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Tuning phonon properties to enhance the thermoelectric
figure of merit

Iorwerth O. Thomas and G. P. Srivastava

School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom

Abstract.
We will discuss a theory of the thermoelectric properties of semiconductor alloys and superlattices, with an emphasis on

the role of phonons. After summarising our previous calculations of the lattice thermal conductivity and the thermoelectric
figure of merit ZT of an n-type SiGe alloy system, we will present some recent results for an ultra-thin SiGe superlattice and
discuss how they differ from the alloy results.
Keywords: thermoelectric effect, Figure of Merit, superlattices, phonons
PACS: 63.22.-m 63.20.dk 65.40-b

INTRODUCTION

The thermoelectric effect has attracted much theoretical
and experimental attention following the discovery that
the nanostructuring of semi-conductor compounds can
increase their thermoelectric efficiency (as quantified by
the thermoelectric Figure of Merit ZT ) to values greater
than unity, entailing that their application to such tasks as
the conversion of waste heat into electricity and refriger-
ation may now be practical (see, for instance, Reference
[1]). In order to best direct research into which materials
and nanostructures are most suited for which purposes,
theoretical characterisations of the effects of nanostruc-
turing on the electronic and lattice (phonon) properties of
semi-conductor compounds must be developed. In what
follows we discuss the detailed calculation of the lattice
contribution to ZT , although we will devote some of our
attention to approximate calculations of the electronic
contributions needed to obtain the full Figure of Merit.

One of the most widely employed theoretical methods
for calculating lattice thermal conductivity is the single-
mode relaxation time approach to solving the phonon
Boltzmann equation [2]. This approach has traditionally
been applied to bulk materials using Debye’s isotropic
continuum approximation at harmonic as well as anhar-
monic levels, as detailed in Ref. [2]. Such an approach
would be analytically tractable but would rely heav-
ily on system-dependent parameters determined wholly
by fitting to experimental results, since it would ignore
many of the salient features of the system by, for in-
stance having a continuum (rather than realistic) density
of states. Its predictive usefulness in this case is there-
fore very limited. Recent advances in phonon studies aim
at ab initio phonon conductivity computation, using ac-
curate phonon dispersion curves and anharmonic force
constants, and realistic Brillouin zone summation tech-

niques (see, e.g. [3, 4]). For ultra-thin systems of the kind
that we are interested in this entails the use of Density
Functional Peturbation [DFPT] theory [5] in order to ob-
tain the needed second- and third-order force-constants.
However, a full descripton of the system at all tem-
peratures of interest requires a treatment of third-order
force constants in order to capture the behaviour of the
most significant anharmonic contribution to the phonon
scattering time. This is numerically challenging, some-
what opaque from a theoretical standpoint, and further-
more the values of the Grünneisen constants governing
the strength of particular phonon exchanges have been
shown to be particularly sensitive to truncation and other
potential sources of error [6, 7]. Another problem associ-
ated with the ab initio approach is that the mode-average
Grünneisen constant is also temperature dependent [2],
whereas DFPT (being a Density Functional Theory tech-
nique) is carried out at T = 0. Ward and Broido’s [4]
calculations of phonon relaxation times for Si and Ge do
show that changing the lattice constant of the system by
the amount suggested by the theory of thermal expansion
(hence ‘effectively’ increasing T ) makes no significant
difference to their results, and since most calculations
(including our own) are carried out in the quasi-harmonic
approximation [8], which excludes all effects of tempera-
ture change other than thermal expansion from consider-
ation, this would seem to indicate that temperature is not
a problem. We would caution against drawing overly op-
timistic conclusions from this success, however. Due to
the complexity of the calculation and the number of force
constants involved, it is possible that fortuitous cancella-
tions of errors may be concealing the problem, or that
thermal expansion might have negligible effects only for
some systems. Our worry is that treating a fully ab ini-
tio approach as an oracular black box whose pronounce-
ments are wholly trustworthy may lead us astray, and so
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complementary methods are needed in order to further
confirm its conclusions.

One such method would be a judicious combination of
ab inito and semi-empirical approaches, as developed in
our group over several years [9, 10, 11, 12]. In this ap-
proach we generate phonon eigensolutions for the system
of interest from second-order force constants obtained
by DFPT, and use them as input for analytically-derived
expressions for the relevent contributions to the single-
mode relaxation time. These expressions contain param-
eters which must be tuned through comparison with ex-
periment in order to account for the relative strengths of
relevant phonon scattering mechanisms. For alloys these
include boundary, isotope, point-defect, alloy, carrier-
phonon, and anharmonic scatterings. For superlattices
there are two additional sources of phonon scattering: in-
terface scattering andmini-Umklapp anharmonic interac-
tions (due to the superlattice periodicity being larger than
that of its constituent materials). For both alloys and su-
perlattices sample-size, point-defects, and interface qual-
ity are dependent on the sample preperation method. The
anharmonic interaction can be modelled so as to include
an appropriate temperature dependence (and thus may
also absorb effects external to the quasi-harmonic ap-
proximation into its behaviour, despite not formally in-
cluding them). As a result of this partial dependence on
experimental behaviour, this approach does lose some
predictive power; however, it is possible to gain an under-
standing of the potential effects of nanostructuring on the
system through (for example) altering the system from a
superlattice to a periodic nanowire lattice while keeping
the model parameters identical, and so make predictions
as to what kind of structure is the most effective.

In what follows, we summarise previous calculations
of ZT and the lattice contribution to the thermal conduc-
tivity for a SiGe alloy system and compare it with a su-
perlattice system of identical size and doping in order to
see the effects that nanostructuring has on the behaviour
of the system.

METHOD

The figure of merit of a thermoelectric material is defined
as

ZT =
σS2T
κtot

, (1)

where σ is the electrical conductivity, S is the Seebeck
constant, and κel and κph respectively denote the carrier
contribution and the lattice (phonon) contribution to the
the thermal conductivity, and κtot is their sum.

The calculation of these quantities for the alloy case
(whose results we review in this work) are determined by
close comparison with the experimental data of Ref. [13];

since this determination is fairly involved, we refer those
who are interested to Ref. [11], in which it is discussed
in detail, and focus on the details of the calculation in the
case of superlattices in what follows.

A component of the lattice thermal conductivity tensor
of the superlattice system is calculated in the single-
mode relaxation time approximation, and is given by
[8, 2]:

κμν =
h̄2

N0ΩkBT 2

× ∑
qqqs

ω2(qqqs)cs,μ(qqq)cs,ν(qqq)τ(qqqs)n̄qqqs(n̄qqqs+ 1),

(2)

where N0 is the number of unit cells in the system, Ω
their volume, T is the temperature, qqq and s label the
wave vector and band number (i.e. polarization index)
of a mode, ω(qqqs) and cs,ν(qqq) are the frequency and
velocity components of a given mode (μ , ν label axes
of the sample), and τ(qqqs) is the relaxation time given by

τ−1(qqqs) = τ−1
LB (qqqs)+ τ−1

MD(qqqs)+ τ−1
el−ph(qqqs)

+ τ−1
IMS(qqqs)+ τ−1

AH(qqqs). (3)

Here, τ−1
LB (qqqs), τ−1

MD(qqqs), and τ−1
el−ph(qqqs) are, respectively,

the boundary, isotope and electron-phonon scattering
rates and are calculated as in Ref. [11]. The Interface
Mixing scattering (IMS) rate τ−1

IMS(qqqs) arises from ‘mass-
smudging’ (the formation of dislocations is neglected
here, for the superlattice under consideration is well be-
low the critical length for their formation [14]); for this
and the anharmonic scattering rate τ−1

AH(qqqs) we use the
formulation from Ref. [12] (note that the formulation of
the anharmonic term in [12] differs slightly from the ver-
sion used in Ref. [11] to calculate the anharmonic scat-
tering in the alloy).

It will be instructive to present the phonon relaxation
rates τ−1

IMS(qqqs) and τ−1
AH(qqqs) for superlattice structures as

derived in our previous work [12]. For a (m,n) superlat-
tice with m layers of material A (mass mA) and n layers
of material B (mass mB), the IMS rate can be expressed
as

τ−1
IMS(qqqs) =

πΓIMS
6N0

∑
qqqs

ω(qqqs)ω(qqq′s′)δ (ω(qqqs)−ω(qqq′s′))

×
(n̄qqq′s′ + 1)

(n̄qqqs+ 1)
, (4)

where

ΓIMS = P

(
ΔM
M

)2
([

1−
eAe′A
eBe′B

]2
+

[
1−

eBe′B
eAe′A

]2
)

,

(5)
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and

eB
eA

=

[
1
M0

−Δ
( 1
M

)]
cos(lzqz)[(

1
M0

)2
+

{
Δ

( 1
M

)}2 sin2(lzqz)
]1/2

−Δ
( 1
M

) ,

(6)
withM=(mMA+nMB), ΔM= |MA−MB|,M0 =(M−1

A +

M−1
B )/2, Δ(1/M) = (M−1

A −M−1
B )/2, and lz being the

superlattice period in the z direction. The factor P de-
termines the probability of interface mass mixing. The
anharmonic scattering rate can be expressed as

τ−1
AH(qqqs) =

πh̄γ̄2

ρN0Ωc̄2 ∑
qqq′s′ ,qqq′′s′′ ,GGG

(
Rqqqs,qqq′s′ ,qqq′′s′′

)2

ω(qqqs)ω(qqq′s′)ω(qqq′′s′′)
D(qqq, q′,q′′)

×

[
n̄qqq′s′ (n̄qqq′′s′′ +1)

(n̄qqqs+1)
δ (ω(qqqs)+ω(qqq′s′)−ω(qqq′′s′′))δqqq+q′,q′′+GGG

+
1
2
n̄qqq′s′ n̄qqq′′s′′
n̄qqqs

δ (ω(qqqs)−ω(qqq′s′)−ω(qqq′′s′′))δqqq+GGG,q′+q′′

]
, (7)

wher γ̄ is the mode-averaged Grüneissen constant, c̄ is
the long wavelength acoustic phonon speed, where ρ is
the average mass density in the superlattice structure,
and GGG is a reciprocal lattice vector. The term R can be
expressed as

R =
[√

ω(i)ω( j)(ω(i)+ ω( j))|ωΓ(k)−ω(k)|

+similar terms with i, j andk interchanged
]
/3!. (8)

The symbol D(qqq, q′,q′′) represents a dual mass term and
can be expressed as

D(qqq, qqq′,qqq′′) =
1

64

(
AAB

2ρ3/2
A

+
ABA

2ρ3/2
B

)2

(9)

where ρA(B) is the density of material A(B) and

Ai j = 1+
ρ1/2
i

ρ1/2
j

(
e j
ei

+
e′j
e′i

+
e′′j
e′′i

)

+
ρi
ρ j

(
e je′j
eie′i

+
e′je′′j
e′ie′′i

+
e je′′j
eie′′i

)
+

ρ3/2
i

ρ3/2
j

(
e je′je′′j
eie′ie′′i

)
,(10)

eA and eB being the vibrational eigenvectors in segments
A and B, respectively.

The strength of the boundary scattering is controlled
by the sample size LB, that of the electron-phonon scat-
tering by the acoustic deformation parameter ED and the
impurity concentration ND, the isotope scattering by P,
which scales it so as to include scattering from point
impurities, and the anharmonic scattering by the mode-
averaged Grüneissen constant γ̄ . The strength of the IMS
scattering P must be modelled; our model is described
in Ref. [12], but for our purposes it will suffice to say
that the strength of IMS scattering is controlled by a
pair of parameters controlling the probability of mass-
mixing at the interface (B) and how quickly that prob-
ability falls away with distance from the interface (α).

We choose values for two of these parameters based on
our previous comparison with undoped experimental re-
sults [12]: that is, a scale factor of P = 4.5 for the point
defect scattering rate, and γ̄ = 0.45 for temperatures be-
low 150 K and γ̄ = 0.45(1 + (T − 150)/150)0.56 above
it. We take ND = 9.4× 1025 m−3, the electron effective
mass corresponding to the well (i.e. the Si mass; see be-
low), ED = 10 eV (slightly smaller than the value used
in References [11] and [15]) and take LB = 0.2 μm as
per the alloy [11]. We parameterise P using α = 5.0
and B = 1.0, which corresponds to a good quality inter-
face [12]. Subject to momentum and energy conservation
conditions, all allowed three-phonon Normal and Umk-
lapp processes were included. For Umklapp scattering,
we included reciprocal vectors with magnitude less than
or equal to G= 2π/a0, where a0 is the cubic lattice con-
stant.

The phonon eigensolutions required for the above
calculation were generated using the DFPT package
contained within QUANTUM ESPRESSO [16]. En-
ergy minimisation was performed on a 10 × 10 × 2
Monkhorst-Pack (MP) [17] grid using a kinetic energy
cutoff of 15 Rd for the plane-wave basis, a0 = 5.54
Å, and norm-conserving, local density approximation
pseudopotentials [18]; the eigensolutions were generated
from the dynamical matrices on a 16 × 16 × 12 grid,
which was found to give the best convergence in calcula-
tions on an undoped system [12].

We calculate the electronic contributions to ZT (that is
S, σ and κel) using the approximate nanostructure mixing
formulae of Lin-Chung and Reineke [19]. In order to
make use of these, we must first calculate the component
contributions for the bulk and quantum well cases for
both component species of the superlattice.

Using the charge conservation equation [20]

0 = Nion
D −n0 + p0, (11)

where we assume complete ionisation so that the ionised
donor contributionNion

D ≈ND, thermally exicted electron
and hole concentrations are given by [20]

n0 =
Nval

zda3−d

(
2kBTmdos

e
h̄2

)d/2

F0.5d−1(βn),

p0 =
Nval

zda3−d

(
2kBTmdos

p

h̄2

)d/2

F0.5d−1(βp),

(12)

where d= 2(3) for two(three)-dimensional system,mdos
p(n)

is the hole(electron) density of states mass, a is the well
width, Ec and Ev are the conduction and valence band
edges,

z2 = 2π , z3 = 2π2,

βn = ηR− ((Ec+(3−d)Ee1)/kBT ),
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βp = (Ev− (3−d)Ep1 )/kBT )−ηR,

Ee(p)1 = h̄2π2/2a2mdos
e(p),

ηR = EF/kBT is the reduced Fermi energy, and Fn(y) is
the Fermi integral

Fn(y) =
∫ ∞

0

xn

ex−y+ 1
.

We can determine the reduced Fermi energy for systems
of a given temperature and dimensionality d through
use of the Van-Wjingaarden-Decker-Brent method [21].
From this, we may calculate the electronic components
using the subsequent expressions.

When calculating σ we assume that the dominant
scattering process is acoustic phonon scattering. In that
case, from the expressions in [22] (for the the bulk case)
and [23] (for the 2D case) we can show that the exponent
of the energy dependence of the scattering s is equal to
-0.5 in the bulk case and 0 for quantum wells, and that
(via Ref. [24]),

σ3D
n,p =

2Nvale2h̄ρc2
L

3πE2
Dm∗

c
F0(x),

σ2D
n,p =

4Nvale2h̄ρc2
L

3πE2
Dm∗

c
F0(x). (13)

Here, Nval is the number of valleys, cL is the speed of
the longitudinal phonon mode in the long-wavelength
limit, ED is the acoustic deformation potential, m∗

c is the
conduction mass and ρ is the density of the material.
x ≡ βn for electrons and x ≡ βp for holes. The other
electronic contributions are given by [24, 25]

S = ∓
kB
e

(M (x)− x) ,

M (x) =
(s+ 0.5d+ 1)Fs+0.5d(x)
(s+ 0.5d)Fs+0.5d−1(x)

, (14)

where electrons use the negative sign and holes the posi-
tive, and

κel =
k2

B
e2

{
L (βn)σnT +L (βp)σpT

+
σnσpT
σn+ σp

[β −α +M (βn)+M (βp)]2
}

,

L (y) =
1

(s+ 0.5d)2Fs+0.5d−1(y)2

×

[
(s+ 0.5d+ 2)(s+ 0.5d)Fs+0.5d+1(y)Fs+0.5d−1(y)

−(s+ 0.5d+ 1)2
Fs+0.5d(y)

]
. (15)

To get the total σ and total S we simply sum hole and
electron contributions as follows:

σtot = σn+ σp,

Stot =
σnSn+ σpSp

σtot
. (16)

For Si, we chose mdos
e(p) = 0.33(0.55)me, m∗

c =

0.26(0.24)me, Nval = 6(1) for electrons (holes) (derived
from the values in Reference [20]), Ev = Ec − 1.2 eV
[20], and ρ = 2329 kg/m3 [26]. For Ge, we chose
mdos
e(p) = 0.22(0.29)me, m∗

c = 0.12(0.08)me, Nval = 4(1)

for electrons (holes) (also derived from the values in
Reference [20]), Ev = Ec− 0.72 eV [20], and ρ = 5323
kg/m3 [26]. Ec = 0.0eV, a0 = 11.08 Åand ED = 10eV
in all cases, as per the discussion of the electron-phonon
term in the lattice conductivity calculation above. For
reasons of simplicity, we are using the bulk values of the
electron and hole parameters for the constituents.

The mixing formulae [19] contain the following la-
bels. The subscript ‘SL’ indicates the mixed value for the
superlattice, ‘w’ the value for the well component (in this
case Si) and ‘b’ the barrier component (in this case Ge).
The superscript ‘bk’ indicates a bulk value, ‘qw’ a quan-
tum well value, and ‘in’ and ‘cross’ that a mixed value
corresponds to the in-plane or cross-plane value respec-
tively. We define γ = κtot + σS2T where the sub- and
super-scripts are assumed to match (note that κ in the
following formulae corresponds to κtot).

The in-plane formulae are [19]:

σ in
SL =

awσqw
w +abσbk

b
aw +ab

,

γ in
SL =

awγqw
w +abγbk

b
aw +ab

,

Sin
SL =

awσqw
w Sqw

w +abσbk
b S

qw
b

awσqw
w +abσbk

b
. (17)

The cross-plane formulae are [19]:

σ cross
SL =

σbk
w κbk

w
aw

AW,

γcross
SL =

σbk
w κbk

w
aw

(
γbk

w +qγbk
b

)
W,

Scross
SL =

B
awσbk

w +abσbk
b

, (18)

where

A = σbk
w +qσbk

b , W ≡
aw +ab

A
(
σbk

w +qσbk
b

)
−TB2 ,

B = σbk
w S

bk
w +qσbk

b S
bk
b , q=

abσbk
w κbk

w
awσbk

b κbk
b

. (19)
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FIGURE 1. Alloy results fitted semi-empirically to experimental data from [13] . a) shows the behavior of the Seebeck constant
with temperature, b) the conductivity, c) the total thermal conductivity and d) the Figure of Merit ZT . (Figures are taken from [11],
and data from [13] is used with permission of IOP publishing Ltd.)

RESULTS

SiGe Alloy

Figure 1 displays the results [11] of our calculation
of κph (included within the total thermal conductivity κ
in Figure 1 c)) and our modelling of the electronic con-
tributions alongside the experimental results from Ref.
[13] for a Si0.754Ge0.246 alloy doped with a concentra-
tion of 9.4×1025 m−3 of P donor atoms. Firstly, we can
see that we have a good match with experimental results
for all components, and a somewhat better match for κ
than the theory in Ref. [13]. In general, we see that the
system is generally extrinsic in nature; the only notici-
ble effect of thermally excited holes can be seen in the
bi-polar contribution to κ in Fig. 1 c) that causes it to
increase for T > 900 K. The thermal conductivity is rel-
atively ‘flat’ over the temperature range considered, gen-
erally remaining within 10% of 4 W m−1 K−1, probably
due to the sintering of the system, which results in the
formation of small crystallite structures that push the ef-
fective size of the system down to LB ≈ 0.2 μm and so
suppress the low-temperature peak. Our overall ZT re-
sults are somewhat similar to those in Ref. [13], although

our peak value (ZT ≈ 0.68 at 1000 K) is somewhat (≈ 16
%) smaller than theirs.

SiGe superlattices

We present results for the Si(4)Ge(4)[001] superlat-
tice, with each unit cell along the [001] growth direction
containing 4 bilayers of Si and 4 bilayers of Ge. When
presenting the κph = {κμμ} results, we have taken our x
and y axes to be the [110] and [11̄0] axes respectively,
and z to be the [001] growth direction (i.e. the cross-
planar direction). Figure 2 shows the behaviour of the
various components of the lattice thermal conductivity.
We should note that while κxx and κyy are quantitatively
and qualitatively very similar, they are not identical (we
have discussed this discrepancy in [27]), but they are
much larger than κzz (about 6 times larger at 300 K).

It has been observed [20] that theoretical treatments
of the electrical conductivity and related quantities of the
kind that we have performed here rarely produce results
exactly matching those of experiment since they exclude
the effects of inelastic scattering processes. It is there-
fore often necessary to rescale fits by an ad hoc factor
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FIGURE 2. Thermal conductivity results for the lattice contributions to the thermal conductivity in in-planar and cross-planar
directions.

[20, 28] that absorbs these effects, and this proved nec-
essary in the fitting of the electrical conductivity in our
alloy study [11]. A problem presents itself: if we wish
to make a fair comparison between our two systems, we
should also rescale the superlattice conductivities by a
similar amount. However, we have no experimental re-
sults on which to base such a rescaling. In the absence
of such, we therefore rescale our conductivity results by
the factor 0.0013T0.4 that we used for the alloy, which
then alters all quantities dependent on them [11]. This
can provide us with a conservative estimate of the effects
of superlattice structuring; in fact it is extremely unlikely
that this factor would be identical in such a system and
(unlike in our calculations) it is unlikely that it would
be identical for both hole and electron contributions. The
results of following this rescaling are displayed in Fig-
ure 3. σ is of a similar order of magnitude to the alloy
electrical conductivity, and the in-plane and cross-plane
curves intersect in the vicinity of 400-500 K. The be-
haviour of S is fairly similar, and the overall power factor
σS2 is an order of magnitude less than that of the alloy.
κel is smaller than unity and so the behaviour of κtot is
dominated by the behaviour of the lattice contributions
(as can be seen from a comparison of Figure 2 b) with
3 d)), and again there is no significant bipolar contribu-
tion (though this may be an artefact of our using iden-
tical rescaling factors for both holes and electrons). We
can see a (small) improvement in ZT relative to the al-
loy in the cross-plane direction but the in-plane direction
is much less efficient. This is because the cross-planar
thermal conductivity is consistently less than the alloy
thermal conductivity while the in-planar thermal conduc-
tivity is either greater (low temperatures) or only slightly
smaller (high temperatures); between this and the small
power factors this entails that ZT for the in-plane case
is much smaller than for the alloy, and the cross-planar
case is at best only slightly better.

However, this is based on pessimistic assumptions. As

we have said, there is no reason to believe that any rescal-
ing due to the effects of inelastic collisions will be as
extreme as we have assumed. It is therefore reasonable
to perform calculations in the absence of such a factor
in order to estimate an upper-bound to enhancements.
Figure 4 displays the in-plane and cross-plane values of
the electrical conductivity, the Seebeck constant, and the
total thermal conductivity calculated from the bulk and
quantum well values using equations (17) to (19) in the
absence of rescaling. Similarly to the rescaled case, the
values of the in-plane and cross-plane electrical conduc-
tivity are roughly comparable, but are not identical: at
low temperatures the cross-plane results are noticably
larger than the in-plane results but at high temperatures
they are slightly smaller, though the curves cross in the
range 300− 400 K in this case rather than in the range
400−500 K. The Seebeck constant is identical to that of
the rescaled case, and its directional dependence more
obvious than for σ ; we can see that while the cross-
planar result is slightly larger at 100 K, the values in-
tersect at 200 K, and thereafter the in-plane values are
larger, with the two sets of results diverging further as
T increases. For κtot, the bulk results show a similar be-
haviour with temperature, with the Si results being (very
roughly) half those of Ge. The quantum well results for
Si are well above those for Ge, and show a sharp increase
towards 100 K, while levelling off at higher tempera-
tures. The bipolar contribution is too small to be seen,
a sign that the system is well with in the extrinsic regime
for the entire temperature range. The total values fol-
lowing mixing using the LR formulae show that the in-
plane thermal conductivity is between 2-3 times that of
the cross-plane conductivity, and that unlike the rescaled
case the effects of the electrical contributions dominate
over those of the lattice contributions, since the magni-
tude of the curves most is closer to that of the electronic
contributions than the phonon contributions .

The overall Figure of Merit and a comparison of power
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FIGURE 3. Results for the (4,4) superlattice system with rescaled conductivity. a) shows the conductivity, b) the Seebeck
constant, c) the electronic contributions to the thermal conductivity prior to mixing, d) the total thermal conductivity following
mixing, e) the in-plane and the cross-plane power factors compared with the power factor calculated from the results of [11], and f)
the overall ZT in each direction.
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FIGURE 4. The a) conductivity, b) Seebeck constants, c) electronic contribution to thermal conductivity and d) total thermal
conductivity in the in-plane and cross-plane directions for the (4,4) superlattice without rescaling.

factors is shown in Figure 5. Here we can see that the
power factors for the superlattice for both in-plane and
cross-plane directions are an order of magnitude or so
greater than that of the alloy. For most of the temperature
range considered (≈ 1300 K T >≈ 200 K) , the cross-
plane values are greater than those of the in-plane case,
most likely because for this range the absolute value
of the cross-plane S is large enough relative to the in-
plane S to compensate for any similarity in σ . This
partly explains the most striking aspect of these results,
which is that the ZT calculated is well above unity for
the cross-planar direction for T >≈ 550 K (indeed the
increase in efficiency relative to the alloy results in Fig.
1 is rather large), while the in-plane results remain below
unity for <≈ 1200 K. However, the difference in ZT is
greatest at 1300 K, where the power factors are almost
identical. This can be explained with reference to the
thermal conductivity. Since the in-plane κtot is ≈ 3 times
larger than κtot in the cross-plane direction, we would
expect ZT for the in-plane direction to be roughly three
times smaller than in the cross-planar direction, and this
is in fact what we see. That ZT in the cross-planar case is
larger than in the in-planar case and greater than the bulk
or alloy values is a significant difference from Lin-Chung

and Reinecker’s original results [19]; we ascribe this to
our use of a more accurate calculation of the phonon
thermal conductivity than used in that work, where bulk
values of the phonon conductivities were used.

What can we conclude from this? Firstly, that at worst
the rescaled case is most likely a lower bound. It is un-
likely that the rescaling factor is correct for the superlat-
tice case, and a more careful analysis of the processes in-
volved or a set of good quality experimental results might
well show that it is too small. However, even were we
to allow that it would be fairly similar, further improve-
ments in ZT are still be possible, since the total thermal
conductivity is now dominated by the lattice contribu-
tion. Two possible routes for improvement now suggest
themselves: reducing LB, since this can have a strong ef-
fect on κph – especially at low temperatures [29], and
worsening the interface quality. The former is likely lim-
ited by the minumum size to which a superlattice can be
reduced (that is, the size of one period) and by fabrication
constraints, but that last could have a noticable effect,
particularly as the IMS model parameters which we are
using correspond to a fairly clean interface [12]. One last
possibility is that the presence of so many dopant ions in
the system will also lead to an increase in the number of
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FIGURE 5. a) Comparison of power factor for alloy (calculated from results in [11] with power factor for superlattice, b) Figure
of Merit in all directions for the (4,4) superlattice without scaling.

point impurities in the system, which in turn would be
accounted for by an increase in the parameter P used in
the calculation of κph, which would cause κph to decrease
and hence increase ZT . Our calculations do not account
for this possibility, as we know of no way of modelling a
relation between ND and P, and so perhaps overestimate
the lattice contribution to the thermal conductivity.

Secondly, if – as seems entirely possible – the true be-
haviour of the superlattice system is somewhere between
the rescaled and unrescaled extremes, we can predict that
superlattice structuring leads to a noticable improvement
in the thermoelectric efficiency that can, in principle, be
quite large. The true extent to which this is so, however,
awaits detailed calculations of the electronic contribu-
tions to the Figure of Merit that are beyond the scope
of the present work.

Lastly, a few more general caveats are in order: as this
system is very thin, we would expect that the effects of
carrier tunnelling would be significant in a real system
where the potential barrier of the quantum well is finite
[19]. This means that we would expect our prediction of

ZT to be an overestimate. Furthermore, our calculation
in the cross-planar direction ignores the full effects of
confinement on the electron band structure; however,
the potential improvement is so large that even if our
calculations overestimate its extent, given some of the
considerations in the preceeding discussion, it seems
plausible that some significant increase in ZT could still
be observed.

CONCLUSIONS

We have reviewed the results of our previous calculation
of ZT for a n-doped SiGe alloy and presented the results
of new calculations for the ZT of a (4,4) SiGe superlat-
tice, with an emphasis on the effects of the sample size
LB on the thermal conductivity and Figure of Merit. We
obtain the thermal conductivity through a combination of
DFPT and a semi-empirical method, and use appropriate
modelling techniques to estimate the electronic contribu-
tions.
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We conclude that in principle, superlattice structuring
can lead to a great increase in ZT in the cross-planar
direction, and a much smaller increase for the in-plane
directions. ZT is greater than unity in the cross-planar
directions for a wide temperature range, but only for a
small range in the in-plane direction. If an ad-hoc factor
determining the effects of inelastic processes is included,
the improvements appear to become marginal at best;
however, in that case it is possible that the use of super-
lattices with poor interface quality (and hence lower lat-
tice thermal conductivities) could still result in improve-
ments to the Figure of Merit. Due to the simplifications
involved, however, the latter case most likely represents
a worst-case scenario – improvements to ZT arising from
superlattice structuring may still be rather more noticable
than it predicts, but it demonstrates that more analysis is
needed in order to properly understand the behaviour of
the electronic contributions of ZT in addition to the lat-
tice contributions.

We would therefore contend that the improvements in
ZT due to the effects of nanostructuring on the lattice
thermal conductivity should persist in more detailed cal-
culations, and should also be observable in experiment.
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