
H-SOFT: A Heuristic Storage Space Optimisation
Algorithm for Flow Table of OpenFlow

Jingguo Ge1, Zhi Chen1,2, Yulei Wu1, Yuepeng E1
1Computer Network Information Center, Chinese Academy of Sciences, Beijing, 100190,

China
2University of Chinese Academy of Sciences, Beijing, 100049, China

Abstract
OpenFlow has become the key standard and technology for software defined networking which has

been widely adopted in various environments. However, the global deployment of OpenFlow

encountered several issues, such as the increasing number of fields and complex structure of flow

entries, making the size of flow table in OpenFlow switches explosively grows which results in

hardware implementation difficulty. To this end, this paper presents the modelling on the minimisation

for storage space of flow table, and proposes a Heuristic Storage space Optimisation algorithm for

Flow Table (H-SOFT) to solve this optimisation problem. The H-SOFT algorithm degrades the

complex and high-dimensional fields of a flow table into multiple flow tables with simple and

low-dimensional fields based on the co-existence and conflict relationships among fields to release the

un-used storage space due to blank fields. Extensive simulation experiments demonstrate that the

H-SOFT algorithm can effectively reduce the storage space of flow table. In particular, with frequent

updates on flow entries, the storage space compression rate of flow table is stable and can achieve at

~70%. Moreover, in comparison with the optimal solution, the H-SOFT algorithm can achieve the

similar compression rate with much lower execution time.

Keywords: OpenFlow, Flow table, Storage space optimisation, SDN

1. Introduction

With rapid expansion of network scales and constant enrichment of applications, the

structure of current Internet is more complex and rigid and the control capability of the Internet

is becoming increasingly weak [1]. Due to the lack of interoperation between Internet

applications and underlying communication networks, applications cannot obtain the status of

networks, and the network cannot be aware of the requirements of applications based on

which for its configuration. The Software Defined Network (SDN) [2] is an innovative

network architecture which separates the control plane and forwarding plane with the

characteristics of standardised interface, global view, flexible control and open

programmability. SDN can provide an open platform for the innovation of networks and

applications, which has a revolutionary impact on future networks.

OpenFlow [1, 3] has become the standard and key technology for the implementation of

SDN and has been widely adopted in various environments, e.g., data center networks, to

facilitate the traffic engineering and improve network performance. OpenFlow technology is

now demanding the deployment in large-scale, even global-scale, networks to provide the

opportunities for researchers to test and evaluate their innovative designs. However, due to the

explosive growth of network bandwidth, the diversification of network applications, the

development of new network architectures, as well as flexible and efficient network

management and control requirements, the size and structure of flow tables in an OpenFlow

switch are facing new challenges in global-scale deployment.

l The size of flow table in OpenFlow switch will grow explosively. Current IPv4 BGP

routing table has more than 440,000 entries which are only based on one field, i.e., IP

destination. With a fine-grained control granularity, one data flow may correspond to

more than one flow entries in the flow table, which could result in explosive expansion

on the size of flow table in the OpenFlow switch.

l The number of fields will constantly increase and the structure of flow table will become

more complex. OpenFlow switch specification version 1.3.0 (OpenFlow1.3) defines 40

fields in the match field [4], while in the future, the specification may extend to include

new fields, e.g., content ID and service ID, due to the deployment of new Internet

architectures and applications such as content-oriented architecture and service-oriented

architecture [5]. In addition, the network security, Quality-of-Service, load balancing and

scalability are required to achieve flexible and efficient network control and management.

Therefore, with increasing extension on the functionality of OpenFlow switches, the

structure of flow table is becoming more complex.

Traditional routing table only matches the field of IPv4 destination or IPv6 destination. The

field length of routing entries mainly occupies 32 bits. The entire length of 40 fields of match

field defined in OpenFlow1.3 is 1227 bits, because the match field contains many protocol

fields including the VLAN, IPv4, IPv6, MPLS, TCP, UDP, SCTP, ICMPv4, ICMPv6, and ARP.

However, some protocol fields cannot exist simultaneously, for example, UDP field appears

when the TCP and SCTP fields are invalid. In other words, the number of valid fields in the

match filed of entries in flow table must be less than 40. When a flow table stores all fields,

each flow entry occupies 1227 bits, resulting in a high-dimensional sparse storage structure

and storage space wastage. Moreover, the explosive growth of flow table size, the increasing

number of fields, and the complex structure of flow entries make the storage space wastage

more serious.

Target at the challenging problem of reducing the storage space for flow table, this paper

makes the following contributions:

l The modelling on the minimisation of storage space for flow table in an OpenFlow

switch is presented. To solve this optimisation problem, a Heuristic Storage space

Optimization algorithm for Flow Table (H-SOFT) is then proposed. The H-SOFT

algorithm degrades the complex fields in match field of a flow table into multiple flow

tables with simple fields, called sub-flow tables. The storage compression is achieved by

assigning each flow entry into those sub-flow tables.

l The H-SOFT algorithm supports frequently adding new flow entries into flow tables by

adjusting the valid fields in each sub-flow table if the number of new flow entries to be

added exceeds a predefined threshold, to optimise the storage space while still maintain

the efficiency of the algorithm.

l Extensive simulation experiments are conducted to verify the effectiveness of the

proposed H-SOFT algorithm. By virtue of the proposed algorithm, the storage space

compression rate of flow table is stable and can achieve at ~70%. Moreover, in

comparison with optimal solution, the H-SOFT algorithm can achieve the similar

compression rate with much lower execution time.

The rest of this paper is organised as follows. Section 2 shows the related work. Section 3

analyses the structure of flow table and presents the modelling of storage space minimisation.

The H-SOFT algorithm is presented in Section 4. Section 5 validates the effectiveness of the

proposed algorithm through extensive simulation experiments. Finally, Section 6 concludes

this study.

2. Related Work

OpenFlow is a new network exchange model proposed by Stanford University in 2007 to

support innovative network research. It separates the control plane and forwarding plane in the

network. The network programmability is achieved through open and dynamical updating on

the flow entries which are stored in the flow table of an OpenFlow switch. The data packets

can be forwarded according to the flow entries, while the controller is responsible for their

generation, maintenance, and configuration.

In IP networks, packet classification is based on the key fields of packet header, which

makes the network equipments take differentiated actions for various network services. In

OpenFlow networks, the equipments manage and control the network based on flow tables.

Thus, the existing studies, such as RFC [6, 7], Grid of Trie [8], HiCuts [9] and HyperCuts [10],

on packet classification could facilitate the research on efficient lookup of flow tables in

OpenFlow switches. RFC algorithm could achieve high network throughput, but it demanded

large storage space, which cannot be applicable for classification of large rule base; and thus

RFC is not suitable for the lookup in large and complex flow tables of OpenFlow switches.

Grid of Trie algorithm was based on the hierarchical binary search tree, which requires low

storage space to improve the search performance but with high complexity on tree update; and

thus Grid of Trie cannot be adopted for flow table lookup due to the high frequency of update

operation on the entries of flow table. HiCuts and HyperCuts algorithms were used to solve the

problem of low-dimensional packet classification. However, the entries in flow table contains

multi-dimensional fields, so that the use of HiCuts and HyperCuts for flow table lookup could

cause the explosion of storage space and low efficiency of lookup operation.

The flow tables in OpenFlow switches have similar characteristics of traditional routing

table and Access Control List (ACL). The routing table uses the destination IP addresses as the

matching field where multiple entries can be aggregated into a single entry [11]. The authors in

[12] proposed two sub-optimal Forwarding Information Base (FIB) compression algorithms

based on the proposed Election and Representative (EAR) algorithm. The two suboptimal

algorithms preserved the structure information, and supported fast incremental updates while

reducing computational complexity. The performance merits come at the cost of only 1.5% loss

in compression ratio compared with that in theoretically optimised ratio. Karpilovsky et al. [13]

presented an incrementally deployable memory management system that can reduce the

associated router state by up to 70%. The system coalesced prefixes to reduce storage

consumption and can be deployed locally on each router or centrally on a server for routing.

However, the match field in OpenFlow switch contains the fields spanning from Layer 1 to

Layer 4, in which many fields cannot be aggregated. Zeng and Yang [14] proposed to adopt

the cross-coverage and inclusion relationships between one statement and multiple statements

and between multiple statements and multiple statements to reduce the number of ACL. Daly,

Liu and Torng [15] proposed Diplomat algorithm to compress the ACL by transforming

high-dimensional matching targets into low-dimensional ones through dividing the original

matching targets into a series of hyper-planes. Diplomat can achieve an average improvement

ratio of 30.6% over firewall compressor. The authors in [16] proposed ACL compressor to

handle one-dimensional and multi-dimensional ACL, which can significantly reduce the

number of rules by 50.22% in an ACL while maintaining the same semantics. Curtis et al. [17]

pointed out that the OpenFlow technology is based on data flow instead of the destination

address, resulting in the more entries included in flow table of OpenFlow switches than those

in traditional routing table under the same network traffic conditions. In other words, one data

flow may correspond to multiple flow entries to achieve the control over different granularity.

The control granularity could be broken if the storage space optimisation is achieved based on

the relationship among flow entries. Therefore, the ACL storage optimisation techniques are

not suitable to achieve the same purpose for flow table of OpenFlow switches.

According to the characteristics of flow table in OpenFlow, Curtis et al. [17] proposed the

algorithm to reduce the number of flow entries by revising the DevoFlow model of OpenFlow,

but this algorithm has low extensibility. The authors in [18] presented the DIFANE model

which combines the active and passive installation scheme of flow tables to keep traffic in the

forwarding plane and reduce the message exchange between the controller and switches, and

thus lower the traffic load of the controller. The reduction of the number of flow entries can be

achieved by applying the wildcard in the fields, while the existence of the wildcard entry

affects the use of hash-based lookup on a flow table [19]. In addition, OpenFlow1.3 proposed a

multi-level flow tables with pipeline processing to compress the storage space. However, the

overhead of actual flow table storage is related to the design of multi-level flow table structure

which has not been given in the specification.

Traditional packet classification algorithms are mainly used for low-dimensional and

small-scale rule base and it is not suitable for the rule base with the characteristic of dynamic

update. The storage space optimisation algorithms developed for routing table and ACL are

based on their unique characteristics and are thus not extensible to be used for flow table of

OpenFlow. Moreover, the modification on OpenFlow models can not solve the issue of storage

space wastage of flow tables. In contrast, the H-SOFT algorithm proposed in this paper

analyses the structure of flow table defined in OpenFlow1.3 and provides the modelling on the

storage space optimisation particularly for flow table of OpenFlow.

3. The mathematical model

This paper focuses on the OpenFlow1.3 [4] and targets on the optimisation of storage

space for flow table in an OpenFlow switch. Table 1 shows the 40 fields including 13 required

fields and 27 optional fields in the match field of flow table defined in OpenFlow1.3.

Let }1|{ niRT i ≤≤= denote the n flow entries in the flow table of an OpenFlow switch,

and }1|{ diFD i ≤≤= represent the d fields in the match field of iR . Thus, the Sets T

and D can be adopted to depict a flow table in an OpenFlow switch.

Definition 1. The co-existence relationship, Coe , of any two fields, iF and jF , in D :

not does ifexist not must and exists ifexist must ,,|),{(ijijjiji FFFFDFDFFFCoe ∈∈=

}exist 1. Coe possesses the characteristics of reflexiveness, symmetry, and transitive relation.

For example, CoeSRCIPvSRCIPv ∈)_4,_4(, CoeDSTIPvSRCIPv ∈)_6,_6(, and

CoeSRCIPvDSTIPv ∈)_6,_6(.

Definition 2. The conflict relationship, Col , of any two fields, iF and jF , in D :

}coexistcannot and ,,|),{(jijiji FFDFDFFFCol ∈∈= . Col has the characteristics of

anti-reflexiveness and symmetry. For example, ColSRCTCPSRCTCP ∉)_,_(,

ColDSTUDPSRCTCP ∈)_,_(, and ColSRCTCPDSTUDP ∈)_,_(.

Let us use the 13 required fields in the match field of flow table in OpenFlow1.3 as an

example to illustrate the Definition 1 and Definition 2, in which DD ʹ′= where

,4,4,,,,,{ _DSTIPV_SRCIPVIP_PROTOETH_TYPEETH_SRCETH_DSTIN_PORTD =ʹ′

},,,,6,6 UDP_DSTUDP_SRCTCP_DSTTCP_SRC_DSTIPV_SRCIPV 2 . According to

Definition 1, the Coe of each field in Dʹ′ can be depicted as a two-dimensional matrix,

CoeM , shown in Eq. (1), and the Col of each field in Dʹ′ represented by ColM can be

obtained based on Definition 2 and can be given by Eq. (2). In Eqs. (1) and (2),

1]][[=jiMCoe denotes the Coe relationship between the fields iF and jF in Dʹ′ , and

0]][[=jiMCoe represents these two fields do not have such relationship. Similarly,

1]][[=jiMCol and 0]][[=jiMCol can reflect that the fields iF and jF in Dʹ′ possess

the Col and non-Col relationships, respectively.

1 The fields Fi and Fj represent the fields appearing in one transmission unit.
2 The order of items in the Set D' cannot be changed.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1100000000000
1100000000000
0011000000000
0011000000000
0000110000000
0000110000000
0000001100000
0000001100000
0000000010000
0000000001110
0000000001110
0000000001110
0000000000001

coeM (1)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0011000000000
0011000000000
1100000000000
1100000000000
0000001100000
0000001100000
0000110000000
0000110000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000

colM (2)

Recall that the flow table can be represented by the two Sets }1|{ niRT i ≤≤= and

}1|{ diFD i ≤≤= . To decrease the storage space, each flow table can be partitioned into k

sub-flow tables according to the Coe and Col relationships, given by Definitions 1 and 2,

between any two fields, where the i -th sub-flow table, ki ≤≤1 , including iu flow entries

and iv fields in match field can be denoted by }1|{ iii uiRT ≤≤= and }1|{ iii viFD ≤≤=

where TTi ⊆ and DDi ⊆ ; moreover, ∅=∩ ji TT for ji,∀ and ji ≠ ,],1[iui∈ , and

],1[juj∈ . Such a partition can decrease the number of fields in each sub-flow table in

comparison with that all fields are stored in a single flow table. It is worth noting that the

number of sub-flow tables cannot exceed a threshold K , i.e., Kk ≤ .

Let],...,,[21 idiii bbbBv = represent a d -dimensional 0-1 vector to store the valid fields

in the i -th sub-flow table, where ijb is set to be 1 if the j -th bit has a valid field iF ,

otherwise 0=ijb . Let }1|{ diwW i ≤≤= denote the width in bits of iF in D , and

∑ ×=
d

ijji bwW
1

 represent the storage space for a given flow entry in the i -th sub-flow

table, and thus ∑ ××=×
d
i ijjiii bwuWu , ki ≤≤1 , denotes the total storage space for all

flow entries in the i -th sub-flow table. Let N denote the total number of flow entries in all

sub-flow tables. N can be given by

 ∑ =
=

k
i iuN
1

 (3)

To minimise the storage space, we can formulate the optimisation problem as follows:

 min
∑∑

∑ ∑

==

= =

×

××
−=−= d

j j
k
i i

k
i

d
j ijji

wu

bwu

f
kfp

11

1 11
)1(
)(1 (4)

s.t. Kk ≤≤1 (5)

∑ =
≤<

d
j ji wW
1

0 and ki ≤≤1 (6)

where p denotes the compression rate of storage space for flow table,)(kf represents the

required storage space for k sub-flow tables formed by the partition of a single flow table in

an OpenFlow switch, and)1(f is the required storage space for one flow table containing all

flow entries. With the frequent updating of flow entries in the flow table of an OpenFlow

switch,)1(f is increasingly changed, and thus the only use of)(kf cannot validate the

effectiveness of the proposed H-SOFT algorithm given in Section 4. Therefore, this paper

introduces a key parameter, p , where the larger of p , the more effective of the proposed

algorithm.

4. An heuristic storage space optimisation algorithm for flow table

in an OpenFlow switch (H-SOFT)

At the initialisation stage, a part of key flow entries will be sent to the flow table in

OpenFlow switch by the controller in advance, to lower the frequency of message exchange

between the controller and switches. The Heuristic Storage space Optimisation algorithm for

Flow Table (H-SOFT) leverages the CoeM and ColM matrices, representing the Coe

and Col relationships between any two fields of flow table, to obtain k , where Kk ≤≤1 ,

initial sub-flow tables, each of which is assigned with the flow entries sent by the controller.

With the changing status of network flows, the flow entries in flow table are increasingly

changed as well, e.g., adding new flow entries, deleting and updating existing flow entries, etc.

However, the fields in match filed will not get affected and changed with the updating action

[4]. Therefore, this paper focuses on adding and deleting flow entries and presents the

H-SOFT in the Algorithm 1.

Algorithm 1: The efficient storage space optimisation algorithm for flow table in an OpenFlow
switch:),,,,_,_},{},({ KnMMftsubftsingleesSOFTH ColCoe−

Input:

Output:

Initial flow entries: }{s ; Flow entries to be added: }{e ; Single flow table: ftsingle_ ;
Sub-flow table: ftsub _ ; Relationship matrix: CoeM and ColM ; Dynamic tuning
threshold: n ; Maximum number of sub-flow tables: K ;
Updated sub-flow table: ftsub _

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Begin
Initial ftsub _ can be created by),,,(KMMftsingle_ClustersInitiation ColCoe ;
For }{ss∈

Flow entries can be added into the ftsub _ using)_,(ftsubsAddEntry ;
EndFor
For }{ee∈

Add flow entry e into ftsub _ using)_,(ftsubeAddEntry ;
++updatesofnum __ ;

If nupdatesofnum ≥__
ftsub _ =)(ft_ubsrplitClusteS ;

++tablesflowsubofnum ____ ;
0__ =updatesofnum ;

EndIf
If Ktablesflowsubofnum >____

)(_ ft_ubserMergeClustftsub = ;
EndIf

EndFor
Return ftsub _ ;

End

In the Algorithm 1, the ()ClustersInitiation function in Algorithm 2 is used to form k

initial sub-flow tables, into which the ()AddEntry function in Algorithm 5 is then adopted to

add the initial flow entries, }{s . The flow entry e can be added into one of k sub-flow

tables using ()AddEntry function again. If the number of flow entries to be changed exceeds

the dynamic tuning threshold, n , the ()erSplitClust function in Algorithm 3 can be used to

split k sub-flow tables to)1(+k sub-flow tables. If the number of sub-flow tables is

greater than the pre-defined threshold, K , the ()erMergeClust function in Algorithm 4 is

then used to merge all sub-flow tables into K sub-flow tables. The interoperate between the

functions ()erSplitClust and ()erMergeClust results in the optimisation of storage space

of flow table.
Algorithm 2: Obtain k initial sub-flow tables:),,,_(KMMftsubClustersInitiation ColCoe

Input:

Output:

Sub-flow tables: ftsub _ ; Relationship matrix: CoeM and ColM ; Maximum number of
sub-flow tables: K ;
The initial sub-flow tables: ftsub _

1:
2:
3:
4:

5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

Begin
While Ktablesflowsubofnum <____

Select a sub-flow table c with the maximum bit size of its fields in Match Field;
Split c into two flow tables cʹ′ and c ʹ′ʹ′ based on Matrices CoeM and ColM ,
to allow cʹ′ and c ʹ′ʹ′ to have minimum bit size of their fields;
Remove the sub-flow table c from ftsub _ ;

 If ftsubc _∉ʹ′
Add the flow table cʹ′ into ftsub _ ;

 EndIf
If ftsubc _∉ʹ′ʹ′

Add the flow table c ʹ′ʹ′ into ftsub _ ;
 EndIf

If Ktablsflowsubofnum ≥____
return ftsub _ ;

 EndIf
 EndWhile

return ftsub _ ;
End

The Algorithm 2 splits one flow table containing all flow entries into k sub-flow tables.

Specifically, the algorithm first selects a sub-flow table, c , with the maximum storage space

of the fields, i.e.,)(max iW , ki ≤≤1 , and then do the splitting on c to obtain two flow

tables, cʹ′ and c ʹ′ʹ′ , with the maximum reduction on the storage space of the fields. The new

sub-flow tables is updated by deleting c and adding cʹ′ and c ʹ′ʹ′ .

Algorithm 3: Split sub-flow tables:)_(ftsubersSplitClust

Input:
Output:

Sub-flow tables: ftsub _ ;
The new sub-flow tables: ftsub _

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

Begin
Choose sub-flow table c with the maximum storage space wastage
For i = 0 to 1_______ −ctableflowsubinfieldsofnum
 For j = 0 to 1_______ −ctableflowsubinfieldsofnum

jS ʹ′ = Storage space wastage of the j -th field;
 EndFor
 Arrange jS ʹ′ in the descending order and store them in jiS , ;

EndFor
For i = 1 to ____ inelementsofnum jiS ,

←iWastage Sum of storage space wastage from the first to the i -th fields;
If 1−< ii WastageWastage

Break;
EndIf

EndFor
Split c into cʹ′ and c ʹ′ʹ′ based on the value of i ;
cʹ′ contains all fields in the sub-flow table c ;
c ʹ′ʹ′ contains the fields in the c except for the first)1(−i number of fields in jiS , ;
Remove c from ftsub _ ;
Add cʹ′ and c ʹ′ʹ′ into ftsub _ ;
Return ftsub _ ;

End

In Algorithm 3, the k sub-flow tables are split into)1(+k sub-flow tables. The

algorithm chooses the sub-flow table c with the maximum storage space wastage, and then

calculates the storage space wastage of the j -th field in c and stores them in the

descending order in jiS , . Sub-flow table, c , is split into flow tables, cʹ′ and c ʹ′ʹ′ , based on

the value of parameter i which is determined by 1−< ii WastageWastage . In addition, the

flow entries in flow table c are then added into the new flow table cʹ′ or c ʹ′ʹ′ using

()AddEntry function. If the number of sub-flow tables exceeds the threshold K , the

Algorithm 4 is adopted to merge)1(+k flow tables into k flow tables.
Algorithm 4: Merge sub-flow tables:)_(ftsubersMergeClust
Input:
Output:

Sub-flow tables: ftsub _
The new sub-flow tables: ftsub _

1:
2:
3:
4:
5:
6:
7:

8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

Begin
For 0=i to)1____(−tablesflowsubofnum

For ij = to tablesflowsubofnum ____
←ʹ′c the i -th sub-flow table;
←ʹ′ʹ′c the j -th sub-flow table;
←c contain all flow entries of flow tables cʹ′ and c ʹ′ʹ′ ;

''''''__ cccccc WNWNWNspacestorage −−=Δ ;
 EndFor
)__min(__ spacestoragespacestorageincreased Δ= ;

Select cʹ′ and c ʹ′ʹ′ based on spacestorageincreased __ to get c ;
For each entry e in cʹ′ and c ʹ′ʹ′ :

),(ceAddEntry ;
 EndFor
 EndFor

Remove the flow tables cʹ′ and c ʹ′ʹ′ from ftsub _ ;
Add the flow table c to ftsub _ ;
Return ftsub _ ;

End

The Algorithm 5 focuses on the selection of an appropriate sub-flow table, into which the

flow entry e is added. Specifically, for each of k sub-flow tables, do the subtraction

between each bit of the vector Bv and the corresponding bit in flow entry e , and obtain the

summation of k absolute values, distabs _ , and non-absolute value, dist . It is worth

noting that the fields in flow entry e are converted to 0 and 1 based on their validity value.

If distabs _ equals to dist , the flow entry, e , can be added into this sub-flow table. The

flow entry, e , is finally added into a sub-flow table with the minimum storage space.

Algorithm 5: Add a flow entry into a sub-flow table:)_,(ftsubeAddEntry

Input:
Output:

Flow entry to be added: e ; Sub-flow table: ftsub _ ;
The sub-flow table c into which the flow entry is added

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

18:
19:

Begin
 }0{][=kchose ;

0=num ;
For ftsubc _∈
 ++num ;

Obtain the Bv of sub-flow table c ;
Convert the value of fields in flow entry e to 0 or 1 and store the value in eBv _ ;

 For i in Bvvectoroflength ___
|][][_|__ iBvieBvdistabsdistabs −+= ;

])[][_(iBvieBvdistdist −+= ;
 If distdistabs =_

Compute the storage space W of sub-flow table c ;
Wnumchose =][;

 EndIf
 EndFor
 EndFor

Obtain the sub-flow table c with the minimum storage space W)0(>W from the
vector []chose ;
return sub-flow table c ;

End

The H-SOFT is a heuristic algorithm invoking Algorithm 3 and Algorithm 4 for sub-flow

tables splitting and merging operations to decrease the storage space of flow tables. Because

the update of one flow entry will not affect the storage space of flow table significantly, and

moreover, the frequent execution of the algorithm cause the remarkable consumption of CPU

resources and memory space, the H-SOFT algorithm splits and merges the sub-flow tables if

and only if the updating (i.e., adding and deleting) on the number of flow entries exceeds a

pre-defined threshold. The experiment results shown in Section 5.2 have demonstrated that

the H-SOFT algorithm significantly reduces the execution time while still maintaining the

efficiency of storage space optimisation.

In H-SOFT algorithm, the execution of ()erSplitClust function in Algorithm 3 needs to

traverse the entire k sub-flow tables to determine the flow table for splitting and calculate

the storage space wastage for the maximum d number of fields, i.e., the complexity of the

Algorithm 3 is)(2NdO , where N denotes the number of flow entries for all flow tables. In

contrast, the execution of ()erSplitClust function in Algorithm 4 do not need to traverse the

)(NN ʹ′ʹ′+ʹ′ flow entries, but determines the sub-flow tables cʹ′ and c ʹ′ʹ′ to be merged by the

structure of match field only. Note that N ʹ′ and N ʹ′ʹ′ denote the number of flow entries in

sub-flow tables cʹ′ and c ʹ′ʹ′ . Thus, the time complexity of the Algorithm 4 is)(2kO .

Because dk < , therefore, the complexity of H-SOFT algorithm is)(2NdO .

5. Simulation experiments and analysis

A software simulator based on Python programming language is developed to validate and

evaluate the effectiveness of the proposed H-SOFT algorithm. All simulation experiments are

collected from the server machine with Ubuntu 12.04.1 operating system, Xeon x5650

2.67GHz CPU and 24GB memory.

OpenFlow is currently in the process of development and seldom data of flow table is

reported publicly. Large service providers, such as Google and Facebook, have adopted

OpenFlow technology to deploy their data centres to improve the network performance and

facilitate the flow control. However, it is difficult to obtain these data of flow table, and thus it

is infeasible to use real data of flow table in OpenFlow networks to validate the effectiveness

of the proposed H-SOFT algorithm.

To obtain the data of flow table for validation purpose, in this paper, we convert the header

information of network packets into the corresponding entries of flow table. The data set of

network packets is collected in 1000:1 samples from the real network traffic in the egress

router of Guangzhou branch of China Science and Technology Network (CSTNET) [20] in

one day, whose backbone network has covered 13 provinces including Beijing, Guangzhou,

Shanghai, Kunming, etc. The initial entries and the new entries to be added into the flow table

are generated with 19 fields: Time, Duration, Proto, IPv4_SRC, IPv4_DST, IPv6_SRC,

IPv6_DST, TCP_SRC, TCP_DST, UDP_SRC, UDP_DST, ICMPv4_TYPE, ICMPv4_CODE,

ICMPv6_TYPE, ICMPv6_CODE, TCP_FLAGS, TOS, PPS, and BPS, where Time and

Duration fields denote the start time and duration of data flow, PPS and BPS fields are the

packet sending rate and the number of bytes to send per second, and the other fields are

commonly used in the traditional network. These fields have a similar structure of the field

used in the OpenFlow flow table. The use of this data set for validation can reflect the

effectiveness of H-SOFT algorithm on storage space compression for flow table.

In experimental results, the parameter p represents the compression rate of storage space

for flow table. The larger of p obtains, the more effective of the algorithm performs.

Parameter N and n denote the number of initial entries and the threshold upon which the

algorithm starts to tune the structure of flow table, respectively.

5.1 The validation of H-SOFT algorithm

The H-SOFT algorithm assigns the entries into different sub-flow tables and each flow

table has different valid fields. Fig. 1 depicts the value of p against the number of sub-flow

tables, k , with initial flow table sizes N set to be 1000, 3000 and 5000, the threshold n

set to be 200, and the number of updates on flow entries set to be 2000. From Fig. 1, we can

find that with the increasing number of sub-flow tables k , the compression rate of storage

space for flow table p increases, which is stable at ~72% finally. Thus, increasing the

number of sub-flow tables can significantly reduce the storage space. By theoretically

analysing the field structure of each entry in the flow table, the value of p should be around

72%~73%, which validates the accuracy of the proposed algorithm. After k reaches a certain

value, the storage space of flow table does not have significant reduction. The results

emphasise that obtaining the reasonable number of sub-flow tables for real deployment can

reduce the expense and still maintain the performance of the algorithm.

5.2 The comparison between H-SOFT and optimal solution

The optimal solution for storage space compression is that all flow entries in all sub-flow

tables need to be considered for adjustment due to the splitting or merging operation.

However, the H-SOFT algorithm is a heuristic solution that takes into account the cases that

only the flow entries involved in the flow tables for splitting and merging are considered for

assignment within those flow tables.

To analyse the merit of the proposed heuristic algorithm, Fig. 2 and Table 2 depict the

comparison on the execution time and compression rate of H-SOFT algorithm and optimal

solution. In this section, the initial size of flow table varies from 1000 to 5000, the tuning

threshold is set to be 200, the maximum number of sub-flow tables is set to be 10, and the

number of new entries to be added into flow tables is set to be 2000. From Fig. 2, we can find

that with the increasing size of the flow table, the run time required by the H-SOFT algorithm

is increasing much smoother than that of optimal solution. However, the H-SOFT algorithm

still maintains the compression rate for storage space of flow table in comparison with that

obtained from optimal solution, as shown in Table 2.

5.3 The effect of threshold n on the performance of H-SOFT algorithm

To evaluate the effect of threshold n , upon which the algorithm starts to tune the

structure of flow table, on the performance of the proposed H-SOFT algorithm, Fig. 3 depicts

the compression rate p against the number of new entries to be added (i.e., 0, 1000, 5000,

10000, 20000, 30000 and 40000). The number of initial flow entries, N , is set to be 3000,

the number of sub-flow tables, k , varies from 3 to 10, and tuning threshold, n , is set to be

200, 2000, 5000 and 10000.

From Fig. 3(a) under the case of 3 sub-flow tables, i.e., 3=k , we can find that the

threshold, n , has significant impact on the value of p for 5000 and 10000 new entries. In

particular, the smaller of n making a more frequent structure tuning of sub-flow tables by

Algorithms 3 and 4, causes the higher compression rate, i.e., lower storage space. However,

for the 1000 new entries, the current setting of threshold, n , does not have too much impact

on the value of p , except for the case of 200=n , because the H-SOFT algorithm has not

begun to adjust the structure of sub-flow tables. The increase in the number of new entries to

be added, say 20000~40000, weakens the impact of threshold, n , on the performance of the

proposed H-SOFT algorithm. That is because the sub-flow tables experience an increasing

number of adjustment on their structures, resulting in the continuous decrease in the storage

space. Another phenomenon can be found that the value of p has slight drop for some cases,

such as 1000 and 5000 new entries with 10000=n and 10000 and 20000 update entries with

200=n , because these new entries are added by the algorithm into the corresponding

sub-flow tables directly, but do not cause the structure adjustment.

By comparing the Fig. 3(a)~3(d), we can find that increasing the number of sub-flow tables,

k , decreases the impact of threshold, n , on the performance of the H-SOFT algorithm. That

is because the a large number of sub-flow tables results in the more optimised storage space at

the initial sub-flow tables created by Algorithm 2, and continuous adjustment of structure of

sub-flow tables will get a slight impact on the performance of the algorithm.

The analysis emphasises the important findings that, in the actual deployment of the

H-SOFT algorithm, the threshold, n , can be set at a relative large value to decrease the usage

for the resources of devices, while still remains the optimised storage space compression rate

of flow table.

6 Conclusions

This paper has analysed the structure of match field in a flow table and proposed a Heuristic

and efficient Storage space Optimization algorithm for Flow Table (H-SOFT) in an OpenFlow

switch, which degraded the complex fields in match field of a flow table into multiple flow

tables with simple fields based on the co-existence and conflict relationships among fields. In

addition, the modelling of minimisation on the storage space of flow table has been given.

Extensive simulation experiments have demonstrated that the H-SOFT algorithm can

effectively reduce the storage space of flow table, and the number of sub-flow tables has

significant impact on the compression rate of H-SOFT. In particular, when the number of

sub-flow tables achieves a certain threshold, the compression rate of storage space cannot

continuously increase. Moreover, with frequent updates on flow entries, the storage space

compression rate of the flow table is stable and can achieve at ~70% with the complexity of the

algorithm being)(2NdO where N is the number of flow entries and d is the number of

fields. Furthermore, in comparison with the optimal solution, the H-SOFT algorithm can

achieve the similar compression rate with much lower execution time.

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China

under Grant No. 61303241, National Program on Key Basic Research Project (973 Program)

under Grant No. 2012CB315803, the Strategic Priority Research Program of the Chinese

Academy of Sciences under Grant No. XDA06010306, and the National High-Tech R&D

Program of China (863 Program) under Grant No. 2013AA013501.

Reference
[1] Vaughan SJ. OpenFlow: The Next Generation of the Network?. Computer 2011; 44 (8): 13-15.

[2] Software-Defined Networking: The New Norm for Networks.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-n
ewnorm.pdf [13 April 2012]

[3] Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner
J. OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review 2008; 38 (2): 69-74. DOI: 10.1145/1355734.1355746.

[4] OpenFlow 1.3.0 specification. https://www.opennetworking.org/images/stories/downloads/
specification/openflow-spec-v1.3.0.pdf [25 June 2012].

[5] Jacobson V, Smetters D K, Thornton J D, Plass M F, Briggs N H, Braynard R L. Networking
named content. Proceedings of the 5th international conference on Emerging networking
experiments and technologies, 2009. Communicaitons of ACM, January 2012; 55 (1): 117-124.
DOI: 10.1145/2063176.2063204.

[6] Cao J, Chen B. memory-optimized RFC Packet Classification Algorithm Merge RFC. Journal of
Chinese Computer Systems 2012; 33 (4): 865-868.

[7] Wooguil P, Sae-Woong B. FRFC: Fast Table Building Algorithm for Recursive Flow
Classification. Communications Letters IEEE 2010; 14 (12): 1182-1184. DOI:
10.1109/LCOMM.2010.100810.100572.

[8] Lim H, Lee S, Swartzlander Jr E E. A new hierarchical packet classification algorithm. Computer
Networks 2012; 56 (13): 3010-3022.

[9] Chang Y K, Chen H C. Layered Cutting Scheme for Packet Classification. Proceedings of 2011
IEEE International Conference on Advanced Information Networking and Applications (AINA),
March 2011; 675-681. DOI: 10.1109/AINA.2011.70.

[10] Jiang W, Prasanna V K. Energy-efficient multi-pipeline architecture for terabit packet
classification. Proceedings of IEEE Global Telecommunications Conference, 2009. IEEE
Communication Society, 2009; 1-6. DOI: 10.1109/GLOCOM.2009.5426226.

[11] Cheung G, McCanne S. Optimal routing table design for IP address lookups under memory
constraints. Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, 1999. 3: 1437-1444. DOI: 10.1109/INFCOM.1999.752164.

[12] Yang T, Yuan B, Zhang S, et al. Approaching optimal compression with fast update for large
scale routing tables. Proceedings of 20th International Workshop on Quality of Service (IWQoS),
2012. 1-9. DOI: 10.1109/IWQoS.2012.6245978.

[13] Karpilovsky E, Caesar M, Rexford J, Shaikh, A, van der Merwe, J. Practical Network-Wide
Compression of IP Routing Tables. IEEE Transactions on Network and Service Management
2012, 9 (4): 446-458. DOI: 10.1109/TNSM.2012.081012.120246.

[14] Zeng KY, Yang JH. Towards the optimization of access control list. Journal of Software, 2007;
18 (4): 978−986.

[15] Daly J, Liu A X, Torng E. A Difference Resolution Approach to Compressing Access Control
Lists. Proceedings of International Conference on Computer Communications (INFOCOM),
2013; 2040-2048. DOI: 10.1109/INFCOM.2013.6567005.

[16] Liu A X, Torng E, Meiners C R. Compressing network access control lists. IEEE Transactions on
Parallel and Distributed Systems, 2011. 22 (12): 1969-1977. DOI: 10.1109/TPDS.2011.114.

[17] Curtis AR, Mogul JC, Tourrilhes J, Yalagandula P, Sharma P, Banerjee S. DevoFlow: Scaling
flow management for high performance networks. Proceedings of the Special Interest Group on

Data Communication (SIGCOMM), 2011. Toronto: ACM Press, 2011; 254-265. DOI:
10.1145/2018436.2018466.

[18] Yu M, Rexford J, Freedman MJ, Wang J. Scalable flow-based networking with DIFANE.
Proceedings of the Special Interest Group on Data Communication (SIGCOMM), 2010. New
Delhi: ACM Press, 2010; 351-362. DOI: 10.1145/1851182.1851224.

[19] Matsumoto N, Hayashi M. LightFlow: Speeding up GPU-based flow switching and facilitating
maintenance of flow table. Proceedings of IEEE 13th International Conference on High
Performance Switching and Routing (HPSR), 2012; 76-81. DOI: 10.1109/HPSR.2012.6260831.

[20] CSTNET: http://www.cstnet.net.cn/english/index.htm

Table 1. The fields in Match Field of Flow Table in OpenFlow1.3

Fields Description
IN_PORT Switch input port.
IN_PHY_PORT Switch physical input port.
METADATA Metadata passed between tables.
ETH_DST Ethernet destination address.
ETH_SRC Ethernet source address.
ETH_TYPE Ethernet frame type.
VLAN_VID VLAN ID.
VLAN_PCP VLAN priority.
IP_DSCP IP DSCP (6 bits in ToS field).
IP_ECN IP ECN (2 bits in ToS field).
IP_PROTO IP protocol.
IPV4_SRC IPv4 source address.
IPV4_DST IPv4 destination address.
TCP_SRC TCP source port.
TCP_DST TCP destination port.
UDP_SRC UDP source port.
SCTP_SRC UDP destination port.
UDP_DST SCTP source port.
SCTP_DST SCTP destination port.
ICMPV4_TYPE ICMP type.
ICMPV4_CODE ICMP code.
ARP_OP ARP opcode.
ARP_SPA ARP source IPv4 address.
ARP_TPA ARP target IPv4 address.
ARP_SHA ARP source hardware address.
ARP_THA ARP target hardware address.
IPV6_SRC IPv6 source address.
IPV6_DST IPv6 destination address.
IPV6_FLABEL IPv6 Flow Label
ICMPV6_TYPE ICMPv6 type.
ICMPV6_CODE ICMPv6 code.
IPV6_ND_TARGET Target address for ND.
IPV6_ND_SLL Source link-layer for ND.
IPV6_ND_TLL Target link-layer for ND.
MPLS_LABEL MPLS label.
MPLS_TC MPLS TC.
MPLS_BOS MPLS BoS bit.
PBB_ISID PBB I-SID.
TUNNEL_ID Logical Port Metadata.
IPV6_EXTHDR IPv6 Extension Header pseudo-field

Table 2. The comparison on compression rate of flow table between the H-SOFT and optimal solution

Initial size of flow table 1000 2000 3000 4000 5000

Number of entries after updating 1289 1766 2558 3578 4695

p H-SOFT 0.71694 0.71319 0.70379 0.70268 0.69696
Optimal solution 0.71326 0.71752 0.71689 0.71766 0.72021

1 3 5 7 9
0.5

0.6

0.7

0.8

Number of sub-flow tables

Co
m

pr
es

sio
n

ra
te

, p

N=1000
N=3000
N=5000

Fig. 1. The optimisation for the storage space of flow table by H-SOFT algorithm with the increasing number of

sub-flow tables

1000 2000 3000 4000 5000
0

30

60

90

120

Initial size of flow table

Ru
n

tim
e

in
 se

co
nd

s

H-SOFT
Optimal solution

Fig. 2. The comparison of run time between H-SOFT and optimal solution

Fig. 3. The effect of threshold n on the performance of H-SOFT algorithm

