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Abstract An idealized general circulation model (GCM) with an analytically described Newtonian
cooling term is employed to study the occurrence rate of sudden stratospheric warmings (SSWs) over a wide
range of parameters. In particular, the sensitivity of the SSW occurrence rates to orographic forcing and both
relaxation temperature and damping rate is evaluated. The stronger the orographic forcing and the weaker
the radiative forcing (in both temperature and damping rate), the higher the SSW frequency. The separate
effects of the damping rates at low and high latitudes are somewhat more complex. Generally, lower
damping rates result in higher SSW frequency. However, if the low- and high-latitude damping rates are not
the same, SSW frequency tends to be most sensitive to a fractional change in the lower of the two damping
rates. In addition, the effect of the damping rates on the stratospheric residual circulation is investigated. It
is found that higher high-latitude damping rate results in deeper but narrower circulation, whereas higher
low-latitude damping rates cause strengthening of the stream function in the tropical midstratosphere to
upper stratosphere. Finally, the relation between easily measured and compared climatological fields and
the SSW occurrence rate is determined. The average stratospheric polar zonal mean zonal wind shows a
strong anticorrelation with the SSW frequency. In the troposphere, there is a high correlation between the
meridional temperature gradient and SSW frequency, suggesting that the strength of synoptic activity in
the troposphere may be an important influence on SSW occurrence.

1. Introduction
Sudden stratospheric warmings (SSWs) are not only events with dramatic change in zonal wind and tem-
perature in the stratosphere but they may also play a role in stratosphere-troposphere coupling [Baldwin
and Dunkerton, 2001] and in the seasonal variability of the troposphere [Holton et al., 1995; Baldwin et al.,
2003; Kodera, 2006; Charlton and Polvani, 2007; Mitchell et al., 2013; Sigmond et al., 2013]. General circula-
tion models (GCMs) have long been recognized as indispensable for studying the underlying dynamical
and radiative processes. Miyakoda et al. [1970] attempted to reconstruct a specific SSW with an early GCM
and found that upward propagating large-scale perturbations from the troposphere provide the necessary
eddy kinetic energy in the stratosphere. Kouker and Brasseur [1986] constructed an idealized model of a
major warming based on the primitive equations and with wave-one topographic forcing, and find consid-
erable irreversible mixing between air masses originating from the subtropics and high latitudes. Yoden et
al. [1999] constructed composites of SSW evolution from more comprehensive GCM simulations, run in per-
petual January configuration, in order to obtain better statistics with a higher number of events than in the
observational archives.

However, even more recent attempts to fully understand SSWs with more sophisticated models have not
yet provided conclusive theories of the circumstances under which SSWs develop or are suppressed; and if
they occur, it is not clear what determines whether or not a given sudden warming will influence the tro-
pospheric circulation [Limpasuvan et al., 2004; Nakagawa and Yamazaki, 2006; Kodera, 2006; Charlton and
Polvani, 2007; Sigmond et al., 2013].

In this work, we employ an idealized general circulation model to study the effects of orographic and
radiative forcing on the occurrence rate of SSWs, extending earlier work by Polvani and Kushner [2002],
Kushner and Polvani [2004], Gerber and Polvani [2009], and Jucker et al. [2013]. In particular, we will show that
troposphere-stratosphere coupling in terms of SSW frequency is as sensitive to the relaxation time scale as
it is to orographic forcing and relaxation temperature.

Our primitive equation model is based on Geophysical Fluid Dynamics Laboratory’s (GFDL) dry dynamical
core and forced by Newtonian cooling. The relaxation temperature and damping rate (or relaxation time
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scale) stand for a linearization of all diabatic processes in the real atmosphere. Our model is based on the
radiatively determined base state of Jucker et al. [2013] but with prescribed relaxation temperature and time
scale in analytical form. This allows us to study the sensitivity of stratosphere-troposphere coupling as a
function of a few chosen model parameters.

After describing the model setup in more detail in section 2, we investigate the effect of the strength of oro-
graphic forcing and radiative forcing in the base state temperature profile on SSW frequency in Section 3.1.
As expected, and in broad agreement with earlier studies [e.g., Gerber and Polvani, 2009], we find that
stronger orographic forcing and weaker polar vortex in the relaxation temperature result in higher SSW fre-
quency. It is this result that explains why sudden warmings are frequent in the Northern Hemisphere winter
(strong orographic forcing and weak polar vortex) but rare in the Southern Hemisphere (weak orographic
forcing and strong polar vortex). Following this, in section 3.2, we investigate the role of the thermody-
namic damping rates on SSWs, and on the residual (Brewer–Dobson) circulation in section 4. In particular,
we differentiate between the effects of the damping rates at low and high latitudes. Finally, in section 5, we
address the question of whether or not the SSW frequency can be inferred from observable variables instead
of model specific parameters as the latter cannot be directly observed. We show that the only quantity
showing strong (anti)correlation throughout the stratosphere with SSW frequency is the average near-polar
zonal mean zonal wind, whereas in the troposphere the meridional temperature gradient shows highest
correlation with SSW frequency.

2. Model Setup
2.1. Idealized Forcing
The model used for this work is based on GFDL’s spectral dynamical core, with T42 horizontal resolution
and 40 vertical levels extending from the surface to about 0.01 hPa. All parameters not discussed below
are described in Jucker et al. [2013]. In the latter paper, we described an idealized model for studying the
stratosphere that included orographic forcing and a seasonally dependent Newtonian thermal relaxation of
the form

Q = −
T − Te(𝜑, p, t)

𝜏(𝜑, p, t)
, (1)

where Q is the diabatic heating rate, T the temperature, Te is the relaxation temperature, and 𝜏 the relaxation
time scale. Latitude, pressure, and time are denoted by 𝜑, p, and t, respectively. The parameters Te and 𝜏

were previously numerical fields. In this section we present analytic approximations for these parameters
that, as far as possible, preserve the behavior of the original scheme.

The exact form of the analytic profiles is given in Appendix A, with the relaxation temperature given in
section A1 and the relaxation time given in section A2. In addition, any code that differs from GFDL’s
original model is provided online at https://github.com/mjucker/JFV-strat. The profiles introduce a num-
ber of independent parameters, which are given with their default values (based on typical January/July
configurations) in Tables A1 and A2.

In terms of Te, these parameters determine the amplitudes of the polar vortex for the Northern and
Southern Hemisphere winters and the respective summer hemisphere. The most important parameter for
this study is the polar vortex amplitude, A1

NH, which gives the difference in Te at the winter pole compared to
equinox conditions. For instance, A1

NH = 10 K means that over the North Pole, Te is 10 K colder at 1 hPa than
equinox conditions.

In terms of 𝜏 , the parameters describe the equator-to-pole difference in 𝜏 , with possible north-south asym-
metry and time dependence. In particular, 𝜏p gives the value of the relaxation time at high latitudes and
100 hPa. Meridional dependence is included in form of a Gaussian centered at the equator, with the relax-
ation time at the equator and 100 hPa given by the parameter 𝜏t . Thus, setting 𝜏t = 40 days and 𝜏p = 20 days
results in a relaxation time of 40 days over the equator smoothly changing to 20 days over high latitudes.
The width of the Gaussian can be varied and is set to 30◦ in all of our simulations (see Figure A1 for an
example profile).

We note that in our formulation, both Te and 𝜏 can be functions of latitude, pressure, and time. While we
repeat experiments with varying polar temperatures and orographic forcing for comparison with previously
published results, the main focus of this work is on experiments with varying relaxation time scale. With our
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Figure 1. (top) A bar chart of SSW frequency ver-
sus orographic forcing (given in terms of mountain
height h) and (bottom) the parameter A1

NH deter-
mining the polar vortex strength. The polar vortex
is stronger for higher A1

NH and so gets weaker from
left to right. The stronger the orographic forcing
and the weaker the polar vortex, the higher the
SSW frequency.

analytical description, the latter can be varied indepen-
dently at low (𝜏t) and high latitudes (𝜏p). One motivation
for this is to be able to quantify the effects of differences
between distinct numerical model setups described in
the literature. Indeed, many authors have emphasized
the importance of latitudinal gradients in the relax-
ation time [e.g., Kiehl and Solomon, 1986; Newman and
Rosenfield, 1997], but only few idealized studies of SSWs
address this issue. By varying 𝜏t and 𝜏p independently,
we can either increase or decrease the meridional gra-
dient of the relaxation time and show how this impacts
the occurrence rate of sudden warmings. In addition,
there is a wide range of values for radiative damping
rates in the literature, with values of 5 to over 100 days
[Dickinson, 1973; Fels, 1982; Ramanathan et al., 1983;
Ghazi et al., 1985; Kiehl and Solomon, 1986; Newman and
Rosenfield, 1997; Hartmann et al., 2001; Charlton-Perez
and O’Neill, 2010; Hitchcock et al., 2013]. Studies that
vary 𝜏 in the stratosphere usually do not differentiate
between high and low latitudes [e.g., Charlton-Perez and
O’Neill, 2010; Hitchcock et al., 2013]. In contrast, Newman
and Rosenfield [1997] show that the polar damping rates
have a seasonal cycle of between 60 and 10 days at
100 hPa, whereas the tropical damping rates show almost
no seasonal cycle, indicating that the relaxation times in

those two regions should be treated in a different manner. Furthermore, another motivation for varying 𝜏

is that depending on its value, perturbations with different vertical scales are damped more or less effec-
tively [Fels, 1982; Hartmann et al., 2001]. Finally, in a simple model with a forcing in the form of equation (1),
one can obtain similar climatologies in temperature and zonal wind with different (Te, 𝜏) pairs, even for
conceptually different reasons. For instance, we can increase the strength of the polar vortex by cooling Te

while keeping 𝜏 constant, mimicking radiative effects. We can generate the same effect by decreasing the
high-latitude relaxation time 𝜏p and forcing the temperature closer to Te, but in this case the wave damping
properties have been changed.

2.2. Simulation Setups
In the next section, we will apply the analytical setup described in detail in Appendix A to the study of SSW
frequency as a function of parameter space. All simulations assume perpetual Northern Hemisphere win-
ter. Setups are different in the strength of radiative forcing in the stratosphere only, with warmer/colder
polar vortex in Te and weaker/stronger damping in the tropics, high latitudes, or globally. The tropospheric
Te/𝜏 values are the same for all simulations, but surface forcing of planetary waves is varied with different
topography heights and wave numbers. All of these parameters are independently adjustable. As a result,
our simulations comprise a strong polar vortex without orographic forcing, similar to Earth’s Southern Hemi-
sphere, a weak polar vortex with orographic forcing, similar to Earth’s Northern Hemisphere, and various
states in between, which could be likened to early, deep, or late Northern or Southern Hemisphere winters
in the real atmosphere.

The differences in model setups for our simulations are summarized in Table 1. All parameters not men-
tioned in the latter table assume their default values given in Tables A1 and A2. The climatological day of the
year is set to d = 0 to allow for easier control of the polar vortex strength; with this choice D(𝜑 ≥ 0, d) = 1
in equation (A12). In addition, we choose the Te amplitude at 100 hPa to be zero, i.e., A0

NH = 0 K, as we expect
SSWs to be most numerous with a weaker polar vortex.

Orographic forcing is included, following Gerber and Polvani [2009], with sinusoidal wave-two topography
in the Northern Hemisphere, with the amplitude set to h = 3 km unless stated otherwise. The seasonal
cycle in the troposphere is fixed at a standard value of 𝜖SH = 10 K in the Southern Hemisphere and an
enhanced value of 𝜖NH = 40 K in the Northern Hemisphere, in accordance with the previous findings in
Jucker et al. [2013].
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Table 1. Parameter Settings for All Setupsa

Sim h (km) A1
NH (K) 𝜏t(d) 𝜏p(d) #SSWs

1 0 0 40 20 4
2 1.5 0 40 20 23
3 3 0 40 20 50
4 5 0 40 20 107
5 3 20 40 20 14
6 3 15 40 20 24
7 3 10 40 20 31
8 3 5 40 20 35
9 3 0 30 20 25
10 3 0 20 20 7
11 3 0 30 30 59
12 3 0 30 40 83
13 3 0 20 30 45
14 3 0 20 40 74
15 3 0 40 30 65
16 3 0 40 40 69

aThe last column gives the number of SSWs for each simu-
lation. Note that for these perpetual winter runs, none of the
parameters depends on time, and we set 𝜏S

p = 𝜏N
p ≡ 𝜏p .

We let the model spin up for 2000 days
and then perform our analysis on the fol-
lowing 10,000 days. Table 1 shows the
values of parameters we are varying for
our different simulations. The last col-
umn gives the total number of SSWs
for the last 10,000 days of each simu-
lation. We apply the criterion that the
zonal mean zonal wind reverses at 10 hPa
and 60◦N, as in, e.g. Polvani and Waugh
[2004], Charlton and Polvani [2007], and
Gómez-Escolar et al. [2012], and treat
two occurrences as distinct if they are
separated by at least 20 days.

3. SSW Frequency Versus
Forcing Parameters
3.1. Orographic Forcing and
Stratospheric Relaxation Temperature
As a zeroth order approximation, one
may expect that colder and stronger

polar vortices would allow fewer SSWs because a greater disruption is needed for a vortex break. Similarly,
stronger orographic forcing can be expected to increase SSW frequency, other parameters held constant,
and these expectations were substantiated by Gerber and Polvani [2009]. We confirm these general find-
ings in Figure 1, where we plot the SSW frequency as a function of topography height h and Te amplitude
A1

NH for simulations 1–8 in Table 1. In Figures 1 and 2, we determine the frequency of SSWs as given by
the linear regression of number of SSWs detected onto integration days of the simulation. The error bars
denote the range of 95% confidence interval of the regression coefficient. Clearly, stronger orographic
forcing (larger h) enhances the occurrence rate of SSWs essentially because stronger orography enhances
the planetary wave activity that can propagate into the stratosphere and cause sudden warmings. When
varying the stratospheric background temperature gradient, one may force a stronger polar vortex (by
increasing the value of A1

NH). As a result, more and/or stronger large-scale wave breaking (Eliassen-Palm
(EP) flux divergence) is needed for a complete reversal of the zonal mean zonal wind, and the EP flux itself
is diverted by changing the zonal wind structure. The effect of decreasing the polar night relaxation tem-
perature through A1

NH is then a decrease in SSW frequency, with a maximum for the weakest polar vortex
(A1

NH = 0). These results may be regarded as a test of our new formulation. In addition, note that sim-
ulation 3 shows a SSW occurrence rate of 1/200 days, which is similar to Earth’s Northern Hemisphere
[Charlton and Polvani, 2007; Gerber et al., 2012].
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Figure 2. Frequency of sudden stratospheric warmings
(SSWs) as a function of the parameters 𝜏t (i.e., 𝜏trop) and
𝜏p in (A16), i.e., the relaxation time at low and high lati-
tudes at 100 hPa, respectively. Generally, the longer any
relaxation time, the more SSWs occur. See text for more
detailed discussion.

3.2. Effect of Relaxation Times
In this section, we extend previous SSW frequency
studies and perform a parameter scan of radiative
relaxation time scales. The values for all parame-
ters different from their default values for these
additional simulations are given in lines 9–16
of Table 1.

SSW frequency: We present here the results for vary-
ing the relaxation times at low and high latitudes
independently, with values of 20, 30, and 40 days
for each. We have also run simulations with a very
short value of 10 days, both at low and high latitudes.
However, the model produced such low numbers of
SSWs during the 10,000 day runs (<10 SSWs) that
these simulations do not add statistically meaningful
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information to this section. Therefore, we do not show these simulations here. Figure 2 summarizes the
results for all combinations of relaxation times from 20 to 40 days.

In general, longer-relaxation times result in more SSWs, and the SSW frequency is somewhat more sen-
sitive to the value of the longer-relaxation time if 𝜏p ≠ 𝜏t . The difference between different values of 𝜏p

for any given 𝜏t (difference between different colors in Figure 2) scales inversely with 𝜏t , i.e., the longer the
low-latitude relaxation time (the smaller the damping rate), the weaker the influence of the high-latitude
relaxation time 𝜏p on the SSW frequency. A similar result holds for the opposite case. Given a certain value
for 𝜏p (compare columns of same color in Figure 2), the difference in SSW frequency between two values of
𝜏t becomes smaller when increasing 𝜏p: The slope of the frequency F(𝜏t, 𝜏p = 20 d) (blue columns) is steeper
than the slope of F(𝜏t, 𝜏p = 30 d) (red columns), and the slope of F(𝜏t, 𝜏p = 40 d) (green columns) is essen-
tially zero. Thus, if either 𝜏t or 𝜏p is fixed to a value that is large enough, the exact value of the other, 𝜏p or
𝜏t , is not crucial in terms of SSW frequency. However, the inverse is true as well: If either 𝜏t or 𝜏p is fixed to a
value that is short enough, the value of the other, 𝜏p or 𝜏t , is very important in terms of SSW frequency. It is
then interesting to note that the (𝜏t, 𝜏p) pair closest to Northern Hemisphere variability of about one SSW
every 200 days matches well with the radiatively found values of (𝜏t = 40, 𝜏p = 20)days [Jucker et al., 2013].
Therefore, fixing 𝜏t to the most realistic value of 40 days, the value for 𝜏p can be chosen remarkably freely
without large impact on SSW frequency (1/200 days for 𝜏p = 20 d versus 1/140 days for 𝜏p = 40 d). On the
other hand, fixing 𝜏p to the most realistic value of 20 days, the value for 𝜏t is quite important, with SSW fre-
quencies of 1/200 days for 𝜏t = 40 d and 1/1430 days for 𝜏t = 20 d. Thus, in the setup that is most similar
to the real atmosphere (𝜏t = 40, 𝜏p = 20 days), the exact value of the damping rate at low latitudes is more
important than the exact value of the damping rate at high latitudes.

4. Effects of Damping Rate on Residual Circulation

Varying the extratropical damping rate can have two distinct effects on stratospheric dynamics, both
impacting the occurrence rate of SSWs. One is local, where due to a long (short) relaxation time, the restor-
ing force in the Newtonian cooling term becomes weak (strong); and thus, dynamics can push the system
further from equilibrium (for same Q, T − Te scales with 𝜏 in equation (1)). From this mechanism, the form of
Te is defining the structure of the stratosphere, and 𝜏 regulates how far the dynamics can push the tempera-
ture away from Te locally. We then expect more SSWs for large values of 𝜏p, the high-latitude relaxation time,
which is what we see in Figure 2.

A second, more subtle way to influence stratospheric dynamics and SSW frequency is nonlocal through the
residual meridional overturning circulation. As dynamics can (cannot) push the stratosphere far from the
relaxation setup for long (short) relaxation times, the waveguide properties of the stratosphere change
due to different zonal wind structures. With this, the Eliassen-Palm fluxes and therefore also the residual
circulation change with changing 𝜏t and/or 𝜏p. This indirect effect is what we are concerned with in this
section, as it not only impacts the frequency of SSWs but also chemical tracer distribution (such as ozone
and water vapor), age of air, etc. through the regulation of the residual circulation.

To explore this, Figure 3 compares the residual stream functions of short versus long-extratropical relaxation
times for given tropical relaxation time (top row) and short versus long-tropical relaxation times for given
extratropical relaxation time (bottom row).

Negative (blue) values indicate that the circulation is weaker for stronger damping than for weaker damping,
and positive (red) values indicate stronger circulation for weaker damping. It is helpful to recall from Table 1
or Figure 2 that, in general, longer-relaxation times translate into more SSWs.

Downward control would suggest that the generally weaker lower stratospheric circulation for shorter 𝜏
shown in Figure 3 means that less EP flux reaches the stratosphere. This can be expected to some extent,
as upward propagating perturbations will be damped earlier when damping is stronger, but it confirms a
nonlocal contribution to the general tendency for more SSWs at longer 𝜏 due to stronger circulation.

In addition to being weaker, the stream function is also narrower in latitude and deeper in altitude if the
damping is stronger. This can be seen through the minima at low and high latitudes and the positive values
in the upper stratosphere. Although the narrowing is strongest where the damping is modified (upwelling
branch if 𝜏t is modified, downwelling branch if 𝜏p is modified), the strong symmetry around the midlati-
tudes suggests another nonlocal effect of localized damping modification: As less upwelling (downwelling)

JUCKER ET AL. ©2014. American Geophysical Union. All Rights Reserved. 11,058



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022170

(a) (b) (c)

(d) (e) (f)

Figure 3. Difference of residual stream functions with short and long relaxation times. (a–c) Difference in stream function
between integrations with 𝜏p = 20 d and 𝜏p = 40 d with 𝜏t having values 40, 30, and 20 days as labeled. (d–f ) Difference
in stream function between integrations with 𝜏t = 20 d and 𝜏t = 40 d with 𝜏p having values 40, 30, and 20 days as
labeled. Contours denote intervals of 0.1 × 109 kg/s, and the color bars are in units of 1 × 109 kg/s. Red (blue) values
denote a generally stronger (weaker) circulation.

in low (high) latitudes due to locally stronger damping restricts the mass flow into (from) the upper strato-
sphere, there must be less downwelling (upwelling) in high (low) latitudes due to mass conservation. In both
Figures 3a–3c and Figures 3d–3f, the difference in lower stratospheric residual circulation becomes larger for
smaller 𝜏p, accounting for the larger differences in SSW frequency in Figure 2 when decreasing 𝜏p (compare
columns of same color).

T cap

U cap

dT

v'T'

u'v'

Figure 4. Correlation coefficients (R2, negative for
anticorrelations) from linear regression of various
fields onto SSW frequency. The fields are the zonal
and time mean mean zonal wind (“U cap,” purple)
and temperature (“T cap,” blue) polar cap averages
(60–90◦N); midlatitude (40–60◦N) minus polar cap
temperatures (“dT,” red); and extratropical (20–90◦N)
eddy heat flux (v′T ′, orange) and momentum flux
(u′v′ , green) onto SSW frequency.

The stronger circulation in the upper midlatitude to
low-latitude stratosphere with stronger damping seems
counterintuitive and must be explained with changes in
the refractive index as the zonal wind structure adjusts
to different forcing. As a result, EP flux can propagate fur-
ther into the upper stratosphere and mesosphere and
drive stronger upper stratospheric circulation.

5. SSW Frequency Versus Dynamic Variables

We now turn to analyzing the relation between SSWs
and observables such as zonal wind, temperature, or
eddy heat flux. Taking all 16 simulations performed in
this work (except the h = 5 km case, which is an outlier),
we have compared regression coefficients between the
SSW frequency and climatological (i.e., time mean) zonal
means of dynamic variables such as zonal wind and tem-
perature, or easily derived quantities such as eddy heat
fluxes at different latitudes and heights. Figure 4 shows
the correlation coefficients between the SSW frequency
and the polar cap (cosine latitude weighted average from
60◦N to 90◦N) zonal mean zonal wind (purple) and
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Table 2. R2 Values for Correlations Between SSW Frequency and
Climatological Variables, as in Figure 4

Variable Highest R2 at Level R2 at 10 hPa

u cap 0.96 36 hPa 0.92
T cap 0.89 66 hPa 0.29
ΔT 0.91 258 hPa 0.22
v′T ′ 0.74 97 hPa 0.14
u′v′ 0.91 28 hPa 0.34

temperature (blue), the difference
between the midlatitude (40◦N to
60◦N) and the polar cap temperature
(red), and the extratropical (20◦N to
90◦N) eddy heat flux (orange) and
momentum flux (green). For eas-
ier reading, lines have been added
to the ±0.8 and 0.0 values of the
correlation coefficient.

The strongest correlation throughout the stratosphere can be found for the polar zonal wind (purple), which
has (anticorrelated) R2 values of 0.8 and more above about 250 hPa almost all the way to 1 hPa, with the
highest correlation of 0.96 at 36 hPa: With stronger zonally averaged climatological zonal wind, SSWs are
less likely. This is also the only variable that shows strong correlation with SSW frequency at 10 hPa (see
Table 2), which for historical reasons is the pressure level most often used to diagnose SSWs. We note that
for these correlation studies, 10 hPa does not represent any special level. Indeed, 20–40 hPa seems more
important (in agreement with Gómez-Escolar et al. [2012]), where the meridional momentum flux correlation
shows a distinct peak. It is interesting to note that the only variable with strong (anti) correlation to SSW fre-
quency in the troposphere is the temperature difference between the polar cap and the midlatitudes (red).
We have tried different meridional regions for defining the low to high-latitude temperature difference, and
the choice presented here (40 to 60◦N versus 60 to 90◦N) has the strongest correlations for the troposphere
and lower stratosphere. The polar cap temperature correlates strongly to the SSW frequency in the lower to
midstratosphere, but not elsewhere. The correlation of the eddy heat flux to SSW frequency has a clear peak
around the 100 hPa level, where R2 reaches about 0.74. Similarly, the eddy momentum flux u′v′ (green) has
a localized peak anticorrelation around 30 hPa, around the height at which v′T ′ switches from correlation to
anticorrelation. We note that even for the highest-SSW frequencies measured in our simulations, eddy heat
and momentum flux climatologies are not dominated by sudden warming events: Those events are very
short compared to the total integration time; and for every positive burst before/during an event, there is a
negative anomaly during recovery. Therefore, the rather strong correlations between eddy fluxes and SSW
frequency (although localized) might hint at the idea of a preconditioning of the atmosphere with elevated
eddy heat flux strength facilitating the occurrence of a strong SSW causing burst [Limpasuvan et al., 2004].
In that picture, the weak climatological zonal wind would be caused by constantly strong deceleration due
to enhanced EP flux divergence. As the cause and effect is not clear from these climatological plots, it might
also mean that for weak (in terms of zonal wind) polar vortices, more perturbations can propagate high into
the stratosphere (less reflection, but still positive zonal wind on average), increasing the probability for the
occurrence of a SSW. In addition, our results seem to indicate that if EP fluxes reach altitudes higher than
about 30 hPa on average, there are fewer SSWs than if they dissipate below that level, as the vertical com-
ponent of the EP flux, the eddy heat flux, changes sign from positive to negative correlation around 30 hPa
(Figure 4, orange line).

6. Summary and Conclusions

We have employed an idealized GCM to study the relationship between the occurrence rate (or frequency)
of sudden stratospheric warmings (SSWs) and the form of radiative forcing in the stratosphere and sur-
face orographic forcing. Our numerical model is based on a Newtonian cooling scheme with analytically
described relaxation temperature and time based on that of Jucker et al. [2013], which was constructed with
detailed radiative perturbation calculations. The scheme includes parameters for tropical and polar relax-
ation times, and for a temporal dependence, and these can readily be used to modify the structure of the
stratosphere, and in particular the strength of the polar vortex strength.

In agreement with Gerber and Polvani [2009], the stronger the polar vortex is in the relaxation
temperature Te, the fewer SSWs occur, and the stronger orographic forcing (higher mountains), the more
SSWs are produced. In addition to confirming these previous findings, we have extended the parameter
range to include variations of the relaxation time, noting that these can be modified in the low- and
high-latitudes independently.
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As a general rule, we found that the longer the relaxation time (i.e., the weaker the damping) the more
frequent are SSWs. Concerning differences between the low- and high-latitude damping rates, we found
that whichever is weaker (longer time scales) tends to dominate the sensitivity of the SSW frequency with
respect to a fractional change in either of the two damping rates. In particular, with the relaxation time in
the low latitudes, denoted 𝜏t , fixed at a small value of 20 days, changing the relaxation time at high latitudes,
denoted 𝜏p, has a big impact on the frequency of SSWs. When fixing 𝜏t to a large value of 40 days, the impact
of changing 𝜏p is considerably diminished. The same can be said for the inverse argument: Fixing 𝜏p to a
short value, changing 𝜏t has a large impact on SSW frequency, whereas that impact decreases when 𝜏p is
chosen to have a large value. Given the large uncertainties in radiative damping rates of the real atmosphere
and the large spread for relaxation times applied to various Newtonian cooling schemes in the literature, the
here presented results can give guidance to the consequences of choosing a given time scale. This includes
the effects of including/excluding a latitudinal gradient in relaxation time, as suggested by radiative con-
siderations [Kiehl and Solomon, 1986; Newman and Rosenfield, 1997]. Previous findings from Jucker et al.
[2013] suggest that for realistic simulations of Earth’s atmosphere, the high-latitude relaxation time should
be rather short (around 20 d at 100 hPa), whereas the low-latitude relaxation time should be considerably
longer (around 40 d at 100 hPa).

Furthermore, we have studied the correlations between the SSW frequency and the climatological vari-
ables that can be obtained directly from reanalysis or other numerical models. Above the tropopause, polar
cap averaged zonal mean zonal wind climatology is strongly anticorrelated to the occurrence rate of SSWs
throughout the stratosphere. Other strong correlations in the stratosphere (though much more localized in
the vertical) can be found with the polar cap zonal mean temperature climatology between about 150 hPa
and 30 hPa, extratropical eddy heat flux at 100 hPa, and there is a narrow peak of anticorrelation with eddy
momentum flux around 30 hPa. Our studies indicate that the choice of 10 hPa for SSW detection is rather
arbitrary, and 30 hPa more significant. The difference in temperature between the midlatitudes and polar
cap is the only quantity to show strong (anti)correlation in the troposphere, indicating that baroclinicity in
the troposphere plays an important role for the occurrence rate of SSWs.

Appendix A: Analytic Profile Description

The modifications to the original spectral dynamical core, along with Matlab scripts for automatically gen-
erating the here discussed relaxation profiles are available online at https://github.com/mjucker/JFV-strat.
Figure A1 shows the analytical profiles of Te (a) and 𝜏 (b) for simulation 3, where the strength of the polar
vortex roughly corresponds to a late Northern Hemisphere winter configuration of Jucker et al. [2013].

A1. Temperature
The vertical profile of Te is based on the radiatively found Te over the equator. It is approximated with two
polynomials, one above and one below p1 =1 hPa:

k = ln(p∕p0) (A1)

1(p) = −0.537k4 − 9.65k3 − 60.6k2 − 174k + 19.8 (A2)

2(p) = 0.668k3 + 22.3k2 + 248k + 1160 (A3)

T EQ
e (p) =

{
max

(
TT ,1(p)

)
, p ≥ p1

max
(
1(p),2

)
, p < p1.

(A4)

The variation in latitude is modeled starting from the equinoxes, with a profile linear in ln p and a 4 order
polynomial in latitude (and thus north-south symmetric). The pressure of the upper limit of the Held-Suarez
configuration is denoted by pt =100 hPa.

3(𝜑) = −1.96 × 10−9𝜑4 − 1.15 × 10−5𝜑2 + 1 (A5)

l = ln(p∕pt)∕ ln(p1∕pt) (A6)
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Figure A1. Example of analytically described (a) Te and
(b) 𝜏 . This example corresponds to the setup of sim-
ulation 3, with a weak polar vortex and high-latitude
relaxation times that are shorter than over the equator.
Numbers in the figures denote (Figure A1a) Te values in
Kelvin and (Figure A1b) 𝜏 values in days.

4(𝜑, p) =
⎧⎪⎨⎪⎩

1 , p ≥ pt(
3(𝜑) − 1

)
l + 1 , pt > p > p1

3(𝜑) , p ≤ p1,

(A7)

where the latitude 𝜑 is in units of degrees in the
polynomial 3 of equation (A5).

The seasonal amplitudes of Te in the Northern and
Southern Hemispheres have the same mathemat-
ical description but can be chosen to differ. Input
parameters are p0 =1000 hPa and A0,1

NH,SH. For each
hemisphere, denoted NH for the Northern Hemi-
sphere and SH for the Southern Hemisphere, a lower
stratospheric amplitude A0

NH,SH =ANH,SH( p=pt) and an
upper stratospheric amplitude A1

NH,SH =ANH,SH( p=p1)
can be chosen. These are the amplitudes for the
respective winter solstices. For the summer solstices, a
different amplitude As serves as input parameter and
is the same in the northern and summer hemispheres.

𝛿p = ln(p1∕p0) − ln(pt∕p0) (A8)

AW (𝜑, p) = − |𝜑|
90

⎧⎪⎨⎪⎩
A1

NH−A0
NH

𝛿p
ln(p∕pt) + A0

NH , 𝜑 ≥ 0
A1

SH
−A0

SH

𝛿p
ln(p∕pt) + A0

SH , 𝜑 < 0

(A9)

AS(𝜑, p) = − |𝜑|
90

(
As

𝛿p
ln(p∕pt) + As

)
(A10)

A(𝜑, p < p1) = A(p1). (A11)

Finally, temporal dependence is introduced with two cosines, one centered around day 0/365 and the other
around day 182.5, and the variable d denotes the day of the climatological year. Note here that these choices
set Northern Hemisphere winter solstice to 31 December and Southern Hemisphere winter solstice to 1 July.
This can easily be adapted if necessary.

D(𝜑, d) =
{

cos(2𝜋d∕365) , 𝜑 ≥ 0
cos(2𝜋(d − 182.5)∕365) , 𝜑 < 0

, (A12)

and all terms are put together to obtain a latitude-pressure-time dependent T strat
e (𝜑, p, d):

T strat
e (𝜑, p, d) = T EQ

e (p)4(𝜑, p) +
{

AW(𝜑, p)D(𝜑, d) ,D(𝜑, d) ≥ 0[
AS(𝜑, p) − T EQ

e (p)(1 − 4(𝜑, p))
]

D(𝜑, d) ,D(𝜑, d) < 0
(A13)

T strat
e (𝜑 > 𝜑N, p, d) = T strat

e (𝜑N, p, d) (A14)

T strat
e (𝜑 > 𝜑S, p, d) = T strat

e (𝜑S, p, d). (A15)

Table A1 summarizes the free parameters and their default values for describing the Te profile. The defaults
are based on the best approximation to the radiatively determined January setup of Jucker et al. [2013].
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Table A1. Input Parameters Defining the Analytic Profile for the Relaxation
Temperature Te

Name Meaning Default

p0 surface pressure 1000 hPa
pt lower stratosphere reference pressure 100 hPa
p1 upper stratosphere reference pressure 1 hPa
TT minimum temperature below pt 200 K
A0

NH amplitude at p = pt , 90◦N (winter) 15 K
A1

NH amplitude at p = p1, 90◦N (winter) 45 K
A0

SH
amplitude at p = pt , 90◦S (winter) 25 K

A1
SH

amplitude at p = p1, 90◦S (winter) 60 K
As amplitude at p = p1, Summer Pole 15 K

A2. Relaxation Time
The relaxation time has two main contributions. One is an equator-to-pole gradient, which can be a function
of time. The parameters defining this meridional gradient are the relaxation time over the southern and
northern poles at p = pt , denoted 𝜏S

p(d) and 𝜏N
p (d), respectively, and the width Δ𝜑 of a Gaussian placed over

the tropics. The relaxation time at the pressure level p = pt is then determined by

𝜏pt
(𝜑, d) =

{
𝜏S

p(d) + (𝜏t(d) − 𝜏S
p(d)) exp[−(𝜑∕Δ𝜑)2] , 𝜑 < 0

𝜏N
p (d) + (𝜏t(d) − 𝜏N

p (d)) exp[−(𝜑∕Δ𝜑)2] , 𝜑 ≥ 0.
(A16)

The second contribution is a polynomial decrease with height from pt , where the relaxation time is defined
by (A16), to the top of the atmosphere. Additional input parameter defining this profile is the minimum
relaxation time at the top of the atmosphere 𝜏m. The profile is then determined by

k = ln(p∕p0) (A17)

p(p) = 0.045k4 + 1.38k3 + 15.9k2 + 81.6k + 162 (A18)

p(p < 0.1)hPa) = p(p = 0.1 hPa) (A19)

n(p) =
p(p) − min(p(p))
p(pt) − min(p(p))

. (A20)

Finally, putting together the profiles in pressure and latitude yields the complete relaxation time structure

𝜏strat(𝜑, p, d) =
(
𝜏pt

(𝜑, d) − 𝜏m

)
n(p, d) + 𝜏m. (A21)

Note that the radiatively found 𝜏 profiles of Jucker et al. [2013] include a small correction over the poles,
with a small increase in relaxation time in the cold polar vortex (longer time scales for lower tempera-
tures). We did not include this effect, as it is a small correction and did not yield significantly different results
when included in the analytical profiles or excluded in the radiative profiles. Table A2 summarizes the free
parameters for the 𝜏 profile and its default values.

Table A2. Input Parameters Defining the Analytic Profile for the Relaxation
Time 𝜏

Parameter Meaning Default

p0 surface pressure 1000 hPa
pt lower stratosphere reference pressure 100 hPa
𝜏t relaxation time over tropics at p = pt 40 d
𝜏m shortest relaxation time over tropics 5 d
Δ𝜙 meridional width around tropics 30◦

𝜏S
p relaxation time over South Pole 20 d

𝜏N
p relaxation time over North Pole 20 d
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Erratum
In the originally published version of this article, typos were present in Equation A6, Equation A7, and Table A1. These errors have
since been corrected and this version may be considered the authoritative version of record.
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