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Abstract. In the paper, the authors find two closed forms involving the Stirling numbers of the
second kind and in terms of a determinant of combinatorial numbers for the Bernoulli polynomials

and numbers.

1. Introduction

It is common knowledge that the Bernoulli numbers and polynomials Bk and Bk(u) for k ≥ 0
satisfy Bk(0) = Bk and can be generated respectively by

z

ez − 1
=

∞∑
k=0

Bk
zk

k!
= 1− z

2
+

∞∑
k=1

B2k
z2k

(2k)!
, |z| < 2π

and
zeuz

ez − 1
=

∞∑
k=0

Bk(u)
zk

k!
, |z| < 2π.

Because the function x
ex−1 − 1 + x

2 is odd in x ∈ R, all of the Bernoulli numbers B2k+1 for k ∈ N
equal 0. It is clear that B0 = 1 and B1 = − 1

2 . The first few Bernoulli numbers B2k are

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
,

B10 =
5

66
, B12 = − 691

2730
, B14 =

7

6
, B16 = −3617

510
.

The first five Bernoulli polynomials are

B0(u) = 1, B1(u) = u− 1

2
, B2(u) = u2 − u+

1

6
,

B3(u) = u3 − 3

2
u2 +

1

2
u, B4(u) = u4 − 2u3 + u2 − 1

30
.

In combinatorics, the Stirling numbers S(n, k) of the second kind for n ≥ k ≥ 1 can be computed
and generated by

S(n, k) =
1

k!

k∑
`=1

(−1)k−`
(
k

`

)
`n and

(ex − 1)k

k!
=

∞∑
n=k

S(n, k)
xn

n!

respectively. See [7, p. 206].
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It is easy to see that the generating function of Bk(u) can be

zeuz

ez − 1
=

[
e(1−u)z − e−uz

z

]−1
=

1∫ 1−u
−u ezt d t

=
1∫ 1

0
ez(t−u) d t

. (1.1)

This expression will play important role in this paper. For related information on the integral
expression (1.1), please refer to [12, 15, 17, 31, 32] and plenty of references cited in the survey and
expository article [30].

In mathematics, a closed form is a mathematical expression that can be evaluated in a finite num-
ber of operations. It may contain constants, variables, four arithmetic operations, and elementary
functions, but usually no limit.

The main aim of this paper is to find two closed forms for the Bernoulli polynomials and numbers
Bk(u) and Bk for k ∈ N.

The main results can be summarized as the following theorems.

Theorem 1.1. The Bernoulli polynomials Bn(u) for n ∈ N can be expressed as

Bn(u) =

n∑
k=1

k!
∑

r+s=k

∑
`+m=n

(−1)m
(
n

`

)
`!

(`+ r)!

m!

(m+ s)!

[
r∑

i=0

s∑
j=0

(−1)i+j

(
`+ r

r − i

)

×
(
m+ s

s− j

)
S(`+ i, i)S(m+ j, j)

]
um+s(1− u)`+r. (1.2)

Consequently, the Bernoulli numbers Bk for k ∈ N can be represented as

Bn =

n∑
i=1

(−1)i
(
n+1
i+1

)(
n+i
i

)S(n+ i, i). (1.3)

Theorem 1.2. Under the conventions that
(
0
0

)
= 1 and

(
p
q

)
= 0 for q > p ≥ 0, the Bernoulli

polynomials Bk(u) for k ∈ N can be expressed as

Bk(u) = (−1)k
∣∣∣∣ 1

`+ 1

(
`+ 1

m

)[
(1− u)`−m+1 − (−u)`−m+1

]∣∣∣∣
1≤`≤k,0≤m≤k−1

, (1.4)

where | · |1≤`≤k,0≤m≤k−1 denotes a k× k determinant. Consequently, the Bernoulli numbers Bk for
k ∈ N can be represented as

Bk = (−1)k
∣∣∣∣ 1

`+ 1

(
`+ 1

m

)∣∣∣∣
1≤`≤k,0≤m≤k−1

. (1.5)

2. Lemmas

For proving the main results, we need the following notation and lemmas.
In combinatorial mathematics, the Bell polynomials of the second kind Bn,k are defined by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0. See [7, p. 134, Theorem A].
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Lemma 2.1 ([1, Example 2.6] and [7, p. 136, Eq. [3n]]). The Bell polynomials of the second kind
Bn,k meets

Bn,k(x1 + y1, x2 + y2, . . . , xn−k+1 + yn−k+1)

=
∑

r+s=k

∑
`+m=n

(
n

`

)
B`,r(x1, x2, . . . , x`−r+1)Bm,s(y1, y2, . . . , ym−s+1). (2.1)

Lemma 2.2 ([7, p. 135]). For n ≥ k ≥ 0, we have

Bn,k

(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, xn, . . . , xn−k+1), (2.2)

where a and b are any complex numbers.

Lemma 2.3 ([13, 39]). For n ≥ k ≥ 1, we have

Bn,k

(
1

2
,

1

3
, . . . ,

1

n− k + 2

)
=

n!

(n+ k)!

k∑
i=0

(−1)k−i
(
n+ k

k − i

)
S(n+ i, i). (2.3)

Lemma 2.4. Let f(t) = 1 +
∑∞

k=1 akt
k and g(t) = 1 +

∑∞
k=1 bkt

k be formal power series such that
f(t)g(t) = 1. Then

bn = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 · · · 0
a2 a1 1 0 · · · 0
a3 a2 a1 1 · · · 0
...

...
...

...
. . .

...
an−1 an−2 an−3 an−4 · · · 1
an an−1 an−2 an−3 · · · a1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. The identity f(t)g(t) = 1 entails the matrix identity
1 0 0 · · · 0
b1 1 0 · · · 0
b2 b1 1 · · · 0
...

...
...

. . .
...

bn bn−1 bn−2 · · · 1

 =


1 0 0 · · · 0
a1 1 0 · · · 0
a2 a1 1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · 1


−1

,

where
(
·
)−1

stands for the inverse of an invertible matrix
(
·
)
. Applying Cramer’s rule for a system

of linear equations proves Lemma 2.4. �

3. Proofs of Theorems 1.1 and 1.2

We are now in a position to prove our main results.

Proof of Theorem 1.1. In terms of the Bell polynomials of the second kind Bn,k, the Faà di Bruno
formula for computing higher order derivatives of composite functions is described in [7, p. 139,
Theorem C] by

dn

dxn
f ◦ g(x) =

n∑
k=1

f (k)(g(x))Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
. (3.1)
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By the integral expression (1.1), applying the formula (3.1) to the functions f(y) = 1
y and y =

g(x) =
∫ 1

0
ex(t−u) d t results in

dn

dxn

(
xeux

ex − 1

)
=

dn

dxn

(
1∫ 1

0
ex(t−u) d t

)

=

n∑
k=1

(−1)kk!(∫ 1

0
ex(t−u) d t

)k+1
Bn,k

(∫ 1

0

(t− u)ex(t−u) d t,

∫ 1

0

(t− u)2ex(t−u) d t, . . . ,

∫ 1

0

(t− u)n−k+1ex(t−u) d t

)
→

n∑
k=1

(−1)kk!Bn,k

(∫ 1

0

(t− u) d t,

∫ 1

0

(t− u)2 d t, . . . ,

∫ 1

0

(t− u)n−k+1 d t

)

=

n∑
k=1

(−1)kk!Bn,k

(
(1− u)2 − (−u)2

2
,

(1− u)3 − (−u)3

3
, . . . ,

(1− u)n−k+2 − (−u)n−k+2

n− k + 2

)

as x→ 0. Further employing (2.1), (2.2), and (2.3) acquires

dn

dxn

(
xeux

ex − 1

)∣∣∣∣
x=0

=

n∑
k=1

(−1)kk!
∑

r+s=k

∑
`+m=n

(
n

`

)

× B`,r

(
(1− u)2

2
,

(1− u)3

3
, . . . ,

(1− u)`−r+2

`− r + 2

)
× Bm,s

(
− (−u)2

2
,− (−u)3

3
, . . . ,− (−u)m−s+2

m− s+ 2

)
=

n∑
k=1

(−1)kk!
∑

r+s=k

∑
`+m=n

(
n

`

)
(1− u)`+rB`,r

(
1

2
,

1

3
, . . . ,

1

`− r + 2

)
× us(−u)mBm,s

(
1

2
,

1

3
, . . . ,

1

m− s+ 2

)
=

n∑
k=1

k!
∑

r+s=k

∑
`+m=n

(−1)m
(
n

`

)
`!

(`+ r)!

m!

(m+ s)!

×

[
r∑

i=0

s∑
j=0

(−1)i+j

(
`+ r

r − i

)(
m+ s

s− j

)
S(`+ i, i)S(m+ j, j)

]
um+s(1− u)`+r.

As a result, the formula (1.2) follows immediately.
Letting u = 0 in (1.2), simplifying, and interchanging the order of sums lead to the formula (1.3).

The proof of Theorem 1.1 is complete. �
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The first proof of Theorem 1.2. Let u = u(z) and v = v(z) 6= 0 be differentiable functions. In [3,
p. 40], the formula

dk

d zk

(
u

v

)
=

(−1)k

vk+1

∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 . . . 0
u′ v′ v . . . 0
u′′ v′′ 2v′ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u(k−1) v(k−1)
(
k−1
1

)
v(k−2) . . . v

u(k) v(k)
(
k
1

)
v(k−1) . . .

(
k

k−1
)
v′

∣∣∣∣∣∣∣∣∣∣∣∣
(3.2)

for the kth derivative of the ratio u(z)
v(z) was listed. For easy understanding and convenient availability,

we now reformulate the formula (3.2) as

dk

d zk

(
u

v

)
=

(−1)k

vk+1

∣∣A(k+1)×1 B(k+1)×k
∣∣
(k+1)×(k+1)

, (3.3)

where the matrices

A(k+1)×1 = (a`,1)0≤`≤k

and

B(k+1)×k = (b`,m)0≤`≤k,0≤m≤k−1

satisfy

a`,1 = u(`)(z) and b`,m =

(
`

m

)
v(`−m)(z)

under the conventions that v(0)(z) = v(z) and that
(
p
q

)
= 0 and v(p−q)(z) ≡ 0 for p < q. See also [26,

Section 2.2] and [38, Lemma 2.1]. By the integral expression (1.1), applying the formula (3.3) to

u(z) = 1 and v(z) =
∫ 1

0
ez(t−u) d t yields a1,1 = 1, a`,1 = 0 for ` > 1,

b`,m =

(
`

m

)∫ 1

0

(t− u)`−mez(t−u) d t

→
(
`

m

)∫ 1

0

(t− u)`−m d t, z → 0

=

(
`

m

)
(1− u)`−m+1 − (−u)`−m+1

`−m+ 1

for 0 ≤ ` ≤ k and 0 ≤ m ≤ k − 1 with ` ≥ m, and

dk

d zk

(
zeuz

ez − 1

)
=

(−1)k

bk+1
0,0

|b`,m|1≤`≤k,0≤m≤k−1

→ (−1)k
∣∣∣∣( `m

)∫ 1

0

(t− u)`−m d t

∣∣∣∣
1≤`≤k,0≤m≤k−1

, z → 0

= (−1)k
∣∣∣∣( `m

)
(1− u)`−m+1 − (−u)`−m+1

`−m+ 1

∣∣∣∣
1≤`≤k,0≤m≤k−1

.

The formula (1.4) is proved.
The formula (1.5) follows readily from taking u = 0 in (1.4). The first proof of Theorem 1.2 is

complete. �
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The second proof of Theorem 1.2. Applying Lemma 2.4 to g(t) = teut

et−1 and f(t) = e(1−u)t−e−ut

t

reveals that bn = Bn(u)
n! and an = (1−u)n+1−(−u)n+1

n! . Hence, by virtue of Lemma 2.4,

Bn(u) = (−1)nn!
∣∣∣ (1−u)`−m+1−(−u)`−m+1

(`−m+1)!

∣∣∣
1≤`≤n,0≤m≤n−1

.

Multiplying the row ` of this determinant by `! and dividing the row m by m! gives

Bn(u) = (−1)n
∣∣∣∣ 1

`+ 1

(
`+ 1

m

)[
(1− u)`−m+1 − (−u)`−m+1

]∣∣∣∣
1≤`≤n,0≤m≤n−1

.

The formula (1.4) is thus proved. The second proof of Theorem 1.2 is complete. �

4. Remarks and comparisons

In this final section, we will remark on our main results and compare them with some known
conclusions.

Remark 4.1. The formula (1.3) recovers the one appeared in [9, p. 48, (11)], [13, (6)], [19, p. 59],
and [35, p. 140]. For detailed infirmation, please refer to [13, Remark 4]. There are also some other
formulas and inequalities for the Bernoulli numbers and polynomials in [10, 11, 16, 18, 24, 25, 27,
29, 33] and references cited therein. Hence, Theorems 1.1 and 1.2 generalize those corresponding
results obtained in these references.

Remark 4.2. Motivated by the idea in [31, 32], Guo and Qi generalized in [15] the Bernoulli poly-
nomials and numbers. Hereafter, some papers such as [21, 22] were published.

Remark 4.3. The special values of the Bell polynomials of the second kind Bn,k are important
in combinatorics and number theory. Recently, some special values for Bn,k were discovered and
applied in [14, 26, 34, 39].

Remark 4.4. In [4, 20], several different approaches to the theory of Bernoulli polynomials Bk(u)
were surveyed. However, there is no any conclusion directly related to Theorems 1.1 and 1.2.

Let {an}0≤n≤∞ be a sequence of complex numbers and let {Dn(ak)}0≤n≤∞ be a sequence of
determinants such that D0(ak) = 1 and

Dn(ak) =

∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0
an an−1 an−2 · · · a1

∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N.

In [37], two identities

B2n = (−1)n
(2n)!

2

{
n∑

`=0

(−1)`

(2`)!
Dn−`

(
1

(2k + 1)!

)
+Dn

(
1

(2k + 1)!

)}
(4.1)

and

B2n = (−1)n+1 (2n)!

2(22n−1 − 1)
Dn

(
1

(2k + 1)!

)
(4.2)

for n ∈ N were established.
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In [8], six approaches to the theory of Bernoulli polynomials were mentioned. Mainly, a deter-
minantal approach was introduced in [8] by defining B0(x) = 1 and

Bn(x) =
(−1)n

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 x3 · · · xn−1 xn

1 1
2

1
3

1
4 · · · 1

n
1

n+1

0 1 1 1 · · · 1 1
0 0 2 3 · · · n− 1 n

0 0 0
(
3
2

)
· · ·

(
n−1
2

) (
n
2

)
...

...
...

...
. . .

...
...

0 0 0 0 · · ·
(
n−1
n−2
) (

n
n−2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N. (4.3)

As a result, the Bernoulli numbers

Bn =
(−1)n

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
3

1
4 · · · 1

n
1

n+1

1 1 1 · · · 1 1
0 2 3 · · · n− 1 n

0 0
(
3
2

)
· · ·

(
n−1
2

) (
n
2

)
...

...
...

. . .
...

...

0 0 0 · · ·
(
n−1
n−2
) (

n
n−2
)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ∈ N. (4.4)

In [6, Theorem 1.1], it was obtained that, if A(z) =
∑∞

n=0 anz
n and B(z) =

∑∞
n=0 bnz

n are the
ordinary generating functions of {an}0≤n≤∞ and {bn}0≤n≤∞ such that A(x)B(x) = 1, then a0 6= 0

and bn = (−1)nDn(ak)

an+1
0

. Therefore, Lemma 2.4 is a special case of [6, Theorem 1.1]. In the paper [6],

as applications of [6, Theorem 1.1], some properties of Dn(ak) were discovered and applied to give
an elegant proof of (4.1) and (4.2), and to express the Genocchi numbers, the tangent numbers,
higher order Bernoulli numbers, the Stirling numbers of the first and second kinds, the harmonic
numbers, higher order Euler numbers, higher order Bernoulli numbers of the second kind, and so
on, in terms of Dn(ak). Especially, the formulas

Bn = (−1)nn!Dn

(
1

(k + 1)!

)
,

which recovers [5, Eq.(4)], and

Bn = n!Dn

(
(−1)k

(k + 1)!

)
were derived.

In [2], it was mentioned that the formula

Bn =
(−1)n−1

(n+ 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 0 0 · · · 0
1 3 3 0 · · · 0
1 4 6 4 · · · 0
1 5 10 10 · · · 0
· · · · · · · · · · · · · · · · · ·(
n+1
0

) (
n+1
1

) (
n+1
2

) (
n+1
3

)
· · ·

(
n+1
n−1
)

∣∣∣∣∣∣∣∣∣∣∣∣
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was traced back to the book [36]. The Bernoulli polynomials Bn(x) were represented in [2] as

Bn(x) = (−1)nn!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0
x
1!

1
2! 1 0 0 0 · · · 0

x2

2!
1
3!

1
2! 1 0 0 · · · 0

x3

3!
1
4!

1
3!

1
2! 1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
xn

n!
1

(n+1)!
1
n!

1
(n−1)!

1
(n−2)!

1
(n−3)! · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n
n!∏n
k=1 k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0
x 1

2! 1 0 0 0 · · · 0
x2 2!

3! 1 2! 0 0 · · · 0
x3 3!

4! 1 3!
2! 3! 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
xn n!

(n+1)! 1 n!
(n−1)!

n!
(n−2)!

n!
(n−3)! · · · n!

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n
n−1∏
k=1

(k − 1)!

k!

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 0 0 0 · · · 0
x 1

2! 1 0 0 0 · · · 0
x2 2!

3! 1 2! 0 0 · · · 0
x3 3!

4! 1 3!
2!

3!
2! 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
xn n!

(n+1)! 1 n!
(n−1)!

n!
(n−2)!2!

n!
(n−3)!3! · · · n!

2!(n−2)!

∣∣∣∣∣∣∣∣∣∣∣∣
.

Similar to the above representations for the Bernoulli polynomials Bn(x), some determinantal
expressions for the hypergeometric Bernoulli polynomials were further presented in [2].

Remark 4.5. The idea of Lemma 2.4 was used in [23, pp. 22–23] to express determinants of complete
symmetric functions in terms of determinants of elementary symmetric functions.

Remark 4.6. This manuscript is a revision and extension of the first two versions of the preprint [28].
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