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Abstract. Strong coupling between light and an ensemble of molecules leads to the

formation of new hybrid states and offers the exciting prospect of a new route to control

material properties. Now a theoretical model has been introduced to complement the

recent observation of strong coupling between the vibrational modes of molecules and

an electromagnetic (cavity) mode. This new work by del Pino et al. (New J. Phys.

(2015) 17 053040) makes an important contribution by offering fresh insight into the

underlying physics, especially into the role of dephasing processes in determining the

dynamics of ensemble strong coupling.
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Strong coupling is an extreme form of light-matter interaction in which molecules

exchange energy with an electromagnetic mode, often the mode is that of an optical

cavity. For strong coupling to occur the exchange rate has to be faster than the rate of

any competing dissipative process. When this happens new hybrid modes, polaritons,

are created – part light, part matter – with energy levels very different from either

parent [1, 2]. As with many coupled oscillators, the coupling lifts the degeneracy of the

two uncoupled systems. In strong coupling the extent of the resulting level splitting is

known as vacuum Rabi splitting [1].

Recent experiments involving large ensembles of molecules undergoing strong

coupling – pioneered by Ebbesen and co-workers in Strasbourg – have shown that a

remarkable degree of control over material properties may be achieved, examples include

the modification of chemical reaction rates [3] and control over phase transitions [4].

The changes induced in material properties are a direct consequence of the modified

energy levels, but the full theory underlying these phenomena is still not clear. The new

theoretical work reported here by del Pino et al. [5] provides valuable insight into the

physics behind these ensemble strong coupling phenomena.

These astonishing developments are the latest in a field that goes back more

than 40 years, to the prediction by Agranovich and Malshukov of strong coupling

between between the vibrational resonances in a thin film and the electromagnetic

modes supported by the substrate adjacent to the film [6], an arrangement that is now

important in the area of 2D (atomically thin) materials [7]. In the past few months new

experiments showing strong coupling of the vibrational (the C = O stretch) mode of

large numbers of molecules embedded in an optical microcavity have been reported [8, 9].

This is an exciting development, not least because it opens up a new arena in which

to test the concepts of ensemble strong coupling. Already we have seen vibrational

strong coupling demonstrated in a liquid rather than a solid medium [10], thereby

prompting the prospect of using strong coupling to control chemical reactions, even

under physiological conditions.

Despite theses exciting prospects, many important questions concerning ensemble

strong coupling remain, and it is here that the theoretical work reported by del Pino et

al. [5] comes in. As the authors point out, when strong coupling involves an ensemble

of molecules, the electromagnetic mode couples to a collective superposition of the

molecular vibrations, the so-called bright-state. However other superpositions, the dark-

states, are also possible. The authors address two key questions: what is the role of

the dephasing processes associated with the environmental buffeting each molecule is

inevitably subjected to?; and what role, if any, do the dark-sates play? To answer

these questions del Pino et al. developed a quantum mechanical formalism directly

including dephasing with which they considered two extreme scenarios. In the first, all

vibrational modes are coupled to the same common bath (e.g. the long-range phonons

of a crystalline environment). In the second, each molecular mode is coupled to an

independent bath (e.g. the short range phonons of many molecular environments).

The authors found that in the common bath scenario dephasing does not introduce
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additional coupling between the bright-state and the dark-states, the bright-state thus

behaves like a single oscillator that interacts with the cavity field. This is the situation

that many authors have implicitly assumed in the past, and provides a good cross-

over with what one expects from classical physics for such ensemble systems [11].

The situation is subtler for the independent bath scenario. However, provided the

extent of the Rabi-splitting is greater than the energy typical of the bath modes,

then the authors find that the single oscillator picture still applies. This last result

lends support to a theoretical prediction made nearly 20 years ago that inhomogeneous

broadening is suppressed in strong coupling [12]. It is perhaps not so surprising that

the single oscillator picture survives in both situations since, as del Pino et al. point

out, inhomogeneous broadening and dephasing are static and dynamic counterparts of

each other. Interestingly, it now looks as though it may be possible to probe the effect

of inhomogeneous broadening through experiment using 2D spectroscopy [13].

The authors of the present paper point out that vibrational strong coupling

is important in the context of cavity optomechanics. Fascinating results have

recently also been obtained by employing ensemble strong coupling to promote energy

transfer between dye molecules [14], and even between chlorosomes associated with

photosynthesis [15]. Strong coupling of ensemble systems is rapidly emerging as an

exciting and important area of multidisciplinary research. A better understanding of

the underlying physics is very much needed, del Pino et al.’s contribution provides an

important step in that direction.
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