime, the inverse cascade becomes

important in continuing to increase the eddy scale. The

Rossby radius is no longer a useful estimate for eddy

scale as criticality increases and the Rossby radius and

eddy scale can, in fact, have opposite trends.

To understand these results, we began with linear

quasigeostrophic instability theory, as the classical

Charney model shows a dependency of the most unstable

wavelength on criticality. By using a simple rescaling, we

showed that both the horizontal and vertical scales of the

most unstable wave increase with criticality and we de-

rived approximate estimates for these scales. In the

weakly nonlinear regime, the increase of eddy scale with

criticality is found to be associated with the transition of

the most unstable wave from a shallow wave into deep

wave and the corresponding increase of themost unstable

wavelength. The formula for the most unstable wave-

length derived in the Charney problem ismodified to give

a semiempirical estimate for the eddy scale that is con-

sistent with our simulations.

The way in which an eddy can adjust its horizontal and

vertical scales when criticality varies has some pre-

cedents in the quasigeostrophic literature although it has

not been systematically studied. Thus,Held andO’Brien

(1992) showed that in a three-layer QG model the ver-

tical scale of eddies increases with increasing criticality

and that linear instability theory can make an adequate

prediction for this vertical scale. Whitaker and Barcilon

(1995) showed that in a two-layer QG model, the most

energetic wave increases its horizontal scale with in-

creasing criticality without involving nonlinear upscale

energy transfer. These studies were limited by their low

vertical resolutions and QG studies with higher vertical

resolutions would be useful.

Although the most unstable wave in the Charney

problem shows quantitative similarities with the eddy

scale in our simulations, there are still substantial diffi-

culties in bridging linear instability theory with model-

ing results. The vertical and horizontal inhomogeneities

of the time-mean flows in modeling prohibit extracting

a simple relationship between the most unstable wave

and criticality. Therefore, we need to resort to even

simpler models such as the Charney problem but still

hope to capture the essential physics. A drawback of the

Charney problem is that it does not take into account

the tropopause. One step forward would be to consider

theGreen problem, which adds a rigid lid to the Charney

problem to represent the tropopause (Green 1960). In the

Boussinesq limit, the Green problem can be formulated

with a single nondimensional parameter: criticality (as-

suming constant vertical shear and Brunt–V€ais€al€a fre-

quency, and using tropopause height as the vertical scale).

In this limit, the most unstable wavelength has a similar

dependency on criticality as the Charney problem [see

Fig. 3 in Green (1960)]. This may suggest that for more

general time-mean flows, the most unstable wavelength

can increase with criticality when it varies near 1 and

saturates when criticality is much larger than 1. Never-

theless, the tropopause has a significant impact on the

vertical structure of the unstable waves. For example,

a more realistic representation of tropopause leads to

larger upper-level amplitudes for the unstable waves

(Simmons and Hoskins 1976, 1977).

There are of course alternate theories that may ex-

plain the behavior of the horizontal and vertical scales of

eddies in modeling. One alternative is that the hori-

zontal scale is proportional to the wavelength of the

(first) neutral mode in the Charney problem, which also

increases with criticality (see Fig. 1). Exact analytical

expressions exist for the wavelength of neutral modes.

For example, the wavelength of the first neutral mode is

4pLRj/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 1

p
(Burger 1962). Another alternative is

that the vertical scale of eddies is determined by the

baroclinic adjustment hypothesis (Lindzen and Farrell

1980b; Held 1982) that the vertical scale is the minimum

height above the ground up to which eddies needmodify

the flow in order to neutralize it. Applying this hypo-

thesis to the Charney problem leads to a vertical scale

Hr ln(1 1 j). If we replace the criticality in these for-

mulas with an ‘‘effective’’ criticality Aj, it is difficult to

check which formula works better.

It is interesting that, although the inverse cascade is

not important in most of our simulations, the Rhines

scale still serves as a good estimate for the eddy scale in

most simulations (Fig. 7), despite the fact that the

Rhines scale is usually thought of as a crossover between

homogeneous turbulence and Rossby wave regimes.

The result here suggests that the Rhines scale may not

crucially depend on the presence of a classical inverse

cascade and may have a somewhat more general appli-

cability. The effects of friction are also likely to be im-

portant in any real simulation (Sukoriansky et al. 2007).

In our study, criticality varies between about 1 and 3.

Consider Jansen and Ferrari’s (2013b) scaling for criti-

cality j ; ( ftr)
21/5(a/LR)

3/5, where tr is the time scale of

thermal forcing and is inversely proportional to g in our

experiments, and a5 f/b is on the order of the planetary

radius. The scaling explains why we have to vary g by
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several orders in order to vary criticality, as criticality is

only dependent on g to one-fifth power. Note that we

cannot get very high criticality by increasing the thermal

forcing rate only. Rather, to get very high criticality, it

may be better to increase a/LR. Indeed, we obtained

very high criticality and a substantial inverse cascade in

a simulation with planetary radius 10 times Earth’s.

Combined with results from this study, it follows that

Earth’s atmosphere is within the weakly nonlinear re-

gime because the Rossby radius is on the same order as

the planetary radius and also that the most unstable

wave can adjust its horizontal and vertical scale so as to

stay weakly nonlinear.
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APPENDIX A

Barotropic EKE Spectrum and Eddy Scale

The barotropic EKE spectrum En (m2 s22) is com-

puted using spherical harmonics as basis functions and

the details are described by Boer and Shepherd (1983).

Briefly, it is defined as

En 5
1

4
�
n

l52n

h(��fu0btgn,l��21 ��fy0btgn,l��2)i , (A1)

where u0bt and y0bt denote the zonal and meridional

components of barotropic eddy velocity, which is ve-

locity’s derivation from zonal mean and vertically av-

eraged from 150 to 1000 hPa. The angle brackets denote

a time mean. The subscripts n and l denote the spec-

trum component of the fields with total wavenumber n

and zonal wavenumber l. The wavenumbers are non-

dimensional. For the T42 resolution, n ranges from 1 to

42. The sum ofEn for all wavenumbers equals the surface

area averaged barotropic EKE.

The energy-containing eddy scale, which we usually

refer to as ‘‘eddy scale’’ for short, is calculated from the

‘‘inverse centroid’’ introduced by Schneider andWalker

(2006, 2008). Compared with the normal centroid, this

definition gives a scale closer to the peak in En. To get

the eddy scale, the energy-containing wavenumber ne is

first calculated as

ne(ne1 1)5
�
n
En

�
n
[n(n1 1)]21En

, (A2)

and then the eddy scale Le is given by

Le 5
paffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ne(ne1 1)
p , (A3)

where a is the planetary radius. Using the vertical av-

eraged EKE spectrum defined below in Eq. (B2) instead

of barotropic EKE spectrum in Eq. (B2) gives a slightly

smaller eddy scale, which does not change our result

much.

APPENDIX B

Spectral EKE Budget

The spectral EKE budget can then be written as

›tEKEn 5G1TEE1TEM 2D1Resi , (B1)

where

EKEn5
1

4
�
n

l52n

*ðp
2

p
1

(
��u0n,l��21 ��y0n,l��2) dp

+�
Dp , (B2)

where EKEn denotes the vertically averaged EKE at total

wavenumber n, the range between p1 and p2 is from 150 to

1000hPa,B1 and the angle brackets denote a time mean.

By dividing the vertical integral by the pressure range

Dp5 p2 2 p1, the units for EKEn are squared meters per

squared second. In the right-hand side terms above,

G52
1

2
�
n

l52n

*ðp
2

p
1

R

p
Re(T 0

n,lv
0*
n,l) dp

+�
Dp

denotes the energy conversion from eddy available po-

tential energy to eddy kinetic energy, and we refer it as

‘‘EKE generation’’ for short;

B1 In actual calculations, we use the model’s sigma coordinate to

approximate the pressure coordinate. This avoids the complica-

tions related to the lower boundary condition in pressure co-

ordinate (the planetary surface pierces the near-surface pressure

levels). This is a decent approximation as long as the surface

pressure variation is small enough.
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TEE 5
1

2
�
n

l52n

*ðp
2

p
1

Re[2un,l
0* (u0 � $u0)n,l 2 yn,l

0* (u0 � $y0)n,l]dp
+�

Dp

denotes nonlinear eddy–eddy kinetic energy transfer;

TEM 5
1

2
�
n

l52n

*ðp
2

p
1

Re[2un,l
0* (u0 � $u)n,l 2 yn,l

0* (u0 � $y)n,l 2un,l
0* (u � $u0)n,l 2 yn,l

0* (u � $y0)n,l] dp
+�

Dp

denotes the eddy–mean-flow kinetic energy transfer;

and

D5
1

2
�
n

l52n

*ðp
2

p
1

ky(p)(un,l
0*u0n,l 1 yn,l

0* y0n,l) dp

+�
Dp

denotes the dissipation by Rayleigh damping of low-

level winds, where ky(p) is the linear damping coefficient

as a function of pressure. The contributions from the

Coriolis terms, dissipation by hyperdiffusivity, and

gravitational potential energy flux through the bound-

aries are absorbed in the residual term (Resi). In a sta-

tistical steady state, the sum of the right-hand side terms

should be zero. Detailed derivations and notations can

be found in Lambert (1984) or Koshyk and Hamilton

(2001). The corresponding formulation using Fourier

series as basis functions in a Cartesian geometry is given

in Jansen and Ferrari (2012).

Figure B1a shows the terms in the spectral EKE

budget for the control (g5 1) simulation with dy5 60K.

The EKE generation is predominately transferred into

the zonal mean flow or dissipated by friction at sim-

ilar scales. The eddy–eddy interactions do transfer

some energy upscale, but this does not increase the

eddy scale substantially from EKE generation scale.

To quantify the role of eddy–eddy interaction, we de-

fine EKE generation scale in a similar way as the eddy

scale defined in appendix A. The EKE generation

wavenumber is calculated as an inverse centroid of Gn

similar to Eq. (A2), and the EKE generation wave-

number is converted into the EKE generation scale by

Eq. (A3). As can be seen in Fig. B1b, the energy gen-

eration wavenumber follows closely the peak of Gn,

which moves toward larger scales when g increases from

0.1 to 10.
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