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In this work, we investigate the crystal anharmonic effects in the thermoelectric properties of n-

type PbTe. The lattice thermal transport coefficient is computed by employing an isotropic contin-

uum model for the dispersion relation for acoustic as well as optical phonon branches, an isotropic

continuum model for crystal anharmonicity, and the single-mode relaxation time scheme. The elec-

tronic components of the transport coefficients in a wide temperature range are calculated using the

isotropic-nearly-free-electron model, interaction of electrons with deformation potential of acoustic

phonons, and the effect of the band non-parabolicity. It is found that the transverse optical branches

play a major role in determining the phonon conductivity and the thermoelectric figure of merit of

this material. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4891201]

I. INTRODUCTION

Thermoelectric (TE) materials have been used widely in

a vast variety of applications in direct heat-to-electricity con-

verters and electronic coolers1 with many attractive features,

such as no noise and vibration. The efficiency of TE power

generators is defined by a dimensionless parameter known as

the figure of merit ZT, with ZT ¼ S2rT=ðjel þ jphÞ, where

S; r; jel; jph, and T are, respectively, the Seebeck coefficient,

the electronic conductivity, the electrical thermal conductiv-

ity, the lattice thermal conductivity, and T is the absolute

temperature of the system.2 The electronic thermal conduc-

tivity is further expressed as jel ¼ jmp þ jbp, with jmp and

jbp as the monopolar and bipolar contributions, respectively.

The figure of merit reveals that whenever the numerator is

large with simultaneous reduction in thermal conductivity,

the material is classified as good thermoelectric. Production

of large-scale bulk materials with high ZT is the key to wide-

spread adaptation of thermoelectric technology. Lead tellu-

ride (PbTe) alloys have been extensively studied and remain

one of the best thermoelectric materials for applications in

the mid-temperature range. Recent studies on p-type samples

of optimised doping level reveal ZT values of approximately

1.4 at 750 K.3,4 The thermal conductivity (j) and the

Seebeck coefficient (S) of several specimens of PbS, PbSe,

and PbTe have been measured by Greig5 in the temperature

range 4–100 K. The work in Ref. 6 provides a detailed report

of experimental measurements of S, electrical conductivity

(r) and j for an n-type PbTe sample.

Most theoretical studies of the electronic components of

the TE transport coefficients of semiconductors are based on

the use of parabolic bands and isotropic effective mass theory.

The electronic band structure of PbTe exhibits non-

parabolicity. It has been reported in Refs. 7 and 8 that this

effect may appear as a strong temperature dependence of

effective mass and Lorentz number at relatively elevated tem-

peratures and carrier concentrations.7 Furthermore, the non-

parabolicity may influence a change in the energy dependence

of carrier relaxation time due to the increase in the density of

states.9,10

A significant contributing factor that renders the large

ZT value for PbTe is its low lattice thermal conductivity,

which is jph � 2 W m�1 K�1 at 300 K (Refs. 11–13) despite

its simple rock salt structure. Detailed understanding of fac-

tors resulting in this low jph value is lacking from the litera-

ture. Using a combination of inelastic neutron scattering

measurements and first-principles computations of phonons,

a strong anharmonic coupling between the transverse optical

ðTOÞ and the longitudinal acoustic ðLAÞ phonons has been

identified.14 It has been suggested that this coupling is likely

to play a central role in explaining the low thermal conduc-

tivity of PbTe. However, no theoretical formalism or numeri-

cal results are available to establish details of the role the TO

phonons play in the lattice thermal conductivity and the ther-

moelectric figure of merit of PbTe.

In this work, we investigate the crystal anharmonic

effects in the thermoelectric properties of n-type PbTe. The

lattice thermal conductivity is computed in detail within the

single mode relaxation time scheme, employing the isotropic

continuum model for the dispersion relation for acoustic as

well as optical phonon branches, and an isotropic continuum

model for crystal anharmonicity. The electronic transport

coefficients are computed within the isotropic-nearly-free-

electron approximation, and we assume that charge carriers

are mainly scattered by acoustic phonons. Moreover, the band

non-parabolicity which will manifest itself directly through

effective mass dependence on energy and indirectly through

relaxation time is also included in this study. Our numerical

work has been carried out with the material parameters rele-

vant to the sample employed in the experimental study

reported in Ref. 6.

II. THEORY

A. Lattice thermal transport coefficient

The lattice thermal conductivity jph of PbTe is computed

within the single mode relaxation time scheme by adopting an

extension of the isotropic acoustic continuum approximation

presented in Ref. 15. We replace the Brillouin zone of the

0021-8979/2014/116(4)/043702/9/$30.00 VC 2014 AIP Publishing LLC116, 043702-1
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face centered cubic lattice for the rock salt structure by the

Debye sphere of radius qD and approximate the dispersion

relations for the acoustic and optical phonons as

xTA ¼ cTAq; xLA ¼ cLAq; (1)

xTO ¼ xmin
TO þ cTOq;

xLO ¼ xmax
LO � cLOq ¼ xmin

LO þ cLOðqD � qÞ;
(2)

where q is the magnitude of phonon wave vector, cs is the

speed for phonons of polarisation s, xmin
TO is the minimum fre-

quency (at the zone centre) of the TO phonon, and for the

LO phonon xmax
LO is the maximum frequency (at the zone

centre) and xmin
LO is the minimum frequency (at the Debye

sphere). The corresponding density of states expressions are

gTA xð Þ ¼ Vcrys

2p2

x2

c3
TA

; gLA xð Þ ¼ Vcrys

2p2

x2

c3
LA

(3)

gTO xð Þ ¼ Vcrys

2p2

x� xmin
TO

� �2

c3
TO

for x � xmin
TO

� �
(4)

gLO xð Þ ¼ Vcrys

2p2

xmax
LO � xð Þ2

c3
LO

for xmin
LO � x � xmax

LO

� �
; (5)

where Vcrys is crystal volume. The single-mode relaxation

time expression for the lattice thermal conductivity is then

written as

jph ¼
1

3

�h2

kBT2Vcrys

X
s

ðxmax

xmin

dxgs xð Þx2c2
s ss x; Tð Þ�n �n þ 1ð Þ;

(6)

where xD ¼ �cqD is the Debye frequency, ssðx; TÞ is the fre-

quency and temperature dependent relaxation time for a pho-

non of polarisation with frequency x, the average phonon

speed �c is computed from 3=�c3 ¼ 2=c3
TA þ 1=c3

LA, and �n ¼
1=½expð�hx=kBTÞ � 1� is the Bose-Einstein distribution func-

tion. Using Eqs. (2), we express Eq. (6) as

jph ¼
�h2q5

D

6p2kBT2

XTA;LA;TO;LO

s

c4
s

ð1

0

dxx2 g�s þ x
� �2ss�n �n þ 1ð Þ;

(7)

where g�s takes the value gs for s ¼ TA; LA;TO and the value

gs þ 1 when s ¼ LO, with gs ¼ xmin
s =csqD.

For an n-type single crystal sample of PbTe, we consider

phonon scatterings from sample boundary (bs), point defects

(pd), donor electrons (ep), and anharmonicity (anh).

Following Matthiessen’s rule, we express s�1 ¼ s�1
bs þ s�1

pd

þs�1
ep þ s�1

anh. The boundary scattering rate is simply written

as sbs ¼ cs=L, where L is an effective boundary length. The

point defect scattering rate (arising from isotopic defects and

unintentional impurities) is expressed as16

s�1
pd ¼ApdgðxÞx2¼Bpdðx0�xÞ2x2 ðfor xmin�x�xmaxÞ;

(8)

where x0 is taken as xmin for TA; LA; TO and as xmax for

LO phonons, and the constants Apd and Bpd are directly

related to the type and concentration of defects. As usually

the nature and concentration of point defects are unknown,

we treat Bpd as an adjustable parameter. The scattering rate

for phonon-electron interaction is given by17

s�1
ep ¼

m�2n N2kBT

2p.cLA�h4
z� ln

1þ exp n� fþ z2=16nþ z=2
� �

1þ exp n� fþ z2=16n� z=2ð Þ

 !" #
;

(9)

where N is the dilatational deformation potential,

z ¼ �hx=kBT, and n ¼ m�nc2
LA=2kBT.

We expect three-phonon processes to adequately

describe anharmonic interactions. Expressions for the relaxa-

tion rates for a phonon mode qs undergoing Normal (N) and

Umklapp (U) three-phonon processes of class 1 type ðqsþ
q0s0 ! q00s00Þ and class 2 type ðqs! q0s0 þ q00s00Þ have been

derived in Ref. 15 when all phonons are from the acoustic

branches. In materials such as PbTe, however, the TO branch

is rather special as it is low-lying and quite similar to the

acoustic branches except only that for q¼ 0 the frequency of

such a mode does not go to zero as it does for the acoustic

branches. It is therefore important to modify the formulation

presented in Ref. 15 to deal with allowed three-phonon proc-

esses, including acoustic as well as optical phonons. In this

work, we use Eqs. (2) and (5), and follow the procedure

described in Ref. 15 to derive the following expression for

the anharmonic scattering rate for a phonon mode qs (with

s ¼ TA; LA;TO; LO)

s�1
anh x; sð Þ ¼

�hq5
Dc2

4pq�c2

X
s0s00e

ð
dx0 Cnþ Dn0 � g00
� �

1� eþ e Cnþ Dn0 � g00
� �� � �n0 �n00þ þ 1

� �
�n þ 1ð Þ

"

þ 1

2

ð
dx0 Cn� Dn0 � g00
� �

1� eþ e C n� Dn0 � g00
� �� � �n0�n00�

�n

� �
: (10)

Here, c is the Gr€uneisen constant, x ¼ q=qD; x
0 ¼ q0=qD; n ¼

gþ x for s ¼ TA; LA;TO and n ¼ gþ 1� x when s ¼ LO,

with similar notations for n0 and n00. The first and second terms

in Eq. (10) are contributed by class 1 and class 2 events,

respectively. The argument for the Bose-Einstein factor �n006 is

Cn6Dn0 � g00. The variable x is limited to 0 � x � 1, and for

a given x, the limits for x0 are determined by satisfying the

energy and momentum conservation conditions
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x6x0 ¼ x00; q6q0 ¼ q00 þ G: (11)

Following previous suggestions,15,18,19 for the assumed isto-

tropic continuum, we take G ¼ 2qDðx6x0Þ=jðx6x0Þj.

B. Electronic transport coefficients

Our calculations of the electronic transport coefficients

assume isotropic band structure and that the relaxation time

of electrons has a power function dependence on the carrier

energy of the form s / Er.9,17,20 Due to the small scattering

rates of impurity and polar optical phonons, we exclusively

consider scattering of electrons with acoustic phonons,21–24

and accordingly set r¼�1/2.9,20 The band non-

parabolicity, which manifests itself directly through effec-

tive mass dependence on energy and indirectly through

relaxation time, is included in the calculations. The energy

dependence of effective mass might lead to the same effect

as the energy dependence of the relaxation time.25 In this

work, we account for the overall influence of band non-

parabolicity through temperature dependence of carrier

effective mass.9

We employ the following expression for the Fermi level

for an n-type semiconductor with completely ionised donors

in the temperature range over which the Boltzmann distribu-

tion function can be used26

EF Tð Þ ¼ 1

2
Ev þ Ecð Þ þ 3

4
kBTln

m�p
m�n

 !

þ kBTsinh�1 Nd

2
ffiffiffiffiffiffiffiffiffiffiffi
UcUv
p

exp �fg

� �
 !

: (12)

Here, Ev and Ec are the energies of the valence and conduc-

tion band edges, m�n and m�p are the density-of-states effective

masses for the conduction and valence bands, Nd is the con-

centration of ionised donors, UcðvÞ ¼ 2ð2pm�nðpÞkBT=h2Þ3=2
,

and fg ¼ ðEc � EvÞ=kBT is the reduced band gap.

Following Drabble and Goldsmid,20 we express the elec-

tronic conductivity q�1, Seebeck coefficient S, and the

monopolar electron thermal conductivity jmp as follows:

q�1 ¼ 2�he2 . c2
l

3pN2m�n
F0 fð Þ; (13)

S ¼ � kB

e
f� 2F1 fð Þ

F0 fð Þ

	 �
; (14)

jmp ¼
kB

e


 �2
3F2 fð Þ
F0 fð Þ �

2F1 fð Þ
F0 fð Þ


 �2
" #

q�1T; (15)

where e is the magnitude of electronic charge, N is the defor-

mation potential, . is the density, f ¼ EF=kBT is reduced

Fermi energy, and Fn is the Fermi integral

Fn fð Þ ¼
ð

xndx

exp x� fð Þ þ 1
: (16)

As the temperature rises, the electronic thermal conduc-

tivity will have an added contribution from the bipolar

(electron-hole pair) component jbp, which is calculated

using the expression27

jbp ¼
b

bþ 1ð Þ2
fg þ 4
� 2 kB

e


 �2

q�1T; (17)

where b is the carrier mobility ratio ln/lp and Eg is the elec-

tronic band gap. In the intrinsic temperature range, the elec-

tronic conductivity can be written as26

q�1
int ¼ 2e

kBT

2p�h2


 �3=2

m�nm�p
� �3=4 ln þ lpð Þe�fg=2: (18)

PbTe is highly ionic, with the ionicity factor of 0.63 on the

Phillips scale. Following the suggestion in Ref. 28 that the

temperature dependence of the mobility of ionic semicon-

ductors is predicted to be proportional to T�1=2, we may then

express Eq. (18) in the form

q�1
int ¼ DTe�fg=2; (19)

where D is an appropriate constant.

III. RESULTS

For phonon calculations, we used qD¼0:908� 1010m�1;
cTA¼1038m=s;cLA¼1633m=s; cTO¼1175m=s, and

cLO¼1073m=s. The phonon anharmonic interaction was

treated by considering the Gr€uneisen constant c as an adjust-

able parameter. It was found that jcj¼0:8 (resulting in the

value ðc=�cÞ2¼4:9�10�11s�2cm�2Þ was a good choice for

explaining the high temperature conductivity results for all

the three samples. We note that our semi-adjustable choice

for c is lower than the thermodynamically deduced estimate

of approximately 1.4 reported in the work by Ravich et al.9

and the theoretically calculated acoustic-phonon value of

2.18.29 The electronic parameters used in this study are car-

rier concentration n¼2.6�1018cm�3, material mass density

.¼8:242�103 kg=m3, deformation potential N¼4.5eV,

electron effective mass m*¼0.41m0 (m0 being electron

mass), and electronic band gap Eg¼0.38eV. Our choice for

the deformation potential is somewhat smaller than that

reported in the Monte Carlo simulation by Palankovski

et al.30

A. Vibrational and thermal properties

1. Phonon dispersion curves and density of states

Our modelled phonon linear dispersion relations and

the corresponding density of states are shown in Fig. 1. The

choices for the Debye radius qD and the branch speeds cs

listed earlier were made to obtain reasonable agreement

with the neutron scattering data and a theoretical modelling

for the dispersion curves and the density of states presented

by Cochran et al.31 Our computed density of states curve

also shows reasonably good agreement with first-principle

results obtained in Refs. 29 and 32. It is interesting to note

that the doubly degenerate TO is a low-lying branch and its

slope is comparable to that of the doubly-degenerate TA

branch.

043702-3 J. Al-Otaibi and G. P. Srivastava J. Appl. Phys. 116, 043702 (2014)
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2. Lattice specific heat

The calculated results for the specific heat at constant

volume (Cv) agree very well with experimental measure-

ments33 in the low temperature range up to 50 K, as seen in

Fig. 2. This vindicates the application of the present contin-

uum theory. Above this temperature, our theoretical results

are underestimated when compared with the experimental

results as well as the ab inito results from Zhang et al.29 and

Bencherif et al.32 We believe that the use of accurate phonon

dispersion curves, together with a realistic Brillouin zone

summation technique, would improve agreement between

theory and experiment. We tested this hypothesis by repeat-

ing our calculations with different slopes of the LO branch.

It was found that changing the LO speed from 1073 m/s to

1400 m/s resulted in an increase of 5% in Cv at 300 K.

However, the ab-initio work by Zhang et al.29 obtains

results that are higher than experiment at low temperatures

(below 25 K) and the ab-initio study by Bencherif et al.32

has obtained results that are lower than experimental results

at high temperatures. These studies did not offer any expla-

nation for these discrepancies. We made a comparative study

of these ab-initio results from the two groups, by plotting

their results together in Fig. 2, and found that rather large

uncertainty may be expected in computing Cv from such

techniques. Thus, we cannot be sure of the exact reason for

the discrepancy between theory and experiment for Cv and

suggest that further theoretical and experimental studies are

necessary to resolve the issue.

The underestimation of our theoretical Cv values at high

temperatures should not affect our intended study of the lat-

tice thermal conductivity. This is because our formalism of

the conductivity requires unavoidable use of adjustable pa-

rameters for phonon-defect and phonon-phonon scattering

mechanisms, as described in the next section.

3. Lattice thermal conductivity

Figure 3(a) shows two separate calculations of the con-

ductivity for the sample from Ref. 6: the black solid curve

represents results by considering acoustic phonons as heat

carriers but including their interaction with optical phonons,

and the green dashed-dotted curve represents the results

when both acoustic as well as optical phonons are considered

as heat carriers and allowed anharmonic interactions among

all branches are included. The lattice thermal conductivity at

room temperature is found to be �1.1 W m�1 K�1 when op-

tical phonons are not considered to transfer heat but are

allowed to interact with acoustic phonons. The lattice ther-

mal conductivity increases to �1.5 W m�1 K�1 at room tem-

perature when all phonon modes participate in conducting

heat with a full range interaction between acoustic and opti-

cal phonons dictated by the momentum and energy conserva-

tion conditions. It is clear that the optical phonon modes do

indeed contribute significantly to the lattice thermal conduc-

tivity in PbTe. We note, however, that the difference

between acoustic alone (jph (ac)) and acoustic þ optical (jph

(acþop)) is not a simple constant. As seen from Fig. 3(b),

the percentage contribution from the acoustic phonons

slightly decreases with increase in temperature: being 56%

at 300 K and 53% at 800 K. In Fig. 3(c), we have broken the

lattice thermal conductivity into its components. We notice

that the TA and TO branches contribute, respectively, up to

43% and 38% of the total thermal conductivity at room tem-

perature. As the temperature increases, the contribution of

the TO branch becomes a little larger than the contribution

of the TA branch.

Recently, Tian et al.34 have made ab initio calculations

of the lattice thermal conductivity of PbTe in the limited

temperature range of 300–700 K. Our results in general agree

with their results. Both works conclude that the optical pho-

nons in this material play an important role in heat conduc-

tion. In agreement with our work, Tian et al. conclude, by

accounting for all acoustic and optical branches, that the

omission of ac-op scattering increases the conductivity by

FIG. 1. (a) Linearised phonon disper-

sion relations in PbTe and (b) the cor-

responding density of states.

FIG. 2. Lattice specific heat at constant volume Cv for PbTe. The results

from the present work are compared with the experimental measurements

(Experiment (1954)33) and first-principles theoretical calculations (Theory

(2009)29 and Theory (2011)32).
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roughly a factor of five. Our work also agrees with Tian

et al. in that the LO phonons make the lowest contribution

and the TA phonons contribute at the highest end. However,

our work differs with Tian et al. with respect to the contribu-

tions from the LA and TO phonons. While Tian et al. find

that LA phonons contribute much more than TO phonons,

our work suggests that the TO contribution is approximately

10% larger than the LA contribution.

It would not be inappropriate to comment that Zhang

et al.29 reported two different results (1.66 and 2.01 W m�1

K�1) for the room-temperature lattice thermal conductivity

of PbTe using two differently calculated (and much larger)

values of the acoustic-phonon Gr€uneisen constant (2.18 and

1.96, respectively). Although their results are quite similar to

the results presented in this work and the experimental

results in Fig. 4, it should be emphasized that these authors

used a grossly simplified expression for phonon anharmonic

interaction and did not take into account any other form of

phonon interaction (such as defect scattering).

In Fig. 4, we present our computed results for the lattice

thermal conductivity jph for three samples of PbTe, in the

temperature range 100–900 K. Our results are validated

against several experimental results taken from Ref. 6 (sam-

ple 1), Ref. 9 (sample 2) and Ref. 35 (sample 3), both for the

magnitude and the temperature variation. Experimental

measurements are available in the temperature ranges

300–750 K for sample 1, 100–800 K for sample 2, and

300–700 K for sample 3. The results for samples 2 are

slightly lower than that for sample 3 in the common tempera-

ture range these have been presented. The results for sample

1 fall lower than those for samples 2 and 3 below 500 K,

indicating that it is more defective. In order to reproduce the

experimental data for these n-type samples, we had to adjust

the boundary length and the point defect concentration. The

values of the effective boundary length and the adjusted

point defect parameter are given in Table I. As shown in the

table, in order to fit the experimental data for samples 2 and

1 we had to use almost twice and ten times the point-defect

scattering rate compared to that for sample 3. The agreement

between theory and experiment was refined by choosing

slightly different boundary lengths for the three samples, as

presented in the table.

FIG. 3. Calculated lattice thermal con-

ductivity jph results for sample 1. In

panel (a), the black solid curve repre-

sents the results by considering the

acoustic phonons as heat carriers but

including their interaction with optical

phonons, and the green dashed-dotted

curve represents the results when both

acoustic as well as optical phonons are

considered as heat carriers and allowed

anharmonic interactions among all

branches are included. Panel (b) shows

the percentage contribution from

acoustic phonons. Panel (c) shows con-

tributions from individual acoustic and

optical branches.

FIG. 4. Lattice thermal conductivity results (jph) for three different n-PbTe

samples taken from Refs. 6 (sample 1), 9 (sample 2), and 35 (sample 3).

TABLE I. Effective boundary length L and adjusted point defect parameter

Bpd used for fitting the experimental results of lattice thermal conductivity

for three samples of PbTe.

Sample Ref.

Effective boundary

length L (lm)

Point defect

parameter Apd (s3)

Sample 1 (Ref. 6) 0.34 1.039� 10�41

Sample 2 (Ref. 9) 0.50 2.078� 10�42

Sample 3 (Ref. 35) 0.05 1.039� 10�42
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a. Total anharmonic relaxation rates. In order to empha-

sise the relative importance of different phonon branches

towards the thermal conductivity, we plot the inverse anhar-

monic relaxation times of phonons as a function of the

reduced wave number in Figs. 5(a) and 5(b). For all wave

numbers, s�1ðLAÞ is much larger than s�1ðTAÞ and

s�1ðTOÞ. Also, for all wave numbers s�1ðTOÞ is � s�1ðTAÞ
at both low and high temperatures. Figures 5(a) and 5(b) also

demonstrate that in the low frequency range the relaxation

rate for the LA branch follows the x2 behaviour, as predicted

by Klemens,36 whereas the TO and TA branches show a

mixture of linear and quadratic behaviours. As the reduced

wave number increases, the behaviour of s�1
LA in general

shows a polynomial type dependence on x. This analysis is

in good agreement with the trend noted by Tian et al.34

b. Normal anharmonic relaxation rates involving different

polarisations and branches. Normal anharmonic relaxation

rates for several class 1 processes sþ s0 ! s00 involving dif-

ferent phonon polarisations and branches are presented in

Fig. 6. A few observations can be made. The scattering rates

for the processes involving only acoustic phonons (i.e.,

acþ ac! ac) or only optical phonons (i.e., opþ op! op)

are the weakest, as seen form the results in panels (a) and

(d). The results in panels (b) and (c) indicate that the strong-

est acþ op! op interactions involve TA and TO phonons

merging together to produce LO phonons. Normal (N) proc-

esses are not allowed for certain range of x values, due to the

demand of simultaneous momentum and energy conserva-

tion considerations. This is very clearly seen in panel (d),

which suggests that the process TOþ TO! LO is not

allowed for x< 0.1 and for x> 0.7. It is also found that the

maximum strengths for the processes TOþ TA! TO (N)

and TOþ LA! LO (N) are almost similar, except that the

former (latter) is more effective for shorter (longer) wave

numbers.

c. Comparison between N and U relaxation rates. The

results presented in Fig. 7 compare the N and U relaxation

rates for two (randomly chosen) processes. Both for LAþ
TA! LA and TAþ TA! TO, the N process is stronger

than the U process for almost all wave numbers of the

FIG. 5. The total anharmonic relaxa-

tion rate for LA, TA, and TO branches

as a function of the reduced wave vec-

tor at (a) T¼ 300 K, (b) T¼ 900 K for

PbTe.

FIG. 6. Anharmonic scattering rates at

T¼ 900 K for (a) acþ ac! ac (N),

(b) acþ op! op (N), (c) opþ ac!
op (N), and (d) opþ op! op (N)

processes.
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relaxing phonon (indicated as s in the process sþ s0 ! s00).
Only when the wave number gets closer to the Debye radius

(typically when x¼ 0.9) does the U process become compa-

rable to the N process. Such a comparison between N and U

processes has been noted before.37

We also mention that the results in Figs. 6(a) and 7(a)

further suggest that the relaxation rate of LA phonons via the

process LAþ TA! LA (N) is approximately three times

stronger than that of TA phonons via the process TAþ
LA! LA (N).

d. Frequency and temperature dependence of anharmonic

relaxation rate. The total three-phonon Normal scattering rate

and the total relaxation rate for the TO and TA phonons, at a

given reduced wave number, as a function of low tempera-

tures, are shown in Fig. 8(a). The dependences of s�1
TO;TA are

not linear in the low temperatures range, with s�1
TO > s�1

TA. The

latter can be explained by noticing that for a given q, xTO >
xTA and that at low temperatures s�1ðx; TÞ / xnT5�n.38 As

the temperature increases beyond 100 K, the scattering rates

change linearly with T. In fact, the linearity behaviour starts

earlier than 100 K for the TA mode, which may be attributed

to a low TA Debye temperature. Panel (c) offers a compari-

son between the relaxation rates for the TO and TA modes at

a high reduced wave number x¼ 0.969, where it is noted that

at a given temperature the scattering rate of TO is much

weaker than that of TA. Our work provides support to the pre-

vious suggestion14 that the TO phonons are involved in

strong anharmonic interactions. However, although the work

in Ref. 14 has identified strong TO–LA interaction, our work

suggests that TO–TA interaction is stronger.

B. Electronic transport coefficients

Figure 9 shows the temperature variation of Fermi level

in the n-PbTe sample studied in this work. With increase in

temperature, the level decreases below the conduction band

minimum as more and more donors get ionised.

Approximately above 650 K, the donors are all ionised, and

the temperature variation of Fermi level becomes that of the

intrinsic nature.

Figure 10(a) shows the temperature variation of the

Seebeck coefficient S. The magnitude jSj increases as the

temperature increases and shows a turning point at about

650 K due to the intrinsic excitation through this narrow

band semiconductor at high temperatures, where holes as

well as electrons make contribution. Our computed results

are in good agreement with the experimental data from Ref.

6. As usually Fermi level is extracted from measurements of

the Seebeck coefficient, it is pleasing to remark that Eq. (12)

FIG. 7. Comparison between N and U scattering rates at T¼ 900 K for the

relaxation of LA and TA phonons.

FIG. 8. Relaxation rates of the total Normal processes and the total anhar-

monic processes for TO and TA phonons at x¼ 0.342 for (a) low tempera-

tures and (b) high temperatures. Panel (c) presents the relaxation rate of the

total Normal processes and the total anharmonic processes for TO and TA

phonons at x¼ 0.969 as a function of temperature.
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presents a reliable simple analytical expression for the tem-

perature variation of Fermi level in n-type PbTe.

The influence of band non-parabolicity on acoustic pho-

non scattering is taken into account through the effective

mass temperature dependence.9 This dependence is reported

in Ref. 39 to be of the order / T0:5 for electrons and accord-

ingly we used m�nð0Þ ¼ 0:02 m0 for this calculation. The

large non-parabolicity for PbTe in its lowest conduction

band, combined with its narrow gap characteristic, is consid-

ered to be the cause of this significant temperature depend-

ence of the effective mass, which also can be explained by a

thermal distribution of electrons over non-parabolic band.25

Furthermore, as suggested by Moyzhes and Ravich in Ref.

10, we expect the energy dependence of the relaxation time

for acoustic scattering to deviate from the 1/2 power law as a

consequence of non-parabolicity. Figure 10(b) shows the

results for the electrical resistivity q. With consideration of

electron scattering with acoustic phonons alone, the results

for the extrinsic contribution show reasonable agreement up

to 600 K with the experimental data presented in Ref. 6. At

higher temperatures, when the specimen can be assumed to

be intrinsic, the results shown in Fig. 10(b) for the intrinsic

resistivity are obtained by treating the dependence of the

effective mass, mobility, and the variation of energy gap that

appears in Eq. (18) by fitting the constant D¼ 0.794 X cm.40

There is very good agreement between the computed extrin-

sic contribution and the experimental data at temperatures

above 700 K. On the whole, we regard the agreement

between our theoretical results and the experimental data as

reasonable.

With the electrical resistivity q computed, the electronic

contribution to the thermal conductivity was computed by

using the Wiedemann-Franz relationship. In particular, in the

extrinsic regime, jmp was computed using Eq. (15) and in

the intrinsic regime jbp was computed using Eq. (17).

C. Total thermal conductivity

The total thermal conductivity is expressed as

jtot ¼ jel þ jph; (20)

where jel is the contribution from the carriers (donor elec-

trons (monopolar) in the extrinsic regime and electron-hole

pairs (bipolar) in the intrinsic regime, and jph is the phonon

conductivity. Our computed results for sample 1 are com-

pared with the experimental results reported by Pei and Liu6

in Fig. 11. There is very good agreement between theory and

experiment. Considerable decrease in the conductivity is

noted as the temperature increases: for example, from 1.7 W

K�1 m�1 at room temperature to 1.1 W K�1 m�1 at 650 K.

The upward change in the slope of the j–T curve above

500 K is due to the electronic contribution (largely to the

bipolar contribution).

D. Thermoelectric figure of merit

The temperature variation of the dimensionless figure of

merit ZT is presented in Fig. 12 for two scenarios of the

FIG. 10. (a) Seebeck coefficient and (b) electrical resistivity for the n-type

PbTe with donor concentration 2.6� 1018 cm–3. The solid and dot curves for

q represent the intrinsic (monopolar) and extrinsic (bipolar) contributions,

respectively. The experimental data are read from Ref. 6.

FIG. 11. Total thermal conductivity ðjtot ¼ jel þ jphÞ of sample 1.6

FIG. 9. Temperature variation of Fermi level in n-type PbTe with donor con-

centration 2.6� 1018 cm�3. The conduction band and valence band edges

are drawn as dashed and dashed-dotted horizontal lines, respectively.
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lattice thermal conductivity: (i) by considering only acoustic

phonons as heat carriers (but incorporating the ac-op interac-

tions), and by (ii) considering acoustic as well as optical pho-

nons as heat carriers (and incorporating all allowed

interactions among the acoustic and optical phonons). The

larger figure of merit is achieved when optical phonons are

not considered as heat carriers (i.e., for scenario (i)). The

room-temperature result for the figure of merit ZT increases

from 0.1 for scenario (ii) to 0.17 for scenario (i). This clearly

indicates the important role played by the existence of the

low-lying TO branch in PbTe.

While our theoretical work reproduces the experimen-

tally obtained data for S, q, and jtot ¼ jel þ jph, we did not

manage to match our calculated ZT values with the results in

Ref. 6. However, our results of the figure of merit ZT, with

the contribution to the lattice thermal conductivity by all

branches considered, are consistent with the values extracted

directly from the measurements of S, q, and jtot reported in

Ref. 6. It appears, therefore, that there are numerical errors

in the ZT values presented in Ref. 6. This has been con-

firmed41 by one of the authors of Ref. 6.

IV. SUMMARY

By employing the nearly-free-electron theory and a single

non-parabolic electronic band, and a continuum theory of har-

monic and anharmonic phonons for all acoustic and optical

branches, we have successfully reproduced the experimental

measurements of all the thermoelectric transport coefficients

for an n-type sample of PbTe. The results presented here show

that the band non-parabolicity influences the electronic trans-

port coefficients via a temperature-dependent effective mass

temperature. The TO phonons make a significant contribution

to the lattice thermal conductivity and are found to play an im-

portant role in determining the figure of merit ZT. The strong-

est anharmonic interaction is predicted to arise from the

Normal (N) TOþ TA! LO process. The total anharmonic

relaxation rate of the TO phonons is quite similar to that of the

TA phonons but much smaller than that of the LA phonons. It

can be assumed that the suppression, or reduction, of the con-

tribution of the TO branch, by an appropriate addition of

scattering processes would enhance the thermoelectric proper-

ties of PbTe and increase the figure of merit considerably.
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