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Abstract

The fall armyworm Spodoptera frugiperda is an economically important pest of small grain crops that occurs in all maize
growing regions of the Americas. The intensive use of chemical pesticides for its control has led to the selection of resistant
populations, however, to date, the molecular mechanisms underlying resistance have not been characterised. In this study
the mechanisms involved in the resistance of two S. frugiperda strains collected in Brazil to chlorpyrifos (OP strain) or
lambda-cyhalothrin (PYR strain) were investigated using molecular and genomic approaches. To examine the possible role
of target-site insensitivity the genes encoding the organophosphate (acetylcholinesterase, AChE) and pyrethroid (voltage-
gated sodium channel, VGSC) target-site proteins were PCR amplified. Sequencing of the S. frugiperda ace-1 gene identified
several nucleotide changes in the OP strain when compared to a susceptible reference strain (SUS). These result in three
amino acid substitutions, A201S, G227A and F290V, that have all been shown previously to confer organophosphate
resistance in several other insect species. Sequencing of the gene encoding the VGSC in the PYR strain, identified mutations
that result in three amino acid substitutions, T929I, L932F and L1014F, all of which have been shown previously to confer
knockdown/super knockdown-type resistance in several arthropod species. To investigate the possible role of metabolic
detoxification in the resistant phenotype of the OP and PYR stains all EST sequences available for S. frugiperda were used to
design a gene-expression microarray. This was then used to compare gene expression in the resistant strains with the
susceptible reference strain. Members of several gene families, previously implicated in metabolic resistance in other insects
were found to be overexpressed in the resistant strains including glutathione S-transferases, cytochrome P450s and
carboxylesterases. Taken together these results provide evidence that both target-site and metabolic mechanisms underlie
the resistance of S. frugiperda to pyrethroids and organophosphates.
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Introduction

The fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera:

Noctuidae) is a polyphagous species native to tropical regions of

the American continent. In Brazil this species is one of the most

destructive and economically important insect pests of maize and

also causes damage to other crops including soybean, cotton, rice,

sorghum and vegetables [1,2]. The distribution of S. frugiperda,

although limited to warm climates, covers large geographic areas,

largely due to the significant dispersal ability of adults which has

allowed it to spread rapidly throughout the range of its host species

[3]. The high infestation rate of S. frugiperda and the major

economic losses it causes has led to a reliance on intensive

application of chemical insecticides for control. Unfortunately the

widespread and sometimes indiscriminate use of insecticides has

contributed to the development of populations with resistance to

several different insecticide classes including organophosphates,

carbamates, pyrethroids and benzoylureas [4,5,6,7].

The first report of insecticide resistance in S. frugiperda was to the

carbamate insecticide carbaryl [8]. Since then high levels of

resistance have been reported in field populations from North

Florida to several pyrethroid and organophosphate insecticides

[5,6]. Resistance has also been observed in laboratory-selected

populations which have been described with resistance ratios of

more than 40-fold to a given pyrethroid compound [9]. In Brazil,

resistance to pyrethroids has also been reported in S. frugiperda with

a population described with resistance ratios of approximately 13-

fold to lambda-cyhalothrin [4].

Biochemical characterization of resistance to pyrethroids and

organophosphates in S. frugiperda has suggested that both

insensitivity of the target site and detoxification of insecticides by

metabolic enzymes underlie resistance [7]. Furthermore, a study

on the genetics of resistance in S. frugiperda to a carbamate

(methomyl) and pyrethroid (lambda-cyhalothrin) has indicated

that multiple recessive genes are involved [10]. In both studies,

however, the specific mutations/genes involved were not identi-

fied.
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In other insect species resistance to pyrethroids and organo-

phosphates has been most commonly associated with structural

alteration (mutation) of the genes encoding target-site proteins

(target-site resistance), and/or enhanced expression of metabolic

enzymes that break down or sequester the insecticide before it

reaches the target (metabolic resistance). For target-site resistance,

a relatively small number of highly conserved point mutations

have been identified in the genes encoding the voltage-gated

sodium channel in insect species with resistance to pyrethroids or

in the gene encoding the acetylcholinesterase (AChE) enzyme of

species with resistance to organophosphates and carbamates

[11,12]. For metabolic resistance, genomic changes which lead

to gene amplification, overexpression and/or modification of

genes encoding members of the glutathione S-transferases (GSTs),

cytochrome P450s (P450s) and carboxylesterases (CEs) have been

most frequently identified in a range of insect species with

resistance to pyrethroids, organophosphates and carbamates [13].

Of the 136 products registered for control of S. frugiperda in

Brazil (as of 2013), 78 were pyrethroids or organophosphates [14]

and therefore knowledge of the frequency and distribution of

resistance mechanisms to these insecticides is urgently required.

Towards this end, in this study we investigated the molecular

mechanisms associated with resistance in two strains of S. frugiperda

collected in Brazil and selected with either chlorpyrifos (OP strain)

or lambda-cyhalothrin (PYR strain). The genes encoding the

target sites of both insecticide classes were characterized and the

frequencies of mutations at known resistance ‘hot spots’ were

examined in these populations. In order to identify candidate

genes potentially involved in metabolic resistance a microarray

was designed based on all available S. frugiperda EST sequences and

used to identify specific genes that are overexpressed in the

resistant strains.

Materials and Methods

1. Insect strains
The S. frugiperda strains used in this study were obtained from

the Department of Entomology and Acarology, University of São

Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil. The organ-

ophosphate (OP) and pyrethroid (PYR) resistant strains were

selected from S. frugiperda populations collected in cornfields

located in Minas Gerais and Mato Grosso States, Brazil,

respectively, in 2008. Approximately 200 larvae were obtained

from each location (with the permission of the land owner), after

reports of control failures with the use of organophosphates or

pyrethroid insecticides. The OP strain was maintained under

selection (every other generation for 3 years) with chlorpyrifos (at

increasing discriminating doses from 100 mg up to 400 mg of

insecticide per g of insect in topical bioassays) and the PYR strain

with lambda-cyhalothrin (from 8.4 mg up to 27 mg of insecticide

per g of insect). The susceptible reference strain (SUS) has been

maintained in the laboratory since 1998 without exposure to

insecticides. All strains were maintained on artificial diet based on

lima bean, wheat germ and yeast [15], at 2561uC with a 16:8 L:D

photoperiod as described previously [16].

2. Bioassays
Topical bioassays were used to characterize the dose-mortality

response of the SUS and resistant (OP and PYR) S. frugiperda

strains. The insecticides (chlorpyrifos 99.0% and lambda-cyhalo-

thrin 87.4% technical grade) were dissolved in acetone and a 1 mL

droplet of different concentrations was dispensed onto the thoracic

notum of third instar larvae with an automatic micro-applicator

(Burkard Manufacturing, Rickmansworth, England). Controls

were treated with acetone alone. After treatment, larvae were

transferred individually into a cell of a 24-well plate (Corning) and

provided with approximately 1 g of artificial diet. Twenty four

larvae per replicate were treated at each insecticide concentration

and all tests were replicated four times. Mortality was assessed

24 h after treatment and the larvae were considered dead if they

were unable to move in a coordinated manner when disturbed

with a needle. Dose-mortality regression and the dose required to

kill 50% (LD50) were estimated by Probit analysis (LeOra

Software). Resistance ratios (RR) were estimated at the LD50

level as RR = LD50 of resistant strains/LD50 of the SUS strain.

3. Target site amplification
3.1 Acetylcholinesterase. To identify putative alterations in

the acetylcholinesterase ace-1 gene sequence between susceptible

and resistant S. frugiperda strains, primers were designed in

conserved regions of lepidopteran ace-1 sequences available in

GenBank (shown in Table S1). These were then used to amplify

approximately 1 kb of the ace-1 coding region containing the

majority of the mutation sites previously reported to confer

resistance in a range of other insect species. To estimate mutation

frequencies in each strain total RNA was extracted from 20

individuals of the OP and SUS strain using Trizol and following

the manufacturer’s instructions. Genomic DNA was removed by

DNase I digestion using DNA-free DNase treatment and removal

reagent (Ambion). The quality and quantity of RNA pools were

assessed by spectrophotometry (Nanodrop Technologies) and by

running an aliquot on a 1.2% agarose gel. 2 mg of RNA sample

was then used for cDNA synthesis using Superscript III and

random hexamers (Invitrogen) according to the manufacturer’s

instructions. A semi-nested PCR approach was employed using

AceF2Lep and AceSfR1 primers in a primary P CR reaction (all

primers are listed in Table S1) followed by a second round of PCR

using a different reverse primer, AceSfR2. PCR reactions (20 mL)

consisted of 10 mL of DreamTaq Green TM 2X PCR Master Mix

(Fermentas), 6 mL distilled water, 1 mL of each primer (10 mM)

and 2 mL of cDNA. Temperature cycling conditions were 95uC for

1 min followed by 35 cycles of 95uC for 30 seconds, 55uC for 30

seconds and 72uC for 2 minutes, followed by a final extension of

72uC for 10 minutes. Amplified fragments were visualized on 1%

agarose gels, purified using the WizardH SV Gel kit and PCR

Clean-Up System (Promega) and ‘direct sequenced’ using the

same primers used in the last round of PCR. Sequences were

analyzed using the program Vector NTIH (Invitrogen). A

consensus sequence was used for amino acid sequence prediction

and to perform alignments with other athropod species.

3.2 Voltage gated sodium channel. To identify putative

alterations in the VGSC gene sequence between susceptible and

resistant S. frugiperda strains, degenerate primers were designed

based on all the lepidopteran VGSC gene sequences available in

GenBank (Table S1). These were used to amplify approximately

350 bp of the IIS4-IIS6 region of the VGSC encompassing the

five major mutation sites associated with pyrethroid resistance in

other arthropod species. RNA extraction and PCR amplification

conditions were as above but used primers NaChF1Lep and

NaChR1Lep in the primary PCR and NaChF1Lep and

NaChR2Lep in the second round of PCR (primer sequences are

shown in Table S1), using 58uC as the annealing temperature.

Based on the sequences obtained specific primers were designed

and used to genotype 20 individuals of the SUS strain and 14

individuals from the PYR strain using primers NaChF1Sf and

NAChR1Sf in primary PCR and NaChF2Sf and NaChR1Sf in a

second round of PCR. PCR products were analysed, purified and

sequenced as described above.

Resistance in Fall Armyworm Spodoptera frugiperda
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4. Microarray procedures
A SurePrint HD (8615 k) expression array was designed using

the Agilent eArray platform. The base composition and the best

probe methodologies were selected to design sense orientation 60-

mer probes with a 39 bias. The S. frugiperda EST database

(SPODOBASE) was used as the reference transcriptome [17].

These sequences are derived from 8 cDNA libraries: Sf1F from fat

body, Sf1H from hemocytes, Sf1M from midgut, Sf1P from pools

of various tissues, Sf2H from immune challenged hemocytes, Sf2L

from Sf21 cell lines, Sf2M from xenobiotic induced midguts and

Sf9L from Sf9 cell lines. All assembled contigs and singlets were

provided by the website maintainers. The BLAST2GO software

v.2.3.1 (http://www.blast2go.org) was used to annotate the EST

database, as described in [18]. 60-mer probes were designed for all

7,552 assembled contigs and 5,519 annotated singlets (BlastX),

totaling 13,071 sequences. For contigs encoding detoxification

enzymes (P450s, GSTs and CEs) three probes were designed.

Additional probe groups for 15 control genes were also included.

This microarray was used to compare gene expression in each

resistant strain (OP and PYR) with the SUS strain. Total RNA was

extracted from four pools of 5 second instar larvae, using the

Isolate RNA Mini Kit (Bioline) according to the manufacturer’s

protocol. 200 ng of each total RNA was used to generate labelled

cRNA, which was hybridized to arrays and washed as described in

Agilent’s Quick Amp Labelling Protocol (Version 6.5). The

microarray experiment consisted of four biological replicates and

incorporated a dye swap design whereby the Cy3 and Cy5 labels

were swapped between resistant and susceptible strains. Micro-

arrays were scanned with an Agilent G2505C US10020348

scanner, and fluorescent intensities of individual spots were

obtained using the Agilent Feature Extraction software with

default Agilent parameters. Data normalization, filtering, dye

flipping and statistical analysis were performed using the Gene-

Spring GX 11 suite (Agilent). For statistical analysis, a t-test against

zero using the Benjamini-Hochberg false discovery rate (FDR)

method for multiple testing corrections was used to detect

significantly differentially expressed genes. Genes meeting a p

value cut-off of 0.01 and showing a transcription ratio .2-fold in

either direction were considered to be differentially transcribed

between the two strains. All microarray data were MIAME

compliant and were submitted to the Gene Expression Omnibus

(GEO) database under accession number GSE43295.

5. Quantitative RT-PCR
Quantitative RT-PCR was used to validate microarray data by

examining the expression profile of ,10 genes for each resistant

vs. susceptible comparison. Primers were designed to amplify a

fragment of 90–150 bp in size and are listed in table S1. Total

RNA was prepared as described earlier and four micrograms was

used for cDNA synthesis using Superscript III and random

hexamers (Invitrogen) according to the manufacturer’s instruc-

tions. PCR reactions (20 mL) contained 4 mL of cDNA (10 ng),

10 mL of SensiMix SYBR Kit (Bioline), and 0.25 mM of each

primer. Samples were run on a Rotor-Gene 6000 (Corbett

Research) using the temperature cycling conditions of: 10 minutes

at 95uC followed by 40 cycles of 95uC for 15 s, 57uC for 15 s and

72uC for 20 s. A final melt-curve step was included post-PCR

(ramping from 72uC–95uC by 1uC every 5 s) to confirm the

absence of any non-specific amplification. The efficiency of PCR

for each primer pair was assessed using a serial dilution of 100 ng

to 0.01 ng of cDNA. Each qRT-PCR experiment consisted of

three independent biological replicates with two technical repli-

cates for each. Data were analysed according to the DDCT

method [19], using the geometric mean of two selected

housekeeping genes (28S which encodes a ribosomal subunit,

and EF which encodes elongation factor) for normalization

according to the strategy described previously [20]. The standard

deviation and 95% confidence limits of 2-DDCt were determined

from the triplicate samples. Significance between strains was

assumed if the 95% confidence limits of the 2-DDCt values did not

overlap.

Results

1. Bioassays
In topical bioassays the S. frugiperda OP and PYR strains showed

approximately 18- and 28-fold resistance to chlorpyrifos and

lambda-cyhalothrin respectively compared to the SUS strain

(Table 1).

2. Acetylcholinesterase
Using primers based on lepidopteran ace-1 sequences available

in GenBank a 972 bp fragment of the S. frugiperda ace-1 gene was

RT-PCR amplified, cloned and sequenced (Genbank accession

numbers KC435023 and KC435024). This fragment encodes 324

amino acids and encompasses the majority of mutation sites

previously associated with organophosphate resistance in other

arthropod species [12]. The obtained sequence shows highest

similarity to the orthologous gene from other Lepidoptera such as

Helicoverpa armigera and Plutella xylostella (Figure 1).

Three substitutions were found in the predicted amino acid

sequence of the OP strain when compared to that of the SUS

strain: A201S, G227A and F290V (numbering corresponding to

Torpedo californica mature enzyme). To estimate the frequency of

AChE mutations in the OP strain 20 individuals were genotyped

by direct sequencing. The A201S allele was present at relatively

low frequency (17.5%) while G227A and F290V were present at

higher frequency (67.5% and 32.5% respectively). The G227A

and F290V mutations were commonly observed in the same

individual in the heterozygous state but were never found together

in a single insect in the homozygous form. The A201S mutation

was only found in a single insect in the homozygous form where it

was observed with the G227A mutation (Table 2). No individuals

of the SUS strain had any of these mutations.

3. Voltage gated sodium channel
Using primers based on lepidopteran sequences available in

GenBank a 330 bp fragment of the gene encoding the IIS4-IIS6

Table 1. Dose-mortality response of S. frugiperda strains to
lambda-cyhalothrin and chlorpyrifos.

Insecticide Strain na
Slope
(±SE)

LD50
b

(95% CI)
RRc

(95% CI)

Chlorpyrifos SUS 611 1.31
(60.10)

19.78
(17.48–22.15)

-

OP 588 2.81
(60.211)

357.03
(263.77–486.99)

18.1
(15.4–21.1)

Lambda-
cyhalothrin

SUS 720 1.63
(60.108)

0.30
(0.20–0.42)

-

PYR 624 3.11
(60.215)

8.47
(6.72–10.52)

28.2
(23.2–34.4)

anumber of larvae tested.
bmg of insecticide/g of insect.
cLD50 of resistant strains/LD50 of the SUS strain.
doi:10.1371/journal.pone.0062268.t001
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region of the S. frugiperda para-type VGSC was amplified by RT-

PCR, cloned and sequenced (Genbank accession numbers

KC435025 and KC435026). This fragment encodes 110 amino

acids and encompasses the five major mutation sites previously

reported to be implicated in conferring kdr-type resistance to

pyrethroids across a range of different insects [11]. The predicted

amino acid sequence of the obtained fragment shows high

similarity to the orthologous gene in several other insects including

Plutella xylostella, Culex pipiens, Cydia pomonella, and Drosophila

melanogaster (Figure 2). Three substitutions were found in the

predicted amino acid sequence of the PYR strain when compared

to the SUS strain: T929I, L932F and L1014F. In contrast to what

we found for the AChE mutations, the frequency of VGSC mutant

alleles was very low in the PYR strain, with only one individual

containing both T929I and L1014F substitutions and another

single individual with the L932F substitution.

4. Microarray analysis
4.1 Chlorpyrifos resistant strain. Microarray analysis

identified 497 probes as significantly differentially transcribed

(more than 2-fold over or under expressed, p,0.01) between the

OP strain and the susceptible SUS strain (Table S2). 315 probes

had elevated expression in the OP strain and of these, 120 had

been previously annotated using the program Blast2Go. The top

40 annotated over expressed probes/ESTs are shown in Table 3

and several of these may be considered potential candidates for

causing insecticide resistance. These included probes correspond-

ing to ESTs encoding GSTs (10), P450s (10) and CEs (2), enzymes

that have been implicated in insecticide resistance in many

arthropod species [13]. Two sequences encoding CEs were

identified as over-expressed in the OP strain. The level of

expression of these sequences was very high, particularly for the

EST (Sf1P09555-5-1) with high sequence similarity to E4

carboxylesterase (21-fold), an enzyme that has been shown

previously to confer organophosphate resistance. In addition,

several other ESTs were found with high levels of expression that

encode enzymes that may be capable of metabolizing xenobiotics

including short chain dehydrogenases (Sf1M06421-3-1), aldehyde

dehydroxygenases (Sf1F06267-5-1) and glucosyl-glucuronosyl

transferases (Sf2M05474-5-1).

4.2 Lambda-cyhalothrin resistant strain. Microarray

analysis identified 535 probes as significantly differentially

transcribed (more than 2-fold over-/under-expressed, p,0.01)

between the PYR-selected strain and the susceptible standard SUS

(Table S3). 238 probes had elevated expression in the PYR strain

and of these 92 had been previously annotated (BlastX). The top

40 annotated over expressed probes/ESTs are shown in Table 4.

For genes encoding enzymes involved in metabolic detoxification,

GST genes were by far the most abundant overexpressed gene

family with 27 probes representing 10 ESTs. By contrast, only

Figure 1. Alignment of the predicted amino acid sequence of the ace-1 gene amplified from resistant (S. frugiperda_R) and
susceptible (S. frugiperda_S) S. frugiperda strains with ace-1 cDNA sequences from H. armigera (DQ064790.1), P. xylostella
(AY773014.2) and T. californica (GI|64389). The positions of the mutations A201S, G227A, F290V are highlighted.
doi:10.1371/journal.pone.0062268.g001
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single ESTs encoding a P450 (Sf2H09360-3-1) and a carbox-

ylesterase (Sf1P26308-5-1) were found to be overexpressed. Other

ESTs overexpressed in the PYR strain associated with xenobiotic

metabolism included two UDP-glucosyltransferases (Sf2M12870-

3-1 and Sf2H08497-3-1) and a carbonyl reductase (Sf1P07238-5-

1). When overexpressed EST lists are compared between the OP

and PYR strains only six probes are overexpressed in both

resistant strains (representing five ESTs, encoding a hymolymph

protein (Sf1F00509-5-1), a pyruvate dehydrogenase (Sf1P01950-5)

and three GSTs (Sf2L01018-5-1, Sf1F10827-3-1 and Sf1F00968-

3-1).

5. qRT-PCR
Real-time quantitative PCR (qPCR) was used to validate the

microarray results and identify genes most likely to be involved in

resistance by examining the expression profile of ,10 selected

genes for each array comparison (see Figures 3 and 4). For the

SUS vs OP comparison a significant difference in gene expression

between the two strains was confirmed for five out of ten ESTs

(Figure 3). For the SUS vs PYR comparison a significant difference

in gene expression between the two strains was confirmed for three

out of nine ESTs with the expression of a further EST (contig

9555), agreeing with array data as not showing significant

differences in expression between the two strains (Figure 4).

Discrepancies in the data obtained from array experiments using

the Agilent array platform and qPCR have been reported

previously and our results again highlight the importance of

qPCR validation of array data. As shown in figure 3 the two most

overexpressed genes in qPCR analysis for the OP strain are EST

9555 encoding a carboxylesterase E4-like protein (overexpressed

,11-fold) and EST 1950 encoding a pyruvate dehydrogenase,

overexpressed ,13-fold). The three ESTs significantly overex-

pressed in the PYR strain (1950, 3424 and 0801) are all GSTs

(figure 4).

Discussion

Previous studies investigating the biochemical characteristics of

resistance to pyrethroids, organophosphates and carbamates in S.

frugiperda have provided strong evidence that multiple mechanisms

underlie resistance, including detoxification by microsomal

oxidases, glutathione S-transferases, hydrolases and reductases,

and target site insensitivity such as insensitive AChE [5,6,7]. In this

study our aim was to build on this work but use molecular and

Table 2. Genotype of ace-1 mutations in the OP
(organophosphate resistant) strain.

Genotype

Strain/Individual AA201 AA227 AA290

SUS 1–20 Ala Gly Phe

OP 1 Ala/Ser Gly/Ala Val

OP 2 Ala Gly/Ala Phe/Val

OP 3 Ala/Ser Ala Phe

OP 4 Ala Gly/Ala Phe/Val

OP 5 Ala Ala Phe

OP 6 Ala/Ser Ala Phe

OP 7 Ala Gly/Ala Phe/Val

OP 8 Ala Gly/Ala Phe/Val

OP 9 Ala Gly/Ala Phe/Val

OP 10 Ala Gly Val

OP 11 Ser Ala Phe

OP 12 Ala Gly/Ala Phe/Val

OP 13 Ala Ala Phe

OP 14 Ala Ala Phe

OP 15 Ala Ala Phe

OP 16 Ala/Ser Gly/Ala Phe/Val

OP 17 Ala Gly/Ala Phe/Val

OP 18 Ala Ala Phe

OP 19 Ala/Ser Ala Phe

OP 20 Ala Gly Val

For reference the genotype of the SUS (susceptible reference) strain is included
in the first row.
doi:10.1371/journal.pone.0062268.t002

Figure 2. Alignment of the predicted amino acid sequence of a partial cDNA fragment encoding the voltage gated sodium channel
amplified from resistant (S. frugiperda_R) and susceptible (S. frugiperda_S) S. frugiperda strains with other species such as Drosophila
melanogaster (gi|1110475), Plutella xylostella (gi|2769535), Culex pipiens (gi|89213629) and Cydia pomonella (gi|53988535). The position
of mutations T929I, L932F and L1014F found in S. frugiperda are highlighted.
doi:10.1371/journal.pone.0062268.g002
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genomic approaches to identify the specific mutations involved in

target-site resistance and the candidate detoxification enzymes in

metabolic resistance.

In our topical bioassays the PYR strain showed moderate levels

of resistance (30-fold) to the pyrethroid lambda-cyhalothrin

compared to the SUS strain. To investigate whether resistance

was mediated by mutation of the pyrethroid target site we cloned

and sequenced the IIS4-IIS6 region of the para-type sodium

channel which contains many of the mutation sites previously

shown to cause kdr-type resistance in a range of different insects.

This revealed three kdr/super kdr-type mutations within the PYR

strain at known resistance ‘hot-spots’ within this gene region,

T929I, L932F and L1014F. The L1014F mutation, first identified

in pyrethroid resistant house fly strains, is the most commonly

reported kdr-type mutation in a range of arthropod species where

it typically confers between 10–30 fold resistance to pyrethroids

[21]. Functional characterisation of this mutation in insect

channels injected into Xenopus laevis oocytes has demonstrated that

Table 3. The top 40 annotated probes/ESTs over expressed by microarray in the S. frugiperda OP strain.

ProbeName p-value Fold change PrimaryAccession Description (blastx)

CUST_7605_PI426916786 0,0032 125,87 Sf1F00413-3-1 kda hemolymph protein

CUST_8476_PI426916786 0,0084 37,00 Sf1H01750-3-1 c1a cysteine protease precursor

CUST_315_PI426916783 0,0084 26,65 Sf2M01967-5-1-Contig1 microsomal glutathione s-transferase 1

CUST_440_PI426916783 0,0054 21,09 Sf1M01746-3-1 glutathione s-transferase sigma

CUST_67_PI426916783 0,0010 21,05 Sf1P09555-5-1-Contig1 esterase fe4

CUST_197_PI426916783 0,0063 17,31 Sf1P01950-5-1-Contig3 pyruvate dehydrogenase

CUST_8635_PI426916786 0,0099 16,78 Sf1H07691-3-1 cecropin b

CUST_9791_PI426916786 0,0026 16,20 Sf2M05474-5-1 glucosyl glucuronosyl transferases

CUST_7591_PI426916786 0,0009 16,10 Sf2H04339-5-1 26s protease regulatory subunit 7

CUST_11088_PI426916786 0,0045 15,71 Sf1F00509-5-1 p27k_galme ame: full = 27 kda hemolymph protein

CUST_8033_PI426916786 0,0045 15,18 Sf2M07369-3-1 alkaline nuclease

CUST_184_PI426916783 0,0095 15,12 Sf1M10453-3-1-Contig1 glutathione s-transferase

CUST_11087_PI426916786 0,0021 14,89 Sf1F10140-5-1 p27k_galme ame: full = 27 kda hemolymph protein

CUST_508_PI426916783 0,0089 14,75 Sf1P04772-5-1-Contig1 cytochrome p450

CUST_499_PI426916783 0,0048 14,21 Sf1P14935-5-1-Contig1 cytochrome p450

CUST_195_PI426916783 0,0063 14,18 Sf1P01950-5-1-Contig2 pyruvate dehydrogenase

CUST_227_PI426916783 0,0060 13,62 Sf2L01018-5-1-Contig1 glutathione s-transferase

CUST_190_PI426916783 0,0071 12,36 Sf1P01950-5-1-Contig1 glutathione s-transferase

CUST_10422_PI426916786 0,0097 12,29 Sf2M14080-3-1 juvenile hormone epoxide hydrolase

CUST_226_PI426916783 0,0019 11,79 Sf2L01018-5-1-Contig1 glutathione s-transferase

CUST_209_PI426916783 0,0036 11,50 Sf2M00801-5-1-Contig1 glutathione s-transferase

CUST_11493_PI426916786 0,0014 11,13 Sf1P15441-5-1 protein transport protein sec23

CUST_194_PI426916783 0,0049 11,05 Sf1P01950-5-1-Contig2 pyruvate dehydrogenase

CUST_10201_PI426916786 0,0034 10,39 Sf1P09780-5-1 imp dehydrogenase gmp reductase

CUST_11972_PI426916786 0,0054 10,08 Sf1M06421-3-1 short-chain dehydrogenase

CUST_8014_PI426916786 0,0022 9,91 Sf1F06267-5-1 aldehyde dehydroxygenase

CUST_335_PI426916783 0,0061 9,42 Sf1F10827-3-1 glutathione s-transferase

CUST_11192_PI426916786 0,0001 9,25 SF9L00826 phd finger-like domain-containing protein 5a

CUST_8435_PI426916786 0,0009 9,18 Sf1P20209-5-1 bis(5 -nucleosyl)-tetraphosphatase

CUST_198_PI426916783 0,0084 8,93 Sf1P01950-5-1-Contig3 pyruvate dehydrogenase

CUST_677_PI426916783 0,0011 8,65 Sf2M09131-5-1 cytochrome p450

CUST_14_PI426916783 0,0049 8,59 Sf2M00974-5-1-Contig1 carboxyl choline esterase cce016a

CUST_9640_PI426916786 0,0024 8,28 Sf1F07895-3-1 fatty acid binding protein

CUST_176_PI426916783 0,0017 7,97 Sf1F00968-3-1-Contig4 glutathione s-transferase

CUST_10462_PI426916786 0,0033 7,91 Sf1F01201-3-1 l-xylulose reductase

CUST_228_PI426916783 0,0080 7,81 Sf2L01018-5-1-Contig1 glutathione s-transferase

CUST_191_PI426916783 0,0071 7,76 Sf1P01950-5-1-Contig1 pyruvate dehydrogenase

CUST_11211_PI426916786 0,0001 7,51 Sf2H08686-3-1 phosphatidylinositol-glycan biosynthesis class f pro

CUST_8265_PI426916786 0,0094 7,44 Sf1P14042-5-1 n -(beta-n-acetylglucosaminyl)-l-asparaginase

CUST_10187_PI426916786 0,0028 7,02 SF9L03509 immediate early response 3-interacting protein 1

doi:10.1371/journal.pone.0062268.t003
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it confers up to a 17-fold reduction in sensitivity to certain

pyrethroids [22]. T929I is a super kdr-type mutation first

identified in pyrethroid resistant diamondback moth, P. xylostella,

which has since been reported in human head lice, Pediculosis

capitis, maize weevil, Sitophilus zeamais and tomato leafminer, Tuta

absoluta [23,24,25,26]. Functional expression studies in oocytes

have demonstrated that T929I in combination with L1014F makes

insect sodium channels highly insensitive to both type I and type II

pyrethroids and also to DDT [27,28]. To date, the L932F

mutation has only been identified in human head lice, where it is

frequently associated with the T929I mutation, and the peach

potato aphid Myzus persicae where it was associated with L1014F

[24,29]. Heterologous expression of the L932F mutation in

oocytes has shown it also reduces channel sensitivity to permethrin

[30]. Sequencing individuals of the PYR strain showed all three

mutations are at low frequency in this strain with one individual

identified that carried both the T929I and L1014F substitutions

and another single individual that carried the L932F substitution.

Table 4. The top 40 annotated probes/ESTs over expressed by microarray in the S. frugiperda PYR strain.

ProbeName p-value Fold change PrimaryAccession Blast2go description (tblastx)

CUST_10566_PI426916786 0,0009 26,08 Sf1F01577-3-1 lysozyme

CUST_197_PI426916783 0,0046 23,87 Sf1P01950-5-1-Contig3 pyruvate dehydrogenase

CUST_10570_PI426916786 0,0014 18,18 Sf1F01577-3-1 lysozyme

CUST_9158_PI426916786 0,0017 17,35 Sf1F07575-3-1 cytochrome oxidase subunit i

CUST_226_PI426916783 0,0002 16,88 Sf2L01018-5-1-Contig1 glutathione s-transferase

CUST_170_PI426916783 0,0001 14,68 Sf1F00968-3-1-Contig2 glutathione s-transferase

CUST_167_PI426916783 0,0013 14,60 Sf1F00968-3-1-Contig1 glutathione s-transferase

CUST_194_PI426916783 0,0003 14,52 Sf1P01950-5-1-Contig2 pyruvate dehydrogenase

CUST_169_PI426916783 0,0008 14,40 Sf1F00968-3-1-Contig2 glutathione s-transferase

CUST_198_PI426916783 0,0004 13,57 Sf1P01950-5-1-Contig3 pyruvate dehydrogenase

CUST_10557_PI426916786 0,0019 13,51 Sf1H02510-3-1 lysozyme

CUST_209_PI426916783 0,0020 13,06 Sf2M00801-5-1-Contig1 glutathione s-transferase

CUST_227_PI426916783 0,0001 12,62 Sf2L01018-5-1-Contig1 glutathione s-transferase

CUST_336_PI426916783 0,0017 12,25 Sf1F10827-3-1 glutathione s-transferase

CUST_195_PI426916783 0,0004 12,22 Sf1P01950-5-1-Contig2 pyruvate dehydrogenase

CUST_12816_PI426916786 0,0028 12,16 Sf2M12870-3-1 uridine diphosphate glucosyltransferase

CUST_228_PI426916783 0,0009 11,29 Sf2L01018-5-1-Contig1 glutathione s-transferase

CUST_190_PI426916783 0,0013 11,20 Sf1P01950-5-1-Contig1 pyruvate dehydrogenase

CUST_9656_PI426916786 0,0083 10,42 Sf1P26318-5-1 ferric-chelate reductase 1homolog isoform 1

CUST_12703_PI426916786 0,0035 10,33 Sf2H08497-3-1 udp-glucosyltransferase

CUST_192_PI426916783 0,0059 10,16 Sf1P01950-5-1-Contig1 pyruvate dehydrogenase

CUST_11088_PI426916786 0,0058 9,67 Sf1F00509-5-1 p27k_galme ame: full = 27 kda hemolymph pro

CUST_10187_PI426916786 0,0012 9,18 SF9L03509 immediate early response 3-interacting protei

CUST_8948_PI426916786 0,0006 9,04 Sf2L01305-5-1 copia-like retrotransposable element

CUST_176_PI426916783 0,0089 8,33 Sf1F00968-3-1-Contig4 glutathione s-transferase

CUST_196_PI426916783 0,0004 8,21 Sf1P01950-5-1-Contig3 pyruvate dehydrogenase

CUST_11701_PI426916786 0,0002 7,90 Sf1F01613-3-1 ribosomal protein s11 isoform 1

CUST_191_PI426916783 0,0001 7,76 Sf1P01950-5-1-Contig1 pyruvate dehydrogenase

CUST_11211_PI426916786 0,0053 7,60 Sf2H08686-3-1 phosphatidylinositol-glycan biosynthesis class f

CUST_175_PI426916783 0,0054 7,38 Sf1F00968-3-1-Contig4 glutathione s-transferase

CUST_8765_PI426916786 0,0007 7,17 Sf1P12294-5-1 checkpoint protein

CUST_335_PI426916783 0,0001 6,88 Sf1F10827-3-1 glutathione s-transferase

CUST_11096_PI426916786 0,0064 6,72 Sf2H09127-3-1 palmitoyltransferase zdhhc2

CUST_11456_PI426916786 0,0090 6,43 Sf1P21758-5-1 protein ltv1 homolog

CUST_10563_PI426916786 0,0057 6,26 Sf1F02768-3-1 Lysozyme

CUST_8528_PI426916786 0,0005 6,07 Sf1P07238-5-1 carbonyl reductase

CUST_10266_PI426916786 0,0040 5,73 Sf1P19974-5-1 intraflagellar transport protein 140 homolog

CUST_8265_PI426916786 0,0094 5,66 Sf1P14042-5-1 n -(beta-n-acetylglucosaminyl)-l-asparaginase

CUST_11881_PI426916786 0,0042 5,58 Sf1M05505-5-1 serine protease 31

CUST_9307_PI426916786 0,0070 5,53 Sf1P23771-5-1 delta –desaturase

doi:10.1371/journal.pone.0062268.t004
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At this frequency the three mutations are unlikely to fully explain

the resistance phenotype observed in the PYR strain and it is

surprising that the maintenance of this strain under selection with

lambda cyhalothrin has not selected for a higher frequency of one

or more of the three mutations. It is possible that this could be

explained by a fitness cost associated with one or more of the

mutations. In this regard it is noteworthy that Yoon et al have

shown that T929I reduces the expression rate of mutant sodium

channels in oocytes suggesting it may carry a fitness cost by

impairing sodium channel function [30]. Alternatively, the

insecticide dose used for selection may have exerted insufficient

selection pressure to preferentially select individuals carrying the

mutations.

The second resistant S. frugiperda strain investigated in this study,

the OP strain, showed moderate resistance (20-fold) to the

organophosphate chlorpyrifos compared to the SUS strain in

topical bioassays. Cloning of a significant fragment of the ace-1

gene encoding the target protein of the organophosphate and

carbamate insecticides revealed the presence of amino acid

substitutions, A201S, G227A and F290V, at three positions

implicated previously in OP resistance in several different insect

species. Of the three, the A201S mutation was observed at the

lowest frequency (17.5%) in the OP strain. This mutation was first

reported in the cotton aphid, Aphis gossypii where it is associated

with insensitivity to a wide range of carbamates and organophos-

phates [31]. It has subsequently been described in organophos-

Figure 3. Fold change in expression of selected ESTs between the SUS (blue columns) and OP strain (red columns) in qPCR analysis.
Error bars display 95% confidence intervals.
doi:10.1371/journal.pone.0062268.g003

Figure 4. Fold change in expression of selected ESTs between SUS (blue columns) and PYR strain (red columns) in qPCR analysis.
Error bars display 95% confidence intervals.
doi:10.1371/journal.pone.0062268.g004
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phate resistant strains of the rice stem borer, Chilo suppressalis, the

oriental fruit fly, Bactrocera dorsalis and the diamondback moth, P.

xylostella [32,33,34]. In P. xylostella functional expression of

susceptible and resistant versions (with A201S in combination

with G227A) of ace-1 demonstrated that the resistant version of

the protein is less sensitive to the organophosphate paraoxon [34].

The G227A and F290V mutations were observed in the OP

strain at higher frequency (67.5% and 32.5% respectively) than

A201S. In addition to P. xylostella the G227A mutation has also

been described in several other insect and mite species [12] and

recombinant ace-1 proteins with this substitution have been

functionally expressed, showing that this mutation, on its own,

confers relatively modest levels of resistance to most organophos-

phates. F290V has previously been described in the codling moth,

Cydia pomonella, however, other substitutions of the F290 residue

such as F290Y have been described in other insects including

Drosophila and M. domestica [35,36,37]. Functional expression of

recombinant ace-1 with this mutation has demonstrated that it

confers modest levels of resistance [35]. In many insect species

where several mutations are observed in the ace gene the effects of

mutation combinations are additive. For example in M. domestica,

although the G227A and F290Y each confer a low level of

insensitivity, when combined their effect is significantly enhanced

[35]. In the S. frugiperda OP strain the three AChE mutations were

most commonly found in combination in the same individual and

likely also act in concert to enhance resistance. Interestingly

G227A and F290V were never observed together in the

homozygous form in the same individual suggesting that they

are not on the same allele in the OP strain. This is in contrast to

the A201S mutation which seems to have arisen in a G227A

genetic background as it was only observed in combination with

this mutation.

To investigate if metabolic detoxification also plays a role in the

resistance of the OP and PYR strains we designed a microarray

based on all available S. frugiperda EST sequences and used it to

compare gene expression in the resistant strains with a susceptible

reference strain. A number of ESTs that can be considered

potential candidates for a role in insecticide resistance, were shown

to be overexpressed in the resistant strains. These included ESTs

encoding GSTs, P450s and CEs, enzymes that have been

implicated in metabolic resistance in many arthropod species.

Several other ESTs that encode enzymes capable of metabolizing

xenobiotics (and potentially insecticides) including, short chain

dehydrogenases, aldehyde dehydroxygenases and glucosyl-glucur-

onosyl transferases were also overexpressed. In the case of the OP

strain of particular relevance was a sequence encoding a CE that

was identified as being significantly over-expressed in both

microarray (21-fold) and qPCR (,11-fold) experiments. Overex-

pression of E4 esterase was first described in M. persicae where it

confers broad-spectrum resistance to organophosphates and

carbamates as a consequence of both sequestration and ester

hydrolysis [38]. Purification of this esterase and further functional

analysis is therefore warranted. Several ESTs encoding P450s were

also overexpressed in the OP strain in microarray analyses and

one of these (Sf2M09131-5-1) was confirmed as overexpressed by

qPCR ,3-fold. This EST encodes a P450 with highest sequence

similarity to Spodoptera littoralis CYP6B50. Members of the P450

CYP6 family have been shown to confer resistance to organo-

phosphates in several insects previously [13]. Further suggestion

that this P450 may be involved in resistance is that the EST was

derived from a xenobiotic induced midgut S. frugiperda library.

Several ESTs encoding GSTs were significantly overexpressed in

the OP strain in microarray analysis. Q-PCR revealed that two of

these were overexpressed (,3-5-fold) and belong to the epsilon

(Sf2m00801-5-1) and sigma GST families (Sf1F00968-3-1).

Overexpression of GSTs has previously been associated with

resistance to organophosphates in Lepidoptera [39]. In P. xylostella

GST3 is overproduced in resistant strains, and heterologous

expression of PxGSTE1 showed it is capable of metabolising the

organophosphate insecticides parathion and methylparathion

[39]. Interestingly GST3 also belongs to the epsilon GST family

sharing ,50% sequence identity with the Sf2m00801-5-1

sequence. It is also interesting that Sf2m00801-5-1 is derived

from the xenobiotic induced midgut S. frugiperda library. In

addition to the overexpressed genes that belong to gene families

known to be involved in resistance, several other genes were

overexpressed in the OP strain that may be capable of

metabolizing xenobiotics, including short chain dehydrogenases,

aldehyde dehydroxygenases and glucosyl-glucuronosyl transferas-

es. Of these the EST encoding a glucosyl-glucuronosyl transferase

(Sf2M05474-5-1) should be prioritized for further future investi-

gation as it was one of the most highly overexpressed genes in

microarray analysis of the OP strain, is derived from a xenobiotic

induced midgut library, and this family are responsible for the

most important detoxification pathway of Phase II drug metab-

olism in many vertebrates including humans [40].

For the PYR strain, of genes previously implicated in insecticide

resistance, those encoding GSTs were by far the most abundant

overexpressed gene family. As for the OP strain the EST

Sf2m00801-5-1 encoding a GST of the epsilon family was

overexpressed in both microarray and qPCR experiments.

However, qPCR analysis revealed that another EST

(Sf1F03423-5-1), encoding a GST belonging to the sigma family,

was overexpressed at a much higher level (,13-fold in qPCR

analysis). Elevated expression of GSTs have been associated

previously with pyrethroid resistance in Lepidoptera (Spodoptera

littoralis) [41]. Furthermore, induction of GSTs by pyrethroid

exposure has also been previously reported for S. frugiperda [42].

However, in contrast to organophosphates, pyrethroids have not

been shown to be directly metabolized by GSTs. Rather studies on

pyrethroid-resistant brown planthoppers, Nilaparvata lugens with

elevated GST activity has suggested they may protects against lipid

peroxidation products and oxidative stress that are induced by

pyrethroid exposure [43]. In addition, insect GSTs may act by

sequestering pyrethroids until they are metabolized by other

detoxification enzymes [44]. In this regard ESTs encoding a P450

and two carboxylesterases were upregulated in the PYR strain in

microarray experiments, however, qPCR validation showed that

the levels of expression of these ESTs is not significantly different

in the SUS and PYR strains. Other ESTs associated with

xenobiotic metabolism that were overexpressed in the PYR strain

in microarray analysis include two UDP-glucosyltransferases and a

carbonyl reductase, both of which warrant further investigation.

In summary this study has identified mutations in the genes

encoding the VGSC and AChE enzyme of S. frugiperda that have

been shown previously to confer resistance to pyrethroids and

organophosphates respectively in a range of arthropods. However,

our analyses have provided further support that resistance to

organophosphates and pyrethroids in S. frugiperda is multigenic and

we have identified a promising list of candidate genes that may

also play a role in resistance. The consistency of overexpression of

these genes with resistance in a range of S. frugiperda strains can

now be examined, such studies combined with heterologous

expression and functional analysis of putative resistance proteins

will identify which actually confer resistance.

Overall the information provided by this study is a prerequisite

for the design, implementation and monitoring of resistance

management strategies for S. frugiperda that aim to preserve the
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efficacy of the insecticide classes used for control. Given that there

is a limited arsenal of effective chemical classes for the control of S.

frugiperda and the current reliance on the use of organophosphates

and pyrethroids in Brazil (see introduction) means such strategies

are urgently required.
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cultura do milho. Embrapa/CNPMS Circular Técnica Comunicado Técnico
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Fitossanitários. http://www.agricultura.gov.br/servicos-e-sistemas/sistemas/

agrofit.

15. Kasten Jr P, Precetti AACM, Parra JRP (1978) Dados biológicos comparativos

de Spodoptera frugiperda (J.E. Smith, 1797) em duas dietas artificiais e substrato

natural. Revista de Agricultura, Piracicaba 53: 69–78.

16. Yu SJ (1982) Induction of microsomal oxidases by host plants in the fall

armyworm, Spodoptera frugiperda (J.E. Smith). Pestic Biochem Physiol 17: 59–67.

17. Negre V, Hotelier T, Volkoff AN, Gimenez S, Cousserans F, et al. (2006)

SPODOBASE: an EST database for the lepidopteran crop pest Spodoptera. BMC

Bioinformatics 7: 322.

18. Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, et al. (2011)

Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes

vaporariorum reveals multiple transcripts encoding insecticide targets and

detoxifying enzymes. BMC Genomics 12: 56.

19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 22DDCT method. Methods 25: 402–408.

20. Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, et al. (2002) Accurate

normalization of real-time quantitative RT-PCR data by geometric averaging of

multiple internal control genes. Genome Biology 3: research0034.0031-

0034.0011.

21. Davies TGE, Williamson MS (2009) Interactions of pyrethroids with the voltage-

gated sodium channel. Bayer CropScience Journal 62: 159–178.

22. Vais H, Williamson MS, Goodson SJ, Devonshire AL, Warmke JW, et al. (2000)

Activation of Drosophila sodium channels promotes modification by deltamethrin.

J Gen Physiol 115: 305–318.

23. Araujo RA, Williamson MS, Bass C, Field LM, Duce IR (2011) Pyrethroid

resistance in Sitophilus zeamais is associated with a mutation (T929I) in the

voltage-gated sodium channel. Insect Mol Biol 20: 437–445.

24. Lee SH, Yoon K-S, Williamson MS, Goodson SJ, Takano-Lee M, et al. (2000)

Molecular analysis of kdr-like resistance in permethrin-resistant strains of head

lice, Pediculus capitis. Pestic Biochem Physiol 66: 130–143.

25. Schuler TH, Martinez-Torres D, Thompson AJ, Denholm I, Devonshire AL, et

al. (1998) Toxicological, electrophysiological, and molecular characterisation of

knockdown resistance to pyrethroid insecticides in the diamondback moth,

Plutella xylostella (L.). Pestic Biochem Physiol 59: 169–182.

26. Haddi K, Berger M, Bielza P, Cifuentes D, Field LM, et al. (2012) Identification

of mutations associated with pyrethroid resistance in the voltage-gated sodium

channel of the tomato leaf miner (Tuta absoluta). Insect Biochem Mol Biol 42:

506–513.

27. Usherwood PNR, Davies TGE, Mellor IR, O9Reilly AO, Peng F, et al. (2007)

Mutations in DIIS5 and the DIIS4–S5 linker of Drosophila melanogaster sodium

channel define binding domains for pyrethroids and DDT. FEBS Letters 581:

5485–5492.

28. Vais H, Williamson MS, Devonshire AL, Usherwood PNR (2001) The

molecular interactions of pyrethroid insecticides with insect and mammalian

sodium channels. Pest Manag Sci 57: 877–888.

29. Fontaine S, Caddoux L, Brazier C, Bertho C, Bertolla P, et al. (2011)

Uncommon associations in target resistance among French populations of Myzus

persicae from oilseed rape crops. Pest Manag Sci 67: 881–885.

30. SupYoon K, Symington SB, Lee SH, Soderlund DM, Clark JM (2008) Three

mutations identified in the voltage-sensitive sodium channel alpha-subunit gene

of permethrin-resistant human head lice reduce the permethrin sensitivity of

house fly Vssc1 sodium channels expressed in Xenopus oocytes. Insect Biochem

Mol Biol 38: 296–306.

31. Andrews MC, Callaghan A, Field LM, Williamson MS, Moores GD (2004)

Identification of mutations conferring insecticide-insensitive AChE in the cotton-

melon aphid, Aphis gossypii Glover. Insect Mol Biol 13: 555–561.

32. Jiang X, Qu M, Denholm I, Fang J, Jiang W, et al. (2007) Mutation in

acetylcholinesterase1 associated with triazophos resistance in rice stem borer,

Chilo suppressalis (Lepidoptera: Pyralidae). Biochem Biophys Res Commun 353:

591–597.

33. Hsu JC, Haymer DS, Wu WJ, Feng HT (2006) Mutations in the

acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to

organophosphorus insecticides. Insect Biochem Mol Biol 36: 396–402.

34. Lee DW, Choi JY, Kim WT, Je YH, Song JT, et al. (2008) Mutations of

acetylcholinesterase1 contribute to prothiofos-resistance in Plutella xylostella (L.).

Insect Biochem Mol Biol 38: 296–306.

35. Walsh SB, Dolden TA, Moores GD, Kristensen M, Lewis T, et al. (2001)

Identification and characterization of mutations in housefly (Musca domestica)

acetylcholinesterase involved in insecticide resistance. Biochem J 359: 175–181.

36. Fournier D, Bride JM, Hoffmann F, Karch F (1992) Acetylcholinesterase. Two

types of modifications confer resistance to insecticide. J Biol Chem 267: 14270–

14274.

37. Cassanelli S, Reyes M, Rault M, Manicardi GC, Sauphanor B (2006)

Acetylcholinesterase mutation in an insecticide-resistant population of the

codling moth Cydia pomonella (L.) Insect Biochem Mol Biol 36: 642–653.

38. Devonshire AL, Field LM, Foster SP, Moores GD, Williamson MS, et al. (1998)

The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae.

Philos Trans R Soc Lond B Biol Sci 353: 1677–1684.

39. Huang HS, Hu NT, Yao YE, Wu CY, Chiang SW, et al. (1998) Molecular

cloning and heterologous expression of a glutathione S-transferase involved in

insecticide resistance from the diamondback moth, Plutella xylostella. Insect

Biochem Mol Biol.

40. Meech R, Mackenzie PI (1997) Structure and function of uridine diphosphate

glucuronosyltransferases. Clin Exp Pharmacol Physiol 24: 907–915.

Resistance in Fall Armyworm Spodoptera frugiperda

PLOS ONE | www.plosone.org 10 April 2013 | Volume 8 | Issue 4 | e62268



41. Lagadic L, Cuany A, Berge JB, Echaubard M (1993) Purification and partial

characterization of glutathione S–transferases from insecticide-resistant and
lindane-induced susceptible Spodoptera littoralis (Boisd.) larvae. Insect Biochem

Mol Biol 23: 467–474.

42. Punzo F (1993) Detoxification enzymes and the effects of temperature on the
toxicity of pyrethroids to the fall armyworm Spodoptera frugiperda (Lepidoptera:

Noctuidae). Comp Biochem Physiol 105C: 155–158.

43. Vontas J, Small GJ, Hemingway J (2001) Glutathione S-transferases as

antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens.

Biochem J 357: 65–72.

44. Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-

Mourkidou E (2001) Glutathione S-transferase in the defence against pyrethroids

in insects. Insect Biochem Mol Biol 31: 313–319.

Resistance in Fall Armyworm Spodoptera frugiperda

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e62268


