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1. Introduction

Plasmonic nanoparticles exhibit optical field enhancement when localized surface plas-

mon polariton (SPP) resonances are excited [1, 2]. The strength of the enhancement de-

pends sensitively on the nanoparticle’s environment and geometry [3]. The enhancement

is a vital part of phenomena such as surface-enhanced Raman scattering [4], and finds

application in areas such as biosensing [5], monitoring lipid membranes [6], modifying

molecular fluorescence [7] and materials characterization [8]. Localized SPP resonances

occur because of the way the free conduction electrons in metal particles respond to

light. For many metals at optical frequencies their response is such that the permittiv-

ity is negative - a critical requirement if the nanoparticle is to support a plasmon mode.

However, metals are not the only materials to exhibit negative permittivity; mate-

rials doped with excitonic organic dye molecules are of interest for photonics [9] and

may also possess negative permittivity over a small frequency range [10]. Interest

in such materials as a means to support surface exciton-polariton (SEP) resonances

has recently been rekindled [11, 12, 13]. An example of this class of material is a

polymer doped with dye molecules. In a previous work we showed, through experi-

ment and with the aid of a classical model, that polyvinyl alcohol (PVA) doped with

TDBC molecules (5,6-dichloro-2-[[5,6-dichloro-1-ethyl-3-(4-sulphobutyl)-benzimidazol-

2-ylidene]-propenyl]-1-ethyl-3-(4-sulphobutyl)-benzimidazolium hydroxide, sodium salt,

inner salt) may support localized surface exciton-polariton modes. We extracted the

complex permittivity ε(ω) of this material from reflectance and transmittance measure-

ments of thin films using a Fresnel approach [14]. TDBC was chosen because of its

tendency to form J-aggregates: this leads to a narrowing of the optical resonance, mak-

ing them interesting for strong coupling [15, 16, 17]. More importantly in the present

context, at sufficiently high concentrations materials doped with such molecules exhibit

a negative permittivity; it is this negative permittivity that enables these materials

to support localized resonances. In our previous work [12] a two-oscillator Lorentz

model [18, 19] was used to calculate the electric field enhancement and field confine-

ment around the nanoparticle supporting the resonance by use of Mie theory [20, 21].

The field enhancement and confinement we predicted compared favorably with respect

to gold nanospheres, albeit over a much narrower spectral range. Here we extend that

earlier work by going beyond a simple classical Lorentz oscillator model. In doing so, we

are able to explore new transient phenomena and develop a richer microscopic physical

picture for the system.

In what follows we first outline the elements and assumptions of the quantum model

we have used. We then compute the relative permittivity, ε(ω), using this model and

compare our results with those obtained from a classical model. We next use our model

to investigate the steady-state response of nanospheres of possessing this relative per-

mittivity, with a focus on the nature of the LSEP mode. The response of the same
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particle to a suddenly turned on applied optical field is then explored, and the occur-

rence of transient LSEP modes discussed.

2. Theory

The key difference between the work we report here and previous work based on a bulk,

macroscopic approach [12] is that here we develop an effective medium description from

a quantum model of the relative permittivity ε = 1+χ, where χ is the susceptibility. To

do so we assume that the molecules in our material can be represented as an ensemble of

two-level quantum systems. For a general material, an applied electric field E induces

a polarization in the material P ∝ 〈d〉, where 〈d〉 is the average dipole moment of each

molecule (quantum system). Assuming linearity, P is a linear function [22] of E, given

by:

P =
1

2
ε0E(χe−iωt + χ∗eiωt) = N〈d〉 (1)

where N is the number density of quantum emitters, and E and d are generally time

and frequency dependent. To find χ and hence ε we need to find 〈d〉. If we adopt a

quantum picture, then 〈d〉 becomes the expectation value of the dipole moment and

can be computed from the trace of ρd, where ρ is the density matrix of the system

and d is the dipole moment of each (identical) quantum system (molecule). The density

operator ρ̂ is defined as ρ̂ =
∑

k pk|k〉〈k|, where pk are the relative probabilities of finding

a system element in state |k〉. In order to find ρ, a Hamiltonian that which can be used

to describes the system must be determined. In general, the Hamiltonian for an open

quantum system can be expressed as [23, 24],

Ĥ = Ĥ0 + ĤB + ĤI , (2)

where Ĥ0 is the Hamiltonian of the isolated system, ĤB describes the interaction of Ĥ0

with the bath is the bath Hamiltonian which interacts with Ĥ0, and ĤI is the interaction

Hamiltonian to describes the interaction of Ĥ0 with the applied electric field.

For TDBC molecules in a PVA host medium, ĤB should represent the 3nm−6 = 129

intramolecular [25] vibrational modes (where nm is the number of atoms per molecule)

with a multitude (taken to be an infinite number) of intermolecular modes. These vi-

brational modes are responsible for induced decay and dephasing in the system [26, 27],

along with a small shift in the excited state energy of the molecules [28]. Rather than

determine ĤB directly we have made a commonly-used simplification, that of incorpo-

rating the effects of the bath (vibrationally induced decay and dephasing) These effects

can be accounted for phenomenologically by application of the dissipative Lindblad

superoperator (see below) and by making the assumption that the small energy shift

can be ignored By adopting this Lindblad approach, explicit treatment of ĤB is not
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needed [23, 24].

For an ensemble of n two-level emitters (molecules), Ĥ0 can be written as [29, 28,

30],

Ĥ0 = ~ω0|0〉〈0|+
n∑

i=1

~ω(1)
1 |1i〉〈1i|+

n∑
j=1

j 6=i

Jij|1i〉〈1j|

 , (3)

where |0〉 is the ground state of the nanoparticle, and |1i〉 represents a single exciton

excited in the nanoparticle, localized on molecule i, with the other molecules in their

ground states i.e. |1i〉 = |01, ..., 1i, ...0n〉. In this way, only a single exciton is permitted

within the ensemble at any time. The first term in brackets in Equation (3), ~ω(1)
1 ,

represents the average energy eigenvalue of a non-interacting molecule in the excited

state (an exciton). The second term corresponds to inter-molecular coupling, with

coupling energy Jij. The coupling is taken to be Förster (dipole-dipole) coupling [31, 29]

since we assume that the overlap between the wave functions of each site are small. The

corresponding interaction Hamiltonian ĤI modeled in the Schrödinger picture [32] and

written in the same basis is,

ĤI =
n∑

i=1

(g∗i |0〉〈1i|+ gi|1i〉〈0|) , (4)

where the coupling strength of the dipole to the external optical driving field is defined

as gi = −E(ri) · ~µi, where ~µi is the exciton dipole moment.

Although thorough, a density matrix formed using Equations (3) & (4) would have

dimension (n+1)×(n+1), where n is the number of molecules in the system. Given that

n can be several thousand for even a moderately-doped 100 nm diameter nanosphere,

solving for such a large matrix would be computationally intractable very demanding,

despite considering only a single exciton in the ensemble. We therefore seek a simpler

Hamiltonian for a TDBC-doped nanosphere which approximates the formalism above.

As a first step in this process, we identify that for an ensemble of aggregates (where

the monomers within each aggregate are aligned with each other), the intra-aggregate

coupling terms dominate [33]. This enables us to neglect the inter-aggregate coupling

terms. By making this approximation, our approach to describe a nanoparticle doped

with randomly distributed and randomly oriented aggregates is to first describe a Hamil-

tonian for a single aggregate, and then to take an orientational average. This approach

significantly eases calculation.

The next step is to identify note that for a single aggregate, nearest-neighbour couplings

dominate. The Hamiltonian matrix formed obtained under this approximation using
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Equation (3) for a single aggregate containing n monomers is,

H =



~ω0 0 0 0 · · · 0

0 ~ω(1)
1 J 0 · · · 0

0 J ~ω(1)
1 J · · · 0

0 0 J ~ω(1)
1 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · ~ω(1)
1


, (5)

where J is the nearest-neighbour interaction energy.The eigenvalues and eigenstates

for this Hamiltonian matrix are derived in our Supporting Information [I SEE

EIGENSTATES IN THE SI, EG. EQN S19, BUT I DON’T SEE EIGENVALUES (SEE ALSO

COMMENT JEST AFTER EQN 9 BELOW)]. The first eigenstate is the ground state |0〉, with

energy eigenvalue ~ω0. The second is a set of excited states where a single exciton is

delocalized over the aggregate [34, 35],

|m〉 =

√
2

n+ 1

n∑
j=1

sin

(
j + 1

n+ 1
mπ

)
|1j〉, (6)

where 1 < m < n. The single exciton transition dipole moment of the aggregate d01(m)

for mode m is related to the transition dipole moment of the monomers ~µ01 (assuming

identical dipole moments) by [36],

d01(m) = ~µ01

√
1− (−1)m

n+ 1
cot

(
πm

2(n+ 1)

)
. (7)

This implies that d01(m) is zero for even values of m and that d01(1)/d01(3) lies in the

vicinity of 3 for n > 6. Given that. Even for very modest aggregates, n > 6, the leading

eigenstate (|1〉) gives rise to a transition dipole moment a factor of three stronger than

the next eigenstate, i.e. the leading eigenstate is the ’brightest’ [MARTIN - we need to

add an extra reference here, Phys Rev A, vol 53, p2711, 1996], we can take

the transition dipole moment of the aggregate as d01 = d(1), and use the two states |0〉
and |1〉 to as an approximation the system aggregate, where |1〉, using equation 6, is

given by,

|1〉 =

√
2

n+ 1

n∑
j=1

sin

(
j + 1

n+ 1
π

)
|1j〉. (8)

The eigenvalue of |1〉 is,

~ω1 = ~ω(1)
1 − 2J cos

(
π

n+ 1

)
. (9)

*** WHERE DOES THIS COME FROM ????? ***

This allows us to write ~ω1 = ~ω(1)
1 + ∆. The excitation energy of the aggregate is

shifted from the monomer value by ∆, and this shift arises from the interaction with

other molecules in the aggregate. This energy shift has been observed elsewhere for
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aggregates [37, 28], and is loosely termed the ‘effect of aggregation’ [31]. The magnitude

of ∆ is typically hundreds of meV [29]. Therefore, by considering these two states only

only the ground state and this (brightest) excited state, Equation (3) can be re-written

as,

Ĥ0 ≈ ~ω0|0〉〈0|+ (~ω(1)
1 + ∆)|1〉〈1|

= ~ω0|0〉〈0|+ ~ω1|1〉〈1|. (10)

The interaction Hamiltonian for the aggregate is written as,

ĤI = G(|0〉〈1|+ |1〉〈0|), (11)

where G = E ·d01 is the coupling strength of the electric field, E, to the dipole moment,

d01, of the aggregate. The Hamiltonian formed by adding Equation (10) & (11) can

be applied to an ensemble of randomly-distributed aggregates by taking G = E · d01,

where d01 = d01/D is the orientational average of the aggregate dipole moments in the

system of interest, and D is the dimensionality of the space in which the dipoles are

distributed. (This orientational average is derived in our Supporting Information, see

section 4.)

Our goal now is to find an effective medium value of ε at time t and at the frequency

of illumination, ω. The first step is to note that ĤI/|E(t)| defines the transition dipole

matrix d for the system as a whole [THERE IS A PROBLEM HERE, d WAS PREVIOUSLY

DEFINED AS THE DIPOLE MOMENT OF A MOLECULE - SEE EQN 1 !!]. Given that the

density matrix (ρ) can be used to obtain the expectation value of an observable, we seek

ρ using the Liouville-von Neumann equation [38],

ρ̇(t, ω) = − i
~

[H, ρ(t, ω)] + LDρ(t, ω). (12)

The first term in Equation (12) governs unitary evolution. The Lindblad dissipation

superoperator [39, 40] LD, is used to account for the decay and dephasing effects the

bath has on the system. In this work, we assume the electron-phonon coupling to

be weak at room temperature and for weak fields, and this enables the Born-Markov

approximation upon which this formalism relies [41] to be used. The total dephasing

rate of the transition |0〉 ↔ |1〉 is Γ01. This quantity is related to the population decay

rate for the |1〉 → |0〉 decay channel, γ01, and the pure dephasing rate, Γ
(d)
01 , by [39],

Γ01 =
γ01
2

+ Γ
(d)
01 . (13)

The pure dephasing rate, Γ
(d)
01 , arises from phase-changing interactions of the excitons

with the environment [42], i.e. the bath of vibrational modes. A more detailed less

approximate approach could be adopted [41] [add ref, New Journal of Physics, 2015,

vol 17, p 053040], but assuming a simple rate for Γ
(d)
01 is sufficient for our present pur-

poses, that of enabling an illustrative calculation to be carried out. A discussion of the
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physical origin of Γ
(d)
01 is given in our Supporting Information.

For our two-level system, Equation (12) is used to find 4 coupled differential

equations [43], the well-known Optical Bloch Equations [44] (OBEs). Solving these

for the applied cosine potential allows us to use the Rotating Wave Approximation

(RWA) [45], as detailed in our supporting information. To calculate the permittivity,

a value for d is chosen, 〈d〉 can then be evaluated using 〈d〉 = Tr(ρd). Then,

by choosing the forward-propagating electric field, Equation (1) allows us to obtain

ε for an ensemble of two-level molecules (number density N , arranged in aggregates

and randomly distributed in a medium of background permittivity ε = εb), and in the

single-exciton regime), as,

ε(t, ω) = εb +
2N

ε0

|d01|
|E|

ρ01e
iωt. (14)

This formula holds for weak fields, as we shall now demonstrate show below.

3. Results and Discussion

For our model we require the following parameters: d01, ~ω1, γ01 and Γ
(d)
01 . We used our

experimental reflectivity and transmittance data (for a 1.46 wt% TDBC:PVA 70 nm

film [12]) to determine that ~ω1 = 2.11eV ≡ 588 nm. This agrees with the values

obtained by van Burgel [46] and Valleau [29] although it is a slight change from our

previous work, where we indicated that the transition occurred at 2.10 eV (590 nm),

with a (weaker) shoulder transition at 2.03 eV (610 nm). Our revised value follows from

an improved Kramers-Kronig analysis of our original data, as outlined in our supporting

information.

From photoluminescence measurements [47], we took the decay rate of |1〉 to be

γ01 = 1.15×1012s−1 for the aggregate in a PVA host medium. Using Molinspiration c©,

we determined the molecular weight and the effective volume of the TDBC molecule.

Together with the concentration of the solution, these quantities allowed us to determine

the molecular number density to be N = 1.47 × 1025 m−3. We were then able to esti-

mate the transition dipole moment for TDBC molecules in aggregate form, 〈d01〉, and

the dephasing rate, Γ
(d)
01 , by fitting the steady-state solutions for Equation (14) to our

experimental data for ε(ω) by adjusting d01 and Γ
(d)
01 . In this way we found the dipole

moment to be 48 Debye (D) (corresponding to an effective dipole length of 10.1Å). The

TDBC-doped thin films from which the experimental data were obtained were produced

by spin-coating [12]. Previous work to investigate the orientation of dipole moments in

thin polymer films produced by spin-coating found that the dipole moments lie predom-

inantly in the plane **ADD REF**: Journal of Modern Optics, (2004), 51, p 2287**.

Assuming that the TDBC aggregates also lie in the plane of the spun films reported

in [12], then the value of 48D we have determined here is a two-dimensionally averaged
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value, implying that the on-axis dipole moment of an aggregate is d01 97D, and the

three-dimensionally averaged moment is 32D. This three-dimensionally averaged mo-

ment compares with the 24D estimated by van Burgel et al. [46] from experiments in

solution (3-dimensional).

THEN DELETE from ****** to ********

**********

This is in line with the value measured by Valleau [29]. Given that our original film was

produced by a spin-coat procedure [12, 48], the dimensionality of the orientationally-

averaged dipole moment is two. This implies a value for the non orientationally-averaged

transition dipole moment of d01 = 97 D. This is the value taken by Vasa et al. [49], and

is consistent with excitons being delocalized over approximately 15 molecular units [46];

aggregate dipole moments are proportional to the square root of the number of molecules

in the aggregate [50, 33]. This leads to the monomer value of ~µ01 = 27 D, which is con-

sistent with the 23 D measured by van Burgel [51] and the 27 D calculated by Kelly [52].

The value for d01 in three dimensions is deduced as 32 D.

*********

The dephasing rate, Γ
(d)
01 , was found to be equal to 17 meV , which is ≈ κBT as ex-

pected [29]. To provide additional support for our value of Γ
(d)
01 , we extracted and

modeled ε(ω) from the reflectance and transmittance data from a 5.1 nm thick film

obtained by Bradley et al. [53]. We determined Γ
(d)
01 to be around 13 meV , a value

comparable with our own, bearing in mind that different bath spectral densities asso-

ciated with differences in the host and substrate may change the value of Γ
(d)
01 . Our

results for ε(ω) against experimentally-determined data for our film are displayed in

Figure 1, assuming a planar distribution of dipoles. Also shown is ε(ω) for the same

concentration, assuming a volume distribution of dipoles. The latter result is mapped

onto the former for a concentration of 3.22 wt%, which is the value used from here on out.

3.1. Numerical Results: Steady-State

We now explore theoretically the Mie [20, 21] absorption efficiency spectra Qabs(ω) for

a 100 nm diameter nanosphere of 3.22% TDBC:PVA, assuming a volume distribution

of dipole orientations, based on ε(ω) calculated using Equation (14). In practice, the

applied optical field we model here might be a laser beam. For a 1 mW laser with a

spot diameter of 1.5 mm, the strength of the electric field of our incident optical field

would be equal to 462 V m−1; we assume this value here.

In a 100 nm diameter nanosphere of our material, there are on average n = 1.72×104

molecules. Note that it is the number of molecules and by extension their number den-
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Figure 1. Extracted relative permittivity ε(ω) from a 1.46 wt% TDBC:PVA film

(circles for real part and crosses for imaginary part) [12]. ε(ω) as determined for this

system assuming that the dipoles are distributed in the plane of the film are indicated

by the thick solid and dashed lines. The real and imaginary parts of ε(ω) for where the

dipoles are randomly distributed in three dimensions and for the same concentration

are shown by the thin solid and dashed lines.

sity, which is the important quantity (and is used for N in Equation (14)) rather than

the number density of aggregates, since each molecule provides a potential site for exci-

ton excitation. To check the validity of our assumption that multi-exciton and nonlinear

effects [42] can be neglected, we computed the maximum expectation value of the num-

ber of excitons in the nanosphere (nex = max(ρ11)n) using Equations (10) and (11) in

Equation (12). We found that nex/n � 1 holds for laser powers of up to 102 W with

a spot size of 1.5 mm. Given that our laser power is 1 mW , we assumed that the

single-exciton linear regime is sufficient to describe the system under this illumination

power.

In Figure 2 we plot the absorption efficiency Qabs(ω) for a 100 nm diameter nanosphere,

calculated for a variety of permittivities; in each case the absorption efficiency is calcu-

lated using Mie theory [20, 21]. Calculated values for Qabs based upon the permittivity
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Figure 2. Mie calculations for the absorption efficiency Qabs(ω) in the steady-state

for a 100 nm diameter nanosphere of 3.22 wt% TDBC:PVA using the values for ε(ω)

from experiment (dashed line), from two-level OBEs (solid line), and from our previous

Lorentz oscillator model (dotted line). The material absorption coefficient κ (imaginary

part of the refractive index), normalized to unity, is also plotted for illustrative purposes

(long dashed line). Inset: a 3D representation of the aggregated emitters (assuming

brick-stone aggregation, with 15 molecules per aggregate) randomly distributed in a

100 nm diameter nanosphere.

obtained using our improved analysis of experimental data are shown in Figure 2 as

a dashed line. Our quantum theoretical spectrum for Qabs, using ε(ω) from Equation

(14), is shown as the solid line. This theoretically derived spectrum provides a close

match to the extracted data, most importantly for energies in the region of interest

below 2.22 eV . For energies exceeding 2.2 eV , there is a limb in the extracted data

(dashed curve) which might perhaps be attributed to inhomogeneous (non-Lorentzian)

broadening which is not accounted for using the OBEs. Also displayed in Figure 2 is

the result for Qabs using a best-fit classical Lorentz oscillator model (the parameters for

which can be found in our supporting information) shown as a dotted line. It can be

seen that the quantum model outlined in the present paper provides an improved fit

to the experimental data. We attribute this to the inclusion of dephasing (Γ
(d)
01 ) in the
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model: if Γ
(d)
01 were set to zero, a Lorentz model would be recovered in the steady state,

and the single damping term in the Lorentz model would have to accommodate both

decay and dephasing. Therefore, by including dephasing, the actual physical value of

the decay rate γ01 can be included to achieve an accurate result for ε.

It is interesting to note a key feature shown by the data in Figure 2: Qabs, reaches

its peak value at 2.16 eV (574 nm). This is in contrast to the absorption coefficient,

κ(ω), which peaks at 2.12 eV (586 nm), shown as a long dashed line in Figure 2. This

difference in spectral position arises because the peak in Qabs is not due simply to ab-

sorption: rather, it is due to the excitation of a localized SEP mode [12]. Confirmation

of this interpretation comes from two sources. First, in the quasistatic limit the polar-

izability of the nanosphere follows the Clausius-Mossotti condition, for which resonance

occurs when ε = −2 (when the nanosphere is in free space) [54]. From Figure 1 this can

be seen to be approximately true for a 100 nm diameter nanosphere, as the permittivity

value at the wavelength of peak absorption efficiency, Qabs, is ε = −2.251 + 1.728i. This

difference from ε = −2 originates from the fact that ε = −2 only gives the resonance

condition if the imaginary part of ε is zero; the complex nature of the permittivity

changes the spectral location of the absorption peak. Second, Qabs near the peak goes

well above unity: this is associated with field enhancement [2], another signature of a

resonant mode. The enhanced electric field in the vicinity of the nanosphere is illus-

trated graphically in Figure 3(a), together with direction of power flow shown by the

Poynting vector S.

In Figure 3, the incident electric field is polarized in the x-direction. The Poynting vector

arrows shown in the figure were calculated at starting points for which z = −200 nm

and x = 0 nm, linearly spaced in the range −200 nm ≤ y ≤ 200 nm. Subsequent points

for evaluation of the Poynting vector were taken at 10 nm steps in the direction of the

Poynting vector at each point, resulting in the flux lines shown. The power flow in

Figure 3(a) shows that incident light is drawn towards and absorbed by the nanosphere

for starting positions up to around 130 nm from the central position of the nanosphere.

This demonstrates that at this energy, the nanosphere absorbs more light than the light

geometrically striking it [55], and hence Qabs > 1. In comparison, absorption at the

transition energy, i.e. at 2.11 eV is seen only as a shoulder mode in the absorption

efficiency of the nanosphere (Figure 2) and the efficiency does not exceed unity. The

power flow around the nanosphere for the energy at which κ peaks (2.12 eV ) is shown

in Figure 3(b), and the enhancement of the field is much weaker than for excitation on

resonance at 2.16 eV .

3.2. Numerical Results: Time Domain

We now turn our attention to the time domain. Our theoretical model for dynamic

processes in two-level quantum systems subject to a perturbing cosine electric field is
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Figure 3. The time-averaged electric field strength normalized to the incident field

strength (color plot) and the Poynting vector S (arrows) in the vicinity and on the

surface of the 100 nm 3.22 wt% TDBC:PVA nanosphere, with incident power flow

along the positive z-direction. Data are calculated for incident photon energies of a).

2.16 eV = 574 nm and b). 2.12 eV = 586 nm corresponding to peak absorption

efficiency and κ respectively.

similar to models considered elsewhere [56, 57, 58, 59], but here the observable of interest

arises from the temporal evolution of the coherences of the density matrix, rather than

the populations. The dynamics of a two-level ensemble subject to a pulse potential has

been the subject of recent investigation [60], but here we investigate a rather different

case: that of a cosine potential of fixed amplitude that is switched instantaneously on

at some moment in time. We do this to provide an easily soluble model that illustrates

the time-dependent phenomena we wish to discuss.

By using Equation (14) to calculate ε(t) for a given illumination frequency ω as

before, Qabs(t, ω) can be determined and its temporal behavior examined. To do this,

we again use Mie theory. This is an approximation since the fields scattered in Mie the-

ory are assumed to be instantaneous. Given that the dynamics seen in Figure 4 evolve

over a few femtoseconds and that light propagates over a length scale three times the

size of the nanoparticle during a single femtosecond, and that the nanoparticle is illumi-

nated with an electric field of constant amplitude, this approximation is deemed to hold.

Mie theory can therefore be used to give a quasi-instantaneous picture of the absorption.

Qabs(t) is shown in Figure 4 for five different detunings, δ = ~ω1 − ~ω, from the

transition at ~ω1 = 2.11 eV . We assume that all the molecules in the nanoparticle are

initially in their ground state. At t = 0 we turn on our field abruptly. We see that

a steady-state response is attained after > 200 fs, but interestingly, for δ = 0.09 eV ,

Qabs(t) repeatedly exceeds unity in spite of the steady-state value of Qabs being below
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Figure 4. Calculated Qabs(t, ω) for a 100 nm diameter nanosphere of 3.22%

TDBC:PVA warming up a pure state at t = 0 with a 1 mW laser set at five different

detunings δ from the exciton transition.

unity at this detuning. Since Qabs(t) > 1 implies field enhancement, these data are

indicative of a transient LSEP mode being present at early times. The time-dependent

behavior comprises two contributions: the first is the oscillatory behavior arising from

Rabi oscillations; the second is the transient effects associated with the sudden turning-

on of the field. In the latter, the magnitude of the density matrix coherences exceed

their steady-state values for tens of femtoseconds, resulting in larger values of ε and

hence different absorption properties to the steady-state.

If ε passes through the Clausius-Mossotti condition for the nanoparticle as it

approaches its steady-state value, Qabs exceeds unity, implying a transient LSEP mode.

This is seen best for a detuning of 0.091 eV between 0 − 30 fs. The Rabi oscillations

follow the generalized Rabi frequency Ω̃R, given by

Ω̃R =
√

Ω2
1 + δ2, (15)
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where, Ω1 � δ, and Ω̃R → δ in this case, Ω1 and δ are the Rabi frequency and the de-

tuning respectively. These Rabi oscillations are naturally convoluted with the transient

effects. This implies, together with the short timescales involved in the system, that it

would be a challenge to see these transitory effects, but might perhaps be possible [49].

Critical to the transient LSEP lifetime is Γ
(d)
01 . If this dephasing could be reduced with-

out losing the transient negative permittivity that is essential for field enhancement (and

field confinement), then the transient timescale of the system would be increased up to

a maximum of 1/γ01. This corresponds to the picosecond regime for our TDBC:PVA

system. Under this circumstance, transient LSEP modes would become more easily

observable.

4. Conclusions

We have re-evaluated the measurements reported in our previous work and have

obtained an improved permittivity for our J-aggregate-doped 1.46 wt% TDBC:PVA

polymer film. Using a quantum-mechanical framework we have given support to our

previous investigation based on a classical analysis [12], that TDBC doped nanoparticles

can exhibit a localized surface exciton-polariton (LSEP) mode. We have used a

quantum model to show that these nanoparticles may also exhibit transient LSEP

modes in the sub-picosecond regime. These results help strengthen the idea that

molecular excitonic materials provide an interesting alternative upon which to base

nanophotonics [9]. By using molecular materials the possibility of bottom-up approaches

such as supramolecular chemistry and self-assembly can be brought to bear on the

production of nanophotonic structures.
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