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Abstract

Rapidly rotating, stably stratified three-dimensional inviscid flows conserve both energy and

potential enstrophy. We show that in such flows, the forward cascade of potential enstrophy

imposes anisotropic constraints on the wavenumber distribution of kinetic and potential energy.

The horizontal kinetic energy is suppressed in the large, nearly horizontal wave modes, and should

decay with the horizontal wavenumber as k−3
h . The potential energy is suppressed in the large,

nearly vertical wave modes, and should decay with the vertical wavenumber as k−3
z . These results

augment the only other exact prediction for the scaling of energy spectra due to constraints by

potential enstrophy obtained by Charney (J. Atmos. Sci. 28, 1087 (1971)), who showed that in

the quasi-geostrophic approximation for rotating stratified flows, the energy spectra must scale

isotropically with total wavenumber as k−3. We test our predicted scaling estimates using resolved

numerical simulations of the Boussinesq equations in the relevant parameter regimes, and find

reasonable agreement.

PACS numbers: 47.32.-y,47.55.Hd,47.27.E-,47.27.Jv
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Classical quasi-geostrophic (QG) flow is a useful approximation for rapidly rotating,

strongly stratified flows [1, 2]. In this approximation, the zeroth-order expansion of the

velocity in the rotation and stratification parameters is geostrophic, meaning that the Cori-

olis force is balanced by the pressure gradient force. Furthermore the linear plane-waves

called inertia-gravity waves are eliminated to the lowest order. This leads to a simplification

of the dynamics which is described entirely by the evolution of potential vorticity qqg [3]:

∂qqg

∂t
+ u0h · ∇qqg = 0, (1)

where qqg = f
∂θ

∂z
− Nω3, (2)

where u0h is the leading order (horizontal) geostrophically balanced velocity, θ is the den-

sity fluctuation scaled to have the same dimensions as velocity, ω3 = (∇h × uh) · ẑ is the

z-component of the vorticity, f and N are the Coriolis and Brunt-Väisälä (buoyancy) fre-

quencies respectively of a system which is rotating stratified in the z-direction. In QG flow,

the vertical velocity w appears as a correction to leading order geostrophic balance.

In 1971, Charney [3] showed that the global conservation of total energy ET = 1
2

∫

(|u|2 +

θ2)dx, and potential enstrophy Qqg = 1
2

∫

|qqg|
2dx by inviscid three-dimensional (3d) QG

flow is analogous to conservation of energy and enstrophy in non-rotating two-dimensional

turbulence (see for example [4] for further discussion on the assumptions and details of

Charney’s work). Following the classical theory of 2d turbulence [5, 6], Charney predicted an

inverse (upscale) cascade of energy with corresponding large-scale energy spectrum ET (k) ∝

ε2/3k−5/3, and a forward (downscale) cascade of potential enstrophy with corresponding

small-scale energy spectrum ET (k) ∝ ε
2/3
Q k−3, where k is the wavenumber and ε and εQ are

the transfer rates of energy and potential enstrophy, respectively.

In theory, as the rotation and stratification of a 3d fluid become infinitely strong, the

inertia-gravity waves are eliminated to lowest order, giving leading order QG flow satisfying

(1,2). In practice, for very large but finite rotation and stratification, the inertia-gravity

waves strongly influence the small-scale dynamics leading to ET (k) ∼ k−γ where 1 < γ < 2

[7, 8] in the high wavenumbers. The underlying leading order QG scaling of k−3 predicted

by Charney can then only be extracted by separating the QG (or geostrophic) modes from

the wave (or ageostrophic) modes by either suitably projecting the full solutions onto the

QG modes [7, 9] or by filtering out the ageostrophic inertia-gravity waves [1].

In the present work we consider rotating stratified turbulence retaining both the leading
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order QG as well as all sub-leading contributions from inertia-gravity waves and other non-

linear waves. We show that in this parameter regime, as in classical QG, potential enstrophy

plays a significant role in constraining the energy. For a wavevector k = kxx̂ + kyŷ + kzẑ

the horizontal component is kh = (k2
x + k2

y)
1/2 and the vertical component is kz. We show

that the potential enstrophy dominates over potential energy in the large, nearly vertical

modes (kz/kh ≫ 1), resulting in a potential energy spectrum scaling of k−3
z for large kz.

And potential enstrophy also dominates over horizontal kinetic energy in the large, nearly

horizontal modes (kh/kz ≫ 1), resulting in a horizontal kinetic energy spectrum scaling of

k−3
h for large kh. These are the first scaling estimates for the spectra of rapidly rotating and

stably stratified flows away from pure QG, obtained solely using the relationship between

potential enstrophy and energy as a function of scale. Such scaling laws, apart from being

benchmarks, are potentially useful in parameterizing the turbulent small scales in large sim-

ulations of rotating stratified flows thus reducing the computational expense of explicitly

resolving the small scales.

We begin with the Boussinesq equations for rotating, stably stratified and incompressible

flow given by [10]:

D

Dt
u + f ẑ × u + ∇p + Nθẑ = ν∇2u + F

D

Dt
θ − Nw = κ∇2θ (3)

∇ · u = 0,

where
D

Dt
=

∂

∂t
+u·∇, u is the velocity, w is its vertical component, p is the effective pressure

and F is an external input or force. The total density is ρT (x) = ρ0 − bz + ρ(x), where ρ0

is the constant background, b is also constant and larger than zero for stable stratification

in the vertical z-coordinate, ρ is the density fluctuation such that |ρ| ≪ |bz| ≪ ρ0 and

θ = ρ(g/bρ0)
1/2 has the dimensions of velocity. The Coriolis parameter f = 2Ω where Ω is

the constant rotation rate about the z-axis, the Brunt-Väisälä frequency N = (gb/ρ0)
1/2,

ν = µ/ρ0 is the kinematic viscosity and κ is the mass diffusivity coefficient. We assume

periodic or infinite boundary conditions. The relevant non-dimensional parameters for this

system are the Rossby number Ro = fnl/f and the Froude number Fr = fnl/N , where

fnl = (ǫfk
2
f)

1/3 is the non-linear frequency given input rate of energy ǫf [9]. Thus Ro and Fr

are the ratios of rotation and stratification timescales respectively to the nonlinear timescale.
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The Boussinesq equations conserve the following quantities for F = ν = κ = 0,

total energy ET = E + P,
D

Dt

∫

ET dx = 0,

potential vorticity q =
(

ωa · ∇ρT

)

,
Dq

Dt
= 0,

potential enstrophy Q =
1

2
q2,

DQ

Dt
=

D

Dt

∫

Q dx = 0.

E = 1
2
|u|2 is the kinetic energy, P = 1

2
θ2 is the potential energy of the density fluctuations.

The absolute vorticity ωa = ω+f ẑ and the relative (or local) vorticity ω = ∇×u. Potential

vorticity may be written in terms of θ as

q = fN + ω · ∇θ + f
∂θ

∂z
− Nω3. (4)

The constant part fN does not participate in the dynamics and we will therefore neglect it

from now on. The linear part of (4) is precisely qqg of (2). In what follows we will assume

that ν → 0 and κ → 0 such that Prandtl number Pr = ν/κ = 1, and the force F is

confined to the lowest modes. Thus we assume a conventional ‘inertial-range’ of turbulent

scales wherein the transfer of conserved quantities dominates over both their dissipation and

forcing.

As Ro → 0 and Fr → 0, the potential vorticity q approaches qqg [7, 11]. This is easily

observed by considering the non-dimensional form of (4) namely q = ω · ∇θ + Ro−1 ∂θ
∂z

−

Fr−1ω3, and letting Ro and Fr tend to zero together. In fourier representation:

q̃(k) ≃ fkzθ̃ + iNkh × ũh = fkzθ̃ + iNkhũh (5)

where ·̃ denotes fourier coefficients, the total wavevector k = kh+kzẑ, the horizontal wavevec-

tor component has length kh = (k2
x + k2

y)
1/2, the vertical wavenumber is kz and uh is the

horizontal velocity vector with magnitude uh = (u2
x + u2

y)
1/2. We assume that the vertical

velocity w = uz ∼ 0 in the lowest order (classical QG) thus obtaining the last equality of

Eq. (5).

We take both N and f to be very large, and N/f = 1 so that Ro = Fr. This approaches

the special case Ro → 0 and Fr → 0 while Ro = Fr which was shown rigorously to be

leading order QG in [10]. For k > kf , scales smaller than the forcing scale, we consider two

cases:

1) Case
kz

kh
≫ 1 . These are the more vertical wavenumber modes corresponding loosely to

flat ‘pancake’ scales in physical space. Eq. (5) reduces to q̃ ≃ fkz θ̃, yielding the following
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relation between potential enstrophy and potential energy distribution in spectral space,

Q(kh, kz) =
1

2
|q̃|2 = f 2k2

zP (kh, kz),

which upon integration over some high vertical wavenumber interval leads to the following

constraint:
∫ ∞

κz

Q(kh, kz)dkz ≫ f 2κ2
z

∫ ∞

κz

P (kh, kz) dkz,

where the potential energy spectrum P (kh, kz) = 1
2
|θ̃|2. Thus, for sufficiently high wavenum-

bers κz → ∞, the potential enstrophy Q forms the dominant forward cascade and, in order

to remain finite, suppresses the potential energy P in this regime. The dimensional argu-

ment following [5, 6] assumes that in this wavenumber limit, the potential energy spectrum

must depend on the potential enstrophy flux rate εQ and the vertical wavenumber kz, so

that:

P (kh, kz) ∼ ε
2/5
Q k−3

z . (6)

2) Case
kh

kz

≫ 1 . These are the wide flat wavenumber modes corresponding to the tall

columnar scales in physical space. In this limit Eq. (5) reduces to q̃ = iNkhũh. Following

the same arguments as for potential energy above, we obtain that the potential enstrophy

dominates the forward cascade in the regime kh/kz ≫ 1, resulting in suppression of horizontal

kinetic energy resulting in the following scaling estimate:

Eh(kh, kz) ∼ ε
2/5
Q k−3

h . (7)

where the horizontal kinetic energy Eh(kh, kz) = 1
2
|ũh|

2.

Our new scaling predictions (6) and (7) describe the spectral statistics of the full flow for

small but finite Ro and Fr, not just the leading order QG part of the dynamics. The main

purpose of this paper is to show that the potential enstrophy imposes predictable constraints

on the energy in rapidly rotating stratified flow even when the flow is not strictly QG. In

the next sections we seeking to numerically verify our predictions for the energy spectra in

the two limiting regimes in wavenumber.

We simulate the Boussinesq equations (3) taking N = f very large. We use a pseudo-

spectral code in a periodic cube of side L = 1, generating wavenumbers which are integer

multiples of 2π. A fourth-order Runge-Kutta time integration is used and the inertia-gravity

wave frequencies are resolved in our explicit scheme. Since we are interested in the small
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# n kf N/f Ro Fr ǫf

1 256 4 1 0.029 0.029 0.62

2 256 4 1 0.014 0.014 0.61

3 256 4 1 0.0072 0.0072 0.60

4 512 4 1 0.0072 0.0072 0.60

TABLE I: Parameters of Boussinesq calculations: n – number of grid points to a side; kf – forcing

wavenumber; N – Brunt-Väisälä frequency, Ro – Rossby number; Fr – Froude number; ǫf – rate

of input of kinetic energy.

scales (high wavenumbers), we use a low-wavenumber stochastic forcing centered at kf = 4.

In order to extend the inertial range in the high wavenumbers, the viscous dissipation is

modeled using a hyperviscous term (−1)p+1ν(∇2)pu, where p = 8 in place of the normal

laplacian viscosity term ν∇2u. The hyperviscosity coefficient ν is dynamically chosen based

on the energy in the highest mode for both momentum and mass diffusion following [9],

ν(t) = 2.5
(

E(km,t)
km

)1/2

k2−2p
m where km is the highest available wavenumber and E(km, t) is

the kinetic energy in that wavenumber. An analogous scheme is used for the diffusion term

in Eq. (3) for the evolution of θ. The parameters of a few of our runs are given in Table I.

We report the results from data #4 for which Ro and Fr are the smallest and the resolution

is the best.
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FIG. 1: Total potential enstrophy Q and its linear part Qqg for data #4. The two are indistin-

guishable, indicating purely quadratic potential enstrophy. Time t is in dimensional units.

Figure 1 shows the evolution of the total potential enstrophy Q from (4), and its linear,

quasi-geostrophic piece Qqg. The former is indistinguishable from the latter indicating that
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the nonlinear part of the potential vorticity ω · ∇θ is negligible and thus the potential

enstrophy is quadratic. The system is QG in the leading order, or near-QG in the sense

described above. The mean potential enstrophy has reached a nearly steady value in the

time range 2.5 < t < 5.2, which corresponds to between 5 and 11 non-linear time cycles, or

5000 to 10400 rotation (stratification) cycles.
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FIG. 2: Log-log plot of spherical shell averaged potential and kinetic energy spectra for data #4

at time t = 5.2. The high wavenumber scaling is k−1 indicating that in this representation the

energy is dominated by waves. Inset: Same spectra averaged over time 3 ≤ t ≤ 5.2.

Figure 2 shows the shell-averaged kinetic and potential energy spectra for our simulation,

computed as follows:

E(k) =
1

2

∑

k′

|ũ(k′)|2, P (k) =
1

2

∑

k′

|θ̃(k′)|2

where k−0.5 ≤ k′ < k +0.5 thus including all wavenumbers in the spherical shell of average

radius k. The scaling of both E(k) and P (k) is k−1 for k ≫ kf which indicates that by this

measure the high wavenumbers are still dominated by waves [7, 12]. The inset shows the

average of the spectra over the time period 3 ≤ t ≤ 5.2 over which the potential enstrophy

is constant as seen in Fig. 1. The time-averaged spectra also show a scaling very close to

k−1 indicating that the small scales (k > kf) have achieved close to a statistically steady

state.

The potential energy and horizontal kinetic energy spectra as functions of kh and kz were

computed as double sums according to:

P (kh, kz) =
1

2

∑

k′

h
,k′

z

|θ̃(k′)|2, Eh(kh, kz) =
1

2

∑

k′

h
,k′

z

|ũh(k
′)|2
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FIG. 3: Log-log plot of potential energy density P (kh, kz) vs. kz for data #4 averaged over time

3 ≤ t ≤ 5.2. Each curve is the spectrum for a different fixed value of kh. For 10 ≤ kh ≤ 50 and

kz ≫ kf , the scaling ranges between k−4
z and k−3

z . Inset: Same spectra versus kz/kh shows that

the ‘turnover’ to the inertial range scaling for all the curves emerges only when kz/kh ≥ 1.

where kz[kh] − 0.5 ≤ k′
z[k

′
h] < kz[kh] + 0.5. Figure 3 shows P (kh, kz) as a function of kz

for various values of kh. For 10 ≤ kh ≤ 50 and kf ≤ kz ≤ 100, the scaling for P (kh, kz)

ranges between k−4
z and k−3

z indicating stronger suppression of potential energy than the

dimensional prediction of Eq. (6). As kh increases P (kh, kz) also persists more strongly into

the high kz. Conversely, for a fixed small kz ≤ kf , the smaller kh spectra have more energy,

indicative of a growth of potential energy as kz ≪ kf for small kh. The inset of Fig. 3

shows the same spectra versus kz/kh which shows clearly that the inertial range scaling

for each kh emerges only when kz/kh ≥ 1, the predicted range for Eq. (6). Overall the

constraints on potential energy due to potential enstrophy are thus highly anisotropic in

scale and consistent with our prediction.

Figure 4 shows Ehkh, kz as a function of kh for various values of kz. For 10 ≤ kz ≤ 50

and 10 < kh < 100, the horizontal energy spectrum Eh(kh, kz) scales between k−4
h and k−3

h

consistent with the suppression of horizontal kinetic energy by potential enstrophy in these

modes. As kh grows, the horizontal kinetic energy persists more strongly into the high kh.

Conversely, for a fixed small kh, the smaller kz have more energy, indicating a growth of

energy upscale in kz. The inset of Fig. 4 shows again that the inertial range scaling predicted

arises only in the anisotropic regime kh/kz ≥ 1 consistent with prediction.

In conclusion, we have deduced separate scaling laws for horizontal kinetic and potential

energy spectra, both of which are constrained in the small scales by potential enstrophy in

rapidly rotating stably stratified flows. Potential enstrophy suppresses the potential energy
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FIG. 4: Log-log plot of horizontal kinetic energy density Eh(kh, kz) vs. kh for data #4 averaged

over time 3 ≤ t ≤ 5.2. Each curve is a different value of kz. For 10 ≤ kz ≤ 50 there the scaling

ranges between k−4 and k−3. Inset: Same spectra vs. kh/kz showing that the inertial range

emerges as kh/kz ≥ 1 as predicted.

in the large, nearly vertical modes, and also suppresses horizontal kinetic energy in the

large, nearly horizontal modes; the resulting energy densities in these modes scales as k−3
z

and k−3
h respectively. Our test simulations data show even steeper scaling of the spectra

than predicted (greater suppression due to potential enstrophy). The numerical calculations

used to verify our predictions are, at 512 grid-points to a side, the highest resolution unit

aspect-ratio simulations of the Boussinesq equations performed to date. Higher resolution

may well show closer agreement with our theoretical prediction; we have already observed a

tendency toward our predicted −3 exponent when going from 2563 to 5123 in grid-resolution.

Most importantly, the scalings predicted and observed are very different from the isotropic

k−γ (1 < γ < 2) scaling expected, for example, in the wave-dominated shell-averaged spectra

for near-QG flows (see Fig. 1). Our only assumption is that rotation and stratification are

strong enough that the potential vorticity becomes linear, and hence the potential enstrophy

quadratic. We do not invoke additional asymptotics nor do we need to limit ourselves only

leading order modes. In future work we will extend our analysis to the case of N/f 6= 1,

that is, the strength of rotation and stratification are large but unequal. The possibilities

for generalized quasi-geostrophic flow [13] in which aspect ratio is an additional parameter,

are also promising areas for further research.
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