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Trade-o↵s are thought to arise from inevitable, biophysical limitations that7

prevent organisms from optimising multiple traits simultaneously. A leading8

explanation for biodiversity maintenance is a theory that if the shape, or9

geometry, of a trade-o↵ is right, then multiple species can coexist. Testing this10

theory, however, is di�cult as trait data is usually too noisy to discern shape,11

or trade-o↵s necessary for the theory are not observed in vivo. To address this,12

we infer geometry directly from the biophysical mechanisms that cause trade-13

o↵s, deriving the geometry of two by studying nutrient uptake and metabolic14

properties common to all living cells. To test for their presence in vivo we15

isolated Escherichia coli mutants that vary in a nutrient transporter, LamB, and16

found evidence for both trade-o↵s. Consistent with data, population genetics17

models incorporating the trade-o↵s successfully predict the co-maintenance of18

three distinct genetic lineages, demonstrating that trade-o↵ geometry can be19

deduced from fundamental principles of living cells and used to predict stable20

genetic polymorphisms.21

Introduction22

Trade-o↵s between life history traits are seen as a key part of the processes that main-23

tain the rich biodiversity observed in microbes,1 plants,2 insects3 and rain forests.4 Due24

to its importance to biodiversity theory, a search for trade-o↵ data has become the sub-25

ject of a burgeoning experimental literature using microbial populations in the labora-26

tory.1,5–12 However, despite the significance of trade-o↵ geometry to the theory and the27
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long-postulated hypothesis that trade-o↵s arise from life-history constraints, we know of28

no successful derivation of trade-o↵ geometry in living systems from fundamental physical29

or biochemical principles. Resolving this absence is critical if we are to successfuly predict30

conditions that maintain diverse microbial communities. Here we present a mechanistic31

theory, supported by data, on the geometry of two trade-o↵s among microbes: one is a32

feeding trade-o↵, one is a growth trade-o↵. These trade-o↵s have been studied before but33

their shapes have remained elusive, yet here we find agreement between theory and data34

showing that one trade-o↵ is convex and the other is sigmoidal and both are implicated35

in diversity maintenance.36

The first trade-o↵ we study is the metabolic rate-yield trade-o↵ (the RYTO or ‘waste37

from haste’ trade-o↵13,14) whose shape we found by culturing Escherichia coli at di↵er-38

ent growth rates. The second trade-o↵ shape we deduce is that of the nutrient uptake39

rate-a�nity trade-o↵ (the RATO14,15) by measuring the growth kinetics of a library of40

mutant E. coli that varied in a sugar transporter, LamB. Given these two geometries, prior41

theory predicts that there could be nutrient conditions where divergent consumer strate-42

gies would coexist in a microbial population.16 To test this, we used bespoke theoretical43

population genetics models to determine environmental conditions that would support a44

multiplicity of nutrient transporter genotypes in E. coli. However, this theory successfully45

predicted the frequency dynamics of three genetic lineages in a laboratory microcosm only46

when it incorporated two trade-o↵s, not one. We therefore establish that trade-o↵s are a47

consequence of the physical necessities of life and moreover, genetic polymorphisms and48

biodiversity patterns can be predicted from the resulting trade-o↵ geometries.49

Results50

Many mechanisms have been proposed for the RYTO in bacteria, both physiological1751

and metabolic,13 and a quadratic shape is thought to describe it.13 Attempts to find52

the RYTO in vivo, however, have been mixed. A negative correlation between growth53

rate and yield has been observed but without the quadratic form.12 Moreover, positive54

rate-yield correlations, the antithesis of a rate-yield trade-o↵, have been observed in other55

bacterial species9 and, curiously, this relationship is also predicted to be constrained by56
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a quadratic geometry.10 We can reconcile these apparent contradictions by following a57

suggestion9 that r-k relationships can be manipulated by varying the carbon richness of58

the environment in which bacteria grow (for clarity, we use k for carrying capacity where59

others use K). We hypothesize that r and k are indeed positively correlated and that the60

shape of the RYTO can be extracted from r-k datasets.61

To study the RYTO, we cultured E.coli B (REL606) in Davis minimal (DM) medium62

supplemented with a range of sugar (maltotriose) concentrations. We determined their63

r (exponential growth rate) and k (maximal population size) values by fitting the math-64

ematical logistic model d

dt

x = rx(1 � x/k) to growth data, where x(t) denotes bacterial65

population density at time t (Supplementary Discussion, section C). At low sugar concen-66

trations, ranging from 1 to 8µg/ml the experiment recapitulates a prior dataset9 whereby67

a positive, linear correlation between r and k is observed (Figure 1a). However, when68

observations from higher maltotriose concentrations are added to the data, ranging from 169

to 125µg/ml, the r-k relationship becomes nonlinear because r saturates. This is expected70

because growth rate is limited whereas k increases proportionally to the maltotriose sup-71

plied (Figure 1a, Supplementary Fig. 15). Although r and k adaptation are classically72

viewed as conflicting life history strategies18 here they are positively correlated. Never-73

theless, this is still consistent with a RYTO, as we now explain.74

Assume, for the moment, that c is a constant representing the biomass yield of E.coli per75

maltotriose, when cultured with maltotriose as the sole carbon source at supply concen-76

tration S

0

µg/ml. We assume Monod growth kinetics, so the bacterial population density77

B changes as d

dt

B = cBV

max

S/(K
m

+ S) and maltotriose reduces in concentration as78

d

dt

S = �BV

max

S/(K
m

+ S), where V

max

is the maximal rate of uptake of maltotriose and79

K

m

is the maltotriose half saturation constant. The initial condition S(0) = S

0

applies80

here, B(0) represents a bacterial inoculate whose size is assumed negligibly small.81

A conservation law holds in this model, B(t)/c+ S(t) = B(0)/c+ S

0

, so that when S ⇡ 082

at carrying capacity, k = B ⇡ c · S
0

thus k is proportional to the maltoriose supplied,83

if we neglect B(0). If we approximate exponential growth using the Monod model, so84

r ⇡ cV

max

S

0

/(K
m

+ S

0

), then k/r ⇡ (K
m

+ S

0

)/V
max

and so k and k/r should both85

exhibit linear dependence on S

0

, hence k and r should be positively correlated. This is86
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consistent with our observations (for k versus S
0

: R2

> 0.99, p < 10�8; for k/r versus S
0

:87

R

2 ⇡ 0.93, p < 10�4; Supplementary Fig. 15). However, observations also indicate that88

yield, meaning c or k/S
0

, is not constant because it decreases with increasing maltotriose89

supply (Figure 1b, F-test versus constant model, F = 17.3, p < 0.00014).90

We therefore need a more accurate description of the variable yield data in Figure 1c. So,91

we relax our assumption that yield is a constant independent of the carbon supplied. Mal-92

totriose import and metabolism is carried out by the genes of the mal regulon.19 This set is93

induced by malT, which itself is expressed when maltodextrins like maltotriose are present.94

The uptake of maltodextrins is facilitated by the LamB maltoporin in combination with95

the periplasmic maltodextrin-binding protein MalE and the ATP-driven inner-membrane96

transport system MalGFK
2

. Once in the cytoplasm maltotriose is degraded by MalZ97

into maltose and glucose, MalQ then produces two glucoses for each available maltose.98

Given this, a theoretical form for the rate and yield of maltose metabolism can be derived99

(Supplementary Discussion, section B) by representing glycolysis and the TCA cycle as100

a branched pathway20 (Figure 1a). Using ATP yield as a proxy for biomass yield, this101

model predicts a relationship between carbon supply, S
0

, and cell yield. Writing c(S
0

) to102

represent this relationship, it has the following repression-activation form103

c(S
0

) = c

hi

1

1 + pS

0

+
pS

0

1 + pS

0

c

lo

. (1)

Here c

hi

represents the highest yield attainable, achieved at the lowest sugar concentra-104

tions, whereas c

lo

is the yield attained when sugar is abundant, p is a phenotype that105

controls the rate of decrease in yield with increasing sugar supply.106

The positive r-k correlation predicted by the constant and variable-yield assumptions107

are consistent with r-k data (Figure 1b) with agreement across two orders of magnitude108

of maltotriose supply in both cases. However, only the decreasing yield model correctly109

captures the yield data across the full range of maltotriose concentrations (Figure 1c, R2

>110

0.99, p ⌧ 10�15 from above F-test). The resulting 5-parameter, within-strain geometric111

RYTO model112

(growth rate, cell yield) =
✓
c(S

0

)
S

0

V

max

K

m

+ S

0

, c(S
0

)
◆

(2)

has a sigmoidal shape that compares favourably with data (Figure 1c). Note that (2) only113

has only 4 independent parameters, V
max

merely converts cell yield into a rate.114
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The logistic equation contains no explicit term for nutrient availability so, we deployed the115

following improvement to that model that better captures di↵erent bacterial growth phases116

and which can also represent N -strain, frequency- and density-dependent competition for117

maltotriose (where N � 1):118

d

dt

B

i

= ⌫n

i

+G

i

(S)B
i

,

d

dt

S = �
NX

i=1

U

i

(S)B
i

,

d

dt

n

i

= �⌫n

i

. (3)

Here B

i

is density of the i-th strain, growth rate is G
i

(S) := c

i

· U
i

(S), c
i

is cell yield and119

U

i

(S) is nutrient uptake rate (at nutrient concentration S):120

U

i

(S) :=
V

i

max

S

K

i

m

+ S

. (4)

The variable n
i

represents a subpopulation of the inoculate that may be in a non-vegetative121

state and the associated ⌫

i

-dependent terms allow the model to capture the transition from122

lag to exponential phase. When N = 1 equation (3) is consistent with the RYTO data123

for E.coli strain REL606 (Supplementary Fig. 14) and when N > 1, it can predict the124

outcome of multi-strain competition experiments (Supplementary Discussion, section C).125

Pursuing evidence of a between-strain RYTO, we generated a library of E. coli mutants126

that vary in growth rate because of mutations that interfere with maltotriose uptake. E.127

coli uses LamB to transport maltotriose across the outer membrane however it may also128

be taken up by OmpF, albeit over an order of magnitude more slowly21,22. LamB is also129

a receptor for the virus �, which provides a convent way to generate LamB mutations.130

Previous work has shown that when E. coli and � are co-cultured, E. coli rapidly evolves131

resistance through an array of lamB mutations 23,24, some of which alter the di↵usion of132

maltodextrins across the outer membrane by altering the pore dimensions25. We therefore133

co-cultured 100 separate populations in batch for three days and isolated two bacteria134

per population. The large number of populations and low sampling intensity within each135

population helped maximize the number of unique lamB mutants isolated, the short time136

period ensured only a single mutation occurred in the lamB gene and nowhere else in137

the genome. Altogether we harvested 50 novel E.coli strains with SNPs, insertions and138

deletions in the lamB gene, the library also includes frameshift mutations that render139

LamB inoperable (Supplementary Table 1).140

We estimated uptake rate, yield and therefore growth rate for each strain by culturing141

them separately in DM media supplemented with 10, 25 and 250µg/ml maltotriose by142
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fitting (3) to that data (Supplementary Discussion, section C). This consistently produced143

similar values for yield between strains and environments and ignificant evidence for a144

negative rate-yield correlation between strains was observed but only at a maltotriose145

concentration of 250µg/ml, not at 25µg/ml (p < 0.00064 and p > 0.16 respectively; see146

Figure 2a).147

The same dataset points to a second possible trade-o↵: a correlation betweenK

m

and V

max

148

(Figure 3a, R2 ⇡ 0.58, F ⇡ 70.5, p < 10�10). This prediction is consistent with prior single149

transporter models for small-molecule uptake which show that changes to a transporter’s150

a�nity for the molecule will produce concomitant changes in its maximal translocation151

rate.26–28 This was demonstrated by distorting the performance of transmembrane chan-152

nels by creating potential energy wells within a synthetic pore using holographic tweezers.153

These experiments showed that an optimal transporter configuration must balance a high154

translocation probability and ‘not too long’ a blockage of the channel;27 this is the physical155

basis of the RATO.156

Di↵erent theories are possible for RATO geometries depending on the assumptions they157

use. A linear relationship between K

m

and V

max

can be derived27 (in particular, their158

equation (6)) whereby K

m

= pV

max

+q for parameters (p, q). This result is consistent with159

a theoretical enzymatic model based on a transporter embedded within a single membrane160

(Supplementary Discussion, section B), so this would appear to be the description of161

the trade-o↵ we seek. However, a�nity for a carbon source, a, is usually defined by162

a := dU

dS

(0) = V

max

/K

m

and so strains with di↵erent V
max

and K

m

phenotypes could have163

a common maltotriose a�nity, if q = 0. However, RATO data observed between the E. coli164

library strains is too noisy to eliminate linearity or to resolve shape (Figure 3a). To remedy165

this, we used a related Saccharomyces cerevisiae dataset where glucose transporters had166

been genetically manipulated.26 As this data exhibits significant nonlinearity (see Figure167

3b for the relative likelihoods, RLlinear, of linear and nonlinear datafits where RLlinear <168

0.013), the prior argument supporting a linear K
m

-V
max

relationship will thus have to be169

modified.170

On reflection, small molecule uptake in some microbes is a two-step process: entry into the171

cytoplasm of Gram-negative bacteria and yeast requires the passage through two di↵usive172
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barriers, not one. Modifying the above single membrane model to account for this, K
m

173

depends nonlinearly on V

max

in the resulting theory (Supplementary Discussion, section174

B):175

K

m

⇡ pV

2

max

+ qV

max

+ r

1 + sV

max

, (5)

where (p, q, r, s) are parameters. A quadratic nonlinearity here is expected because if176

transport through one di↵usive barrier leads to a linear K
m

-V
max

relationship, two barriers177

positioned in serial separated by a periplasm should produce a quadratic-like function,178

which (5) is. A power-law fit to empirical (V
max

,K

m

) data of the form K

m

⇡ a · V b

max

is179

consistent with (5) because b ⇡ 1.86± 0.23 (mean ± estimated s.e.m., df = 8, Figure 3b).180

We note that the role played by MalE in E.coli is neglected as part of the derivation of (5)181

(in Supplementary Discussion, section B), but if we were to assume that MalE-maltotriose182

binding is so rapid that no free maltotriose is found in the periplasm, then the form of (5)183

will not change.184

To test whether the RATO could promote the maintenance of bacterial diversity, we185

isolated a subset of our library that exhibited a RATO. Three strains, labelled 9a (a186

predicted high a�nity strain; an AAC deletion at 871bp in lamB), 19a (a frameshift187

mutant with non-functional LamB, T insertion at 610bp) and 62b (predicted low a�nity188

strain; A ! G at 1211bp) were identified with di↵erent maltotriose transport properties189

(Figure 3b), one-way anova, F ⇡ 28.2, p < 7 · 10�13). The three-strain version of (3)190

predicts they should coexist in a fluctuating resource environment, such as a batch culture,191

where bacteria are inoculated into fresh flasks each day with high initial resources that192

are depleted throughout a 24-hour cycle as the bacteria grow (Figure 4a).193

We cultured 9a, 19a and 62b in DM with 300µg/ml of maltotriose for 18 days in such194

a batch culture microcosm and found, consistent with predictions, all three genotypes195

persisted. However, the model is not quantitative (Figure 4b): it fails to predict the196

relative frequencies at which each genotype was maintained. Most notably, the micro-197

cosm was dominated by the high-a�nity strain, 9a, whereas the model predicts the low-198

a�nity strain, 62b, should prevail (Figure 4a). This shows that consumer lifestyle and the199

between-strain RATO alone are not su�cient to explain the dynamics we observe.200

To understand why theory and experiments disagreed, we reasoned that the RYTO could201
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play a role because it could lead fast-uptake genotypes to have low e�ciencies which202

would impact growth rates. To justify this we followed the path of maltotriose through203

the cell which is converted to glucose and an excess of glucose produced at high maltotriose204

concentrations will lead glycolytic NADH to repress citrate synthase and, therefore, the205

TCA cycle.29 As total ATP yield from the TCA cycle is greater per glucose supplied than206

from glycolysis, this repression should strengthen the within-strain RYTO we observed207

(Figure 1). We therefore included a glucose-dependent, maltotriose-to-biomass conversion208

e�ciency into the model to mimic the RYTO (Supplementary Discussion, section D). Only209

then, with two trade-o↵s, do we have a theory consistent with the 18-day mean frequency210

dynamics of the strains that also exhibits the long-term coexistence of all three (Figure211

4c).212

To test for stable coexistence, we inoculated the three strains into a fresh microcosm213

at relative frequencies predicted by the trained dual trade-o↵ model after running it to214

equilibrium. After so doing, we found no evidence of a deviation from the predicted215

strain frequencies when propagating them for a further seven days of seasonal co-culture216

(Figure 4c and Supplementary Discussion, section D). The eventual deviation that we217

observed of the microcosm from the theoretical prediction is only to be expected as the218

coexisting lineages likely gain further mutations that are not encoded within the model219

(Supplementary Discussion, section D).220

Discussion221

Trade-o↵ shape is believed to be key to understanding species diversity in global ecosys-222

tems and our analyses concur. Our theoretical models and empirical analyses elucidate223

the shape of two, the RATO and RYTO. According to our theory, both must be invoked224

simultaneously to explain the stable maintenance of genetic diversity in an E.coli trans-225

porter gene, lamB, when mutants are co-cultured within a seasonal resource dynamic. The226

RATO, with its quadratic shape (Figure 3b), is the result of a biophysical constraint that227

arises because the transport of extracellular nutrients into the cell is optimised. As di↵er-228

ent transporter structures are optimal for di↵erent extracellular nutrient concentrations,229

a continuum of potential sugar uptake niches is created (Figure 4a) that here maintains230
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three genetic lineages. However, nutrient consumption alone cannot account for strain231

frequencies and di↵erential e�ciencies resulting from downstream metabolism due to the232

RYTO, with its sigmoidal shape (Figure 1c), ensure that e�cient and not greedy con-233

sumers prevail.234

Trade-o↵s have long been postulated as a mechanism supporting genetic diversity in235

ecosystems and it has become a fundamental problem in ecology to find them in liv-236

ing systems.30 Importantly, we show they are predictable: because trade-o↵s are the237

result of physical processes within the cell, their shapes can be derived mathematically238

and corroborated against empirical data. Consistent with trade-o↵ theories of biodiver-239

sity, we also show that polymorphisms in specific feeding genes are predictable. However,240

just one trade o↵ was not enough, we need to account for the simultaneous presence of241

two to correctly predict allele frequencies in a bacterial microcosm. Therefore, theories of242

multiple simultaneous trade-o↵s31 are likely needed to capture the diversity observed in243

natural ecosystems.244

Methods245

lamB mutant library generation. We co-cultured E. coli strain B(REL606), from246

the laboratory of Richard Lenski, Michigan State University, Michigan, USA, with the247

obligatorily lytic � strain cI26, from the laboratory of Donald Court, National Cancer248

Institute, Maryland, USA. When co-cultured with cI26, REL606 experiences strong pres-249

sure to evolve resistance because E. coli B strains lack generalized phage defenses such250

as mucoid cell formation, restriction modification, or CRISPR adaptive immunity.32,33251

This pressure is magnified by the lytic phages increased virulence as compared to its lyso-252

genic relatives.34 100 flasks were initiated with 103 bacterial cells and even fewer phage253

(⇠ 102 particles). We initiated the study with small populations to increase the likelihood254

that mutations for defense would arise de novo, which improved our chances of isolating255

unique lamB mutations. Culturing occurred in 50ml Erlenmeyer flasks, filled with 10ml of256

modified Davis Medium (DM)35 (125µg/ml maltotriose instead of glucose and 1µg/ml of257

magnesium sulphate), incubated for 24 hours, at 37oC, and shaken at 120 rpm. Bacteria258

were pre-conditioned for a full 24-hour cycle before being co-cultured with phage. After259
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the first 24 hour of incubation in the mixed cultures, a random 100µl sample of each flask260

was transferred to a fresh flask and the bacteria and phage were allowed to grow again.261

This cycle was repeated twice and bacteria were sampled after the third day of growth.262

We ended the experiment at this early time-point to ensure that the bacteria only had263

enough time to evolve a single mutation for defense. Additionally, in previous experiments264

we observed the greatest genotypic diversity of bacteria on the third day. E. coli evolve265

resistance in this environment through mutations in many loci, however preliminary ex-266

periments revealed that lamB is the most common. For this study we focused just on267

genotypes that had mutations in lamB.268

Bacterial isolation and storage. To isolate bacteria we streaked a sample on Luria269

Bertani (LB) agar plates,36 incubated them for 24 hours at 37oC, and arbitrarily picked270

two colonies. Next we re-plated each colony two more times serially to remove all phage.271

Finally we grew each colony in liquid LB overnight and preserved two 1ml samples in 15%272

glycerol and frozen at -80oC. We tested whether each isolate had evolved resistance to �273

by spot assay,37 where 2µl of concentrated phage stock is dried on top of a matrix of 4ml274

of soft agar (LB agar with only 4% wv agar) and 0.5ml of the LB overnight culture. The275

matrix is suspended on top of a typical LB agar petri dish. Each plate was incubated276

at 37oC for 24 hours and then scored the next day. A strain was considered resistant if277

no clearing occurred under the spot where the phage lysate was applied. We sequenced278

each of the resistant genotypes to determine if resistance had evolved through mutations279

in lamB.280

Sequencing. Sequencing was performed with an automated ABI sequencer maintained281

at Michigan State University Research Technology Support Facility. PCR amplified frag-282

ments that were purified with GFX columns were used as templates. Fragments containing283

lamB were amplified with primer sequences 50-TTCCCGGTAATGTGGAGATGC-30 and284

50-AATGTTTGCCGGGACGCTGTA-30, placed 1,398 bases up and 504 bases downstream285

of the lamB gene, respectively.286

Growth dynamics. Each genotype was revived by inoculating a few microliters of frozen287

culture into a tube with 4ml of liquid LB. Cultures were grown at 37oC and shaken at 160288

rpm. After 12 hours, 10µl of each culture was transferred to a fresh tube with modified289
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DM 250 and grown for 12 hours at 37oC and shaken at 160 rpm. This acclimation step290

to DM250 was repeated again because preliminary studies showed that growth was much291

more consistent when two sequential acclimation steps were preformed. Finally, 2µl of292

each culture (106 cells) was inoculated into a well with 200µl of modified DM. Wells were293

randomized in a 96-well plate, however cultures were never inoculated into the outer-294

rim to avoid edge-e↵ects caused by increased rates of evaporation. Next the cells were295

incubated at 37oC and the optical densities (at 420nm wave length) of each well was296

measured once every five minutes for 12 hours using a VersaMax automated plate reader297

(Molecular Devices). Each genotype was grown in modified DM supplemented with either298

25µg/ml of maltotriose or 250µg/ml, in four separate replicates. OD was converted into299

cell densities by comparing counts of colony forming units (CFUs) to optical densities at300

a number of di↵erent cell concentrations. Growth curves were created identically for the301

ancestor, REL606, except at many more concentrations of maltotriose (1, 2, 4, 8, 16, 32,302

64, 128 µg/ml). These data were used to measure the RYTO.303

Coexistence experiments. Coexistence experiments were run under the same con-304

ditions as the growth dynamics were measured, except maltotriose concentrations were305

increased to 333µg/ml, plates were continuously shaken at 220rpm, and the experiments306

were run for 18 days by transferring a random sample of 2% of the culture after 24307

hours of growth to a well with fresh medium. Coexistence was measured by tracking308

co-occurring populations of three genotypes; 9a, 19a, and 62b. To track the populations309

we used the ara genetic marker. Each of the three lamB mutant genotypes were unable310

to metabolize L-arabinose (ara-) because of a single nucleotide substitution in araA that311

caused a G-to-D amino acid change at position 92. We selected for spontaneous reversions312

of this mutation by growing ⇠ 109 cells of each strain on minimal arabinose plates for313

48 hours at 37oC.35 Reversions were verified by targeted sequencing of araA using the314

same protocol for lamB, except the following primers were used for PCR amplification; 50-315

CCGATACGCTCATGGGCTTGTTTA-30 and 50-CTGCCCAGGCCGTTGCGACTCTAT-316

30. The ara genetic marker was chosen because previous work has shown that it does not317

confer a cost.35 We cultured each ara+ genotype with the ara- version of the other two318

lamB mutants. The density of the focal genotype was measured by counting colonies on319

minimal arabinose plates. Total bacterial population size was also measured by counting320

colonies on LB plates. For each ara+ genotype we constructed four replicate populations321
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making twelve coexistence experiments in total.322
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Figure 1: The RYTO shape can be derived from a simple branched metabolic

pathway model and subsequently found in bacterial growth data. (a) A branched

pathway predicts that cell yield, c, can be written in the form of equation (1) (derivation in

Supplementary Discussion, section B). (b) As S
0

increases to 125µg/ml, r begins to saturate

whereas k continues to increase. Moreover, two theoretical Monod models (light and dark grey)

assuming, respectively, fixed and variable yield are both compatible with this (k, r) dataset.

(b-inset) When S

0

ranges from 1 to 8µg/ml, r and k appear linearly correlated, an observation

consistent with published data9 (error bars indicate mean ± s.e.m., horizontal s.e.m. bars are

present but cannot be seen, 6 replicates per maltotriose concentration). (c) The variable yield

model (equation (2)) was used to estimate rate-yield trade-o↵ geometry: the solid line shows

the predicted geometry using the dataset from (b), the dashed line improves on this prediction

by fitting equation (2) directly to that dataset. (Supplementary Table 2 contains relevant

parameter estimates.) Both of these trade-o↵ models are sigmoidal, note, and the resulting

predicted growth rate is shown as a dashed line in (b). (c-inset) A constant yield assumption

fails when yield is plotted versus maltotriose concentration (light grey line). The nonlinear

yield form from equation (1), c(S
0

), correctly captures the data (dark grey line).

Figure 2: The evidence for a between-strain RYTO is not significant at all

maltotriose concentrations tested. (a) Estimated maltotriose uptake rate versus a robust

estimate of cell yield (Supplementary Discussion, section C) for every genotype in the lamB

mutant library at two di↵erent maltotriose supply concentrations (S
0

= 25 and 250µg/ml).

Linear regressions show evidence of a between-strain negative correlation in yield but only

when S

0

= 250 (error bars indicate mean ± s.d., n = 8; regression: R2 ⇡ 0.21, F-statistic vs.

constant model: 13.3, p < 0.00064). (b) Ten strains from the library exhibit a feature common

to all: although there are fluctuations due to experimental variation, cell yield is estimated

consistently between strains across a range of maltotriose concentrations (error bars indicate

mean ± s.e.m., n = 3; black and grey dots represent two di↵erent yield estimation algorithms,

the horizontal dashed line is mean wild-type yield).
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Figure 3: RATO data in the E.coli library is too noisy to discern a nonlin-

ear shape, however a prior Saccharomyces cerevisiae dataset has a nonlinear

RATO. (a) An indication the E.coli library is consistent with a between-strain RATO: esti-

mated values of K
m

and V

max

are positively correlated (error bars indicate mean ± s.e.m.,

n = 8). (b) Maximum likelihood estimates of (K
m

, V

max

) for library strains 9a, 19a and 62b

showing approximate 70% and 95% confidence contours of marginal posterior distributions de-

termined using the Matlab MCMC Toolbox (MLEs of K
m

in mM units: 0.011mM, 0.080mM

and 0.211mM , respectively. As a comparison, E. coli strains from the literature38 have val-

ues around 0.4mM). (b-inset) Using this data, library strains were isolated (9a, 19a and

62b) that exhibit a between-strain RATO (see anova in main text). (c) A whole cell S. cere-

visiae (K
m

, V

max

) dataset (mean data and standard error bars from26) exhibits a nonlinear

uptake-RATO. Two robust geometric datafits are shown next to the robust linear regression

Km = a+ bV
max

: a near-quadratic power law, Km,p, and a rational function, Km,r. Relative

likelihoods of the two nonlinear fits indicate both are significantly better descriptors of the

data than a linear function (the indicated RLlinear values are the relative likelihoods for each

fit). This demonstrates consistency between the predicted nonlinear RATO shape (equation

(5)) and data.
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Figure 4: As predicted by population genetics theory, three lamB mutant

strains can be stably co-maintained in a laboratory microcosm. (a) A theoretical

three-strain co-culture model (N = 3 in a seasonal extension of equation (3)) containing a

RATO but no RYTO predicts strain dynamics for 18 days when maltotriose is supplied each day

at 300µg/ml. Maltotriose uptake rates, a�nities and yields were estimated for each strain in

monoculture and the inset shows estimated growth rate for every library strain: strains 9a, 19a

and 62b are predicted to have fastest growth in di↵erent maltotriose concentration windows.

(b) While the model correctly predicts the co-maintenance of three strains, this was not at the

strain frequencies that were subsequently observed. Note, 62b has mean population size on

day 18 of over 1 million cells (colony-forming units (CFUs)) despite a mean relative frequency

of 2.4% (error bars indicate mean ± s.e.m., n = 3). (c) A RYTO was then introduced into

the model that was used to make the predictions in (a) and the resulting model is consistent

with strain frequencies (Supplementary Discussion, section D). One model simulation is shown

(thick lines) superimposed upon observed mean strain frequencies (dots). (c-inset) The in-

ternal complexity of the E.coli strains on which simulations in (c) are based, assuming only

polymorphisms in lamB. (d) The three strains were co-cultured anew in the same conditions

but this time they were inoculated at the model-predicted steady state frequencies, these fre-

quencies were then maintained for a period of seven days (Supplementary Discussion, section

D). Mean observed frequencies are shown next to the model predictions in (c) by the label

‘extension’, the observed densities of this extension are shown in (d). Note: numerical text

labels in each plot indicate relative frequencies of each strain.
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BIOPHYSICAL MECHANISMS THAT MAINTAIN

BIODIVERSITY THROUGH TRADE-OFFS

R. E. BEARDMORE, I. GUDELJ, AND J. MEYER

Notation: throughout we use a minuscule ‘k’ for carrying capacity, whereas majuscule K and K
m

are synonymous

and represent a half-saturation constant, V and V
max

are also used synonymously for maximal uptake rate.
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Supplementary Figure 1 – Evolutionary branching in equation (1) for the concave trade-o↵ function

⌧(x) = 1�x

1/2. The initial distribution of consumers (in red when t = t

start

) is an approximately normal distribution

obtained by finding a steady-state of (1) for the concave trade-o↵ function ⌧(x) = 1 � x

2. The final distribution of

consumers, after branching, is shown in blue (where t = t

end

� t

start

).

(a) (b)

Supplementary Figure 2 – Finding the yellowest points on the plane above a point within ⌦. The

optimum of a linear functional, `(x, y) over two di↵erent domains, ⌦, in both cases must lie on the boundary of the

domain. Only in case (a) does the possibility exist for two simultaneous solutions to the optimality problem. In case

(b) where the region ⌦ is strictly convex, there is a unique maximum of `.

(1)
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Supplementary Figure 3 – A schematic of how maltotriose enters the cytoplasm. The uptake of a

sugar like maltotriose in Gram negative bacteria requires the molecule to pass two transporters positioned in serial

(LamB and MalFGK
2

) via a maltotriose-binding protein (MalE) before entering the cytoplasm. Transport through

the inner-membrane transporter, MalFGK
2

, requires an ATP-driven conformational change, a biological feature that

we neglect from the mathematical assumptions in this article.
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Supplementary Figure 4 – The presence of a nonlinear (and not linear) rate-a�nity trade-o↵ can

lead to the right growth rate responses needed for strain coexistence. (left) The uptake of an extracellular

sugar for two di↵erent cells (one red, one blue) at a range of external sugar concentrations on a semi-log scale.

Here, there is no rate-a�nity trade o↵ even though there is a linear relationship between maximal uptake rate V

and half-saturation constant K. Thus, it is the cell associated with the red curve that is fitter than the blue in all

environments, independently of their resource richness. (right) In this case there is a rate-a�nity trade-o↵ in these

two cells: the cell with the greatest maximal uptake rate V has a higher uptake rate at high-sugar environments,

but that gain is paid for by a decrease in uptake at low sugar concentrations. In this case, it is possible that both

cell phenotypes can coexist in an environment where sugar concentrations oscillate regularly between high and low

values.

Supplementary Figure 5 – An internal sugar (S
0

) is processed by a two-step pathway with a single

branch; this structure is su�cient to derive the shape of a rate-yield trade-o↵. Each step has a di↵erent

ATP yield and the shorter pathway has yield n, the full pathway has yield n+m where n < m. If we define yield as

the ATP produced per X produced per unit time in steady-state, we will show that this model exhibits a rate-yield

trade-o↵.

!
Supplementary Figure 6 – The distribution of all the mutations found in the lamB mutant library

has been projected onto the three-dimensional conformation of LamB. Each panel provides a di↵erent

perspective of the same protein relative to the membrane. A is the view from outside of the cell, the membrane

follows the plane of the page. B is a view of structures that bisect the membrane, which would project horizontally

from the page. A colour spectrum from yellow to red was used to indicate the frequency of mutations observed at

each amino acid; yellow = 1 through red = 5, gray = 0.
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Supplementary Figure 7 – Wild type E.coli B(REL606) growth data showing fits of the mathematical

growth model (21) to experimentally-determined density data determined over 24h. Shown are the results

of using eight di↵erent resource (maltotriose) supply concentrations: S(0) = 4(a), 8(b), 16(c), 32(d), 63(e), 125(f)µg/ml,

(6 replicates per concentration, plots for S(0) = 1 and 2 are not shown). Error residuals only use data up to 550

mins, the x-axis denotes the length of the experiment in minutes (vertical bars indicated mean ± s.e., n=6). The red

lines are normalized sugar concentrations, indicating when stationary phase is estimated to begin in the theoretical

datafits.
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Supplementary Figure 8 – Datafits for the library of fifty-two strains used to to determine

(cj ,Kj , Vj , ⌫j) for each bacterial genotype. These were obtained by fitting a mathematical model, equation

(21), against 24h growth data under maltotriose limitation (here using initial concentration 250µg/ml). No fit has

an adjusted R

2 lower than 0.99. The red line denotes normalized maltotriose concentration for the datafit, showing

an estimate of stationary phase.
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Supplementary Figure 9 – Datafits shown in Supplementary Figure 7 produce 42 independent

estimates of the maximal maltotriose uptake rate, V

0

, and the half saturation constant, K

0

for the

wild type (the strain j = 0). (a) The variability of K
0

both between replicates and at di↵erent sugar supply

concentrations. (b) The variability of V
0

from di↵erent fitting operations (error bars indicate mean ± s.e., n = 6).
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Supplementary Figure 10 – How changes in V and K a↵ect the theoretical growth kinetics of a

single bacterial strain. (a) Predicted growth kinetics of five hypothetical E.coli strains at a maltotriose supply

concentration of 100µg/ml where the value of K for each strain has been obtained by scaling a basal value of K

by the number shown in the legend of each plot, assuming that basal value to be K ⇡ 0.4µg/ml. The latter has

been multiplied by the number in the legend (greater than unity) to produce a value of K for the simulated

model. Thus, these five modelled strains have identical metabolic parameters except that K ranges from 0.4µg/ml

to 50µg/ml. (b) An analogous plot to (a) except that K is now held fixed and the parameter V has been scaled by

a value less than unity shown in the figure legend to produce growth kinetics for five theoretical strains: note how

the e↵ects of varying K and V on these growth curves are visually di↵erent, although both a↵ect observed growth

rate. These di↵erences arise because these two parameters are linearly independent in the data-fitting procedures

and mathematical models used in this article. This figure also shows that K and V play reciprocal roles in those

datafits: increasing K has the opposite e↵ect on modelled growth rate to increasing V .
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Supplementary Figure 11 – Theoretical predictions of growth rate on the y-axis plotted versus

maltotriose concentration on the x-axis (one black growth rate curve per lamB mutant). This indicates that

the bacterial library may have two clusters, one with a low but stable growth rate at all maltotriose concentrations

and one with a high maltotriose a�nity but the potential for low growth rate. The wild-type (shown in red) appears

to be optimized for neither of these traits as it resides at the boundary of the two clusters. Strains with the highest

growth rates at some point along the resource gradient are highlighted in blue text. It is instructive to compare the

similarities of this figure with Supplementary Figure 4.
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Supplementary Figure 12 – In search of a RATO: plots of uptake rate and growth rate versus Km

for each strain in the mutant library showing a noisy correlation but no clear evidence of ‘shape’.

A scatter plot of all the estimated values of (Kj , Vj) for all the strains where error bars show the variability when

data fits are conducted using di↵erent lengths of time, the values of which are defined in the text. (b) This is the

analogous plot to (a) except the data (Kj , µmaxj ) is shown where j takes on all 52 values, one for each strain (error

bars indicate mean ± s.e., n = 7). The data is too noisy to resolve a RATO shape.
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Supplementary Figure 13 – Two di↵erent versions of cell yield (the ‘robust’ yield in blue, the ‘naive’

yield in black) determined for three di↵erent sugar concentrations: S(0) = 10, 25 and 250µg/ml. While

there are some anomalies in the data where a value of zero has been reported (strains 29a, 70a, 28b) due to a poor

datafit, this data shows no evidence of a reduction in per maltotriose yield at higher maltotriose concentrations.

Moreover, there are no significant di↵erences in yield between strains, note also that the robust and naive yield

provide similar values in almost all cases (error bars are s.d., n=3).
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Supplementary Figure 14 – ‘Naive’ and ‘robust’ estimates (left and right respectively) of yield per

µg of maltotriose for the wild-type E. coli (REL606) strain are both well-described by the functional

form in equation (20). There is a reduction in yield by a factor of approximately three as maltotriose ranges from

1 to 10µg/ml (error bars indicate mean ± estimated s.e.).
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Supplementary Figure 15 – Experiments to estimate the values of r (growth rate) and k (carrying

capacity). (a) Estimating r and k parameters by fitting a solution of the logistic equation, d
dtx = rx(1 � x/k) to

optical density data (where x = OD600nm). The value of r is given as text within the plot and the value of k is

represented as a colored vertical bar in each pane that shows the mean k estimate ± s.d. (six replicates). (b) (left) A

linear correlation between k/r and S

0

where eight di↵erent values of the latter have been used, from 1 to 125µg/ml.

(right) A linear correlation between k and S

0

(error bars denote s.d.)
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Supplementary Figure 16 – Histograms that illustrate posterior marginal distributions of K and V

for strains 9a, 19a and 62b as determined using the Matlab MCMC Toolbox (5,000 points per strain)

applied to (21) (normal distributions have been superimposed). This shows a positive rate-a�nity correlation

for these strains. Comment: the E. coli strains described in [1, Table 2] have maltotriose half saturation constants

around 0.4mM , the data presented in this figure gives approximate maximum likelihood values of 0.011mM, 0.080mM

and 0.211mM for strains 9a, 19a and 62b, respectively. Respective estimates for the maximal uptake rates in units

of µg per cell per hour are 1.16⇥ 10�6

µg ·h�1· per cell, 1.70⇥ 10�6

µg ·h�1· per cell and 2.32⇥ 10�6

µg ·h�1· per cell.
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Supplementary Figure 17 – A theoretical prediction using data on the strain library: stable coexis-

tence is possible for three di↵erent lamB mutants (9a, 19a and 62b) at S

0

= 300µg/ml. The circles mark

steady-state values, for clarity density dynamics are only shown for 18 days.
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Supplementary Figure 18 – Strain densities and frequencies of the co-culture microcosm, imple-

mented for 18 days. Competition of three clones under maltotriose limitation when this carbon source is supplied

at 333µg/ml to a seasonal, batch-transfer microcosm (with 24 hours per season) in which the three strains of E.

coli B(REL606), labelled 9a, 19a and 62a, are co-cultured for 18 days, approximately 130 generations. The left-hand

figure shows densities (in log CFUs) the right-hand figure shows frequencies (error bars indicate mean ± s.e., n = 3).
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Supplementary Figure 19 – Testing for co-maintenance in the co-culture microcosm. The ‘transfer-to-

transfer growth rate’ of each of each strain is defined as rn := dn+1

/dn where dn is the density of that strain on day n

so that rn ⌘ 1 in steady-state. The left-hand plot illustrates mean growth rate: a high initial growth rate follows the

inoculum, then a decline which subsequently oscillates about unity. The right-hand plot shows the dynamics with

error bars (indicating mean ±s.e., n = 3). (b) When any of the three curves are below the grey line, the dynamics

are not yet in steady-state according to a one-way anova at the p = 5% significance level described in the text.
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Supplementary Figure 20 – Do all three coexisting strains also coexist if the microcosm is imple-

mented in a di↵erent way? No. (a) The analogous data to that shown in Supplementary Figure 18 except that

a season length of 12h has been used, note how 19a decays in frequency (error bars indicate mean ± s.e., n=3). (b)

This is also analogous to Supplementary Figure 18 except that maltotriose supply has been reduced to 33µg/ml and

strain 19a is lost exponentially quickly.
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Supplementary Figure 21 – Predicting the relative frequencies of the three strains from a mathe-

matical model based on the function of key genes. (a) A schematic of the metabolism of E.coli used as the

basis of a mathematical model defined by equations (26). The import of an external sugar into the cell can lead to fast

but ine�cient growth due to the suppression of e�cient, but slower, pathways. (b) Frequency dynamics of observed

data (only the mean is shown) and of one instance of the model (26) parameterized using data from Supplement

table 1 and Supplementary Figure 19. This establishes that the model is both consistent with the observed strain

frequency dynamics and that all three strains co-exist in equilibrium in that model.
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Supplementary Figure 22 – Implementing the co-culture microcosm, but now starting at the theo-

retically predicted long-term strain frequencies. An extension of the experiment used to produce the data for

Supplementary Figure 19 that was obtained by setting the relative frequencies of the three strains to the equilibrium

values predicted by the mathematical model (26)(a-f) and shown at the right-hand extreme of the plot in Supple-

mentary Figure 21(b). The coloured numerical values used throughout this figure indicate relative strain frequencies

and the right-hand plot shows strain densities. The inset of the left-hand figure appears to indicate constancy of the

frequencies for 8 days, a statistical test described in the text shows that this constancy can only be claimed to be

significant for 7 days.
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Supplementary Figure 23 – Two tests for constancy of the empirical strain frequencies through

time. (a) A test based on the serial application of one-way anova (described in the text) cannot detect di↵erences

between the mean frequencies of any strain through time even at significance well above the 5% level (note how none

of the curves cross the grey line). (b) If we perform a t-test that asks if the latest observed strain frequencies are,

for any strain, di↵erent from the starting frequencies then this particular test fails at the 5% level on day 7. We can

therefore claim significant equilibrium dynamics of all three strain frequencies for 7 days, but no longer.
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Supplementary Figure 24 – Are CFU and OD equivalent measures of population density? Yes,

provided population density is high enough. Validation that E.coli cell densities as measured in units of OD

or CFU are approximately equivalent, we deduce that 109CFU per ml ⇡ 0.26OD.
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Supplementary Tables

Supplementary Table 1 – E.coli B(REL606) mutants derived from a wild-type strain following coevo-

lution with �-phage, showing their library identifier and the mutations found in lamB. The right-hand

column shows a typical dataset produced by fitting the mathematical growth model (21) to the library at one mal-

totriose concentration. The values for each genotype are: cj is yield in units of OD per µg, Kj is half saturation

in µg/ml, Vj in µg per OD per minute and ⌫j is quoted per minute. Maximal growth rate per hour, therefore, is

µ

maxj = cj ⇥ Vj ⇥ 60 in per hour units. For example, the wild-type yield on maltotriose is estimated as 5.9⇥105

cells/µg with maximal uptake parameter V
0

⇡ 1.1⇥ 10�6

µg per wild-type cell per hour from 14.6 per OD/min.

label mutation found (SNP unless stated otherwise) location on lamB (b.p.) cj Kj Vj ⌫j

wt (j = 0) N/A 0.00074 0.37 14.6 0.0076

2b deletion: -GAC 292-294 0.00084 12.2 10.9 4.6

4a C ! A 854 0.00078 0.14 11.9 0.18

7a insertion: +TCGCAGGGTAAAGGGCTG 795-796 0.00075 0.24 16.7 0.0055

8a -GATTTCAA 1264-1271 0.00078 81.4 25.4 0

9a -AAC 871-873 0.00074 0.18 18.2 0.014

11a T ! G 556 0.00074 99.9 27.5 0.0040

13a +TACGGTCGTGCCAACTTGCGTGATAACT 652-653 0.00074 0.3 12.9 0.41

13b -GCCGTTCCTGCTGATTTCAA 1252-1271 0.00087 0.081 11.1 0.62

14a T! G 835 0.00073 0.028 13.8 0.015

17a -AAC 871-873 0.00081 7.17 12.6 8.0

18a T ! G 538 0.00077 93.9 26.3 0.0026

19a +T 610-611 0.00080 40.0 22.4 0

20b -A 349 0.00086 140.0 23.5 0.0050

21b +TCGCAGGGTAAAGGGCTG 795-796 0.00075 0.3 15.2 0.0041

22a G ! T 1210 0.00076 0.001 12.4 0.0092

23b A ! C 793 0.00078 0.14 14.3 0.00010

26a -AAC 871-873 0.00077 30.0 15.7 0.0065

27a +T 597-598 0.00076 43.4 17.7 0.0055

28b -T 726 0.00079 0.012 10.5 0.039

29a A ! G 518 0.00079 0.02 15.3 0.0040

30a G ! A 571 0.00078 0.02 12.5 0.024

41a A ! C 284 0.00074 0.75 16.9 0.0017

47a T ! A 850 0.00075 0.33 16.3 0.0030

50b G ! T 874 0.00077 0.080 13.5 0.015

51a C ! A 824 0.00077 43.2 19.8 0.0039

51b C ! A 843 0.00093 31.1 13.1 5.2

52a G ! T 809 0.00078 0.2 12.3 0.076

56a -AAAGGGCTGTCGCAGGGT 805-822 0.00077 66.9 20.4 2.2

57b C ! T 788 0.00075 0.22 15.7 0.037

59a G ! C 1285 0.00073 0.47 15.0 0.0056

60a G ! T 709 0.00080 0.49 13.9 0.0062

61a A ! C 518 0.00077 0.02 13.2 0.0069

61b G ! T 559 0.00078 43.8 18.5 0.0033

62b A ! G 1211 0.00076 113.0 30.5 0.0031

65b C ! G 1059 0.00081 94.2 22.1 0.0050

66a +ACTTCG 1240-1241 0.00080 15.9 16.0 0.037

67a C ! T 136 0.00079 0.006 11.5 0.023

68a C ! T 815 0.00076 0.087 14.3 0.090

69a -CAA 864-866 0.00077 0.034 11.2 0.078

70a A ! C 793 0.00079 62.9 20.2 0.012

70b -TCGCAGGGTAAAGGGCTG 796-813 0.00079 0.19 13.4 0.010

71a A ! C 793 0.00075 0.24 15.5 0.014

71b G ! T 809 0.00077 0.0045 14.7 0.0026

94a -ACCGATCCGGCC 304-315 0.00087 42.8 11.8 4.2

95a G ! A 821 0.00075 0.27 13.8 0.0084

96a A ! T 760 0.0011 160 17.3 0.017

96b A ! C 581 0.00072 0.4 16.4 0.0054

97b A ! C 580 0.00076 0.04 12.8 0.057

98a deletion & insertion 704-719 0.00077 0.12 14.3 0.010

99a A ! G 560 0.00074 0.04 12.9 0.0090

Supplementary Table 2 – Typical parameter estimates obtained using the data in Supplementary

Figure 15 for the wild-type E.coli B(REL606) strain. The quoted p-value is for a one-sided t-test that the

parameter is zero, or not (t-values as indicated, n = 45). Parameters c

hi

, c
lo

and p were determined in the same

manner as Supplementary Figure 14. Do note that c
hi

is a theoretical upper bound that emerges from the data fitting

process, it is not a value for yield that can be necessarily realised by E.coli, whereas yields above c

lo

are realised in

practise.

parameter estimate standard error estimate coe�cient of variation T value p value

V
max

(or V ) [per cell per h] 2.8 · 10�6

3.06 · 10�7

0.109 9.14 1.59 · 10�11

Km (or K) [µg/ml] 57.2 11.8 0.207 4.83 2.75 · 10�5

c
hi

[cells/µg] 1.67 · 108 7.11 · 107 0.426 2.35 0.0279

c
lo

[cells/µg] 6.81 · 105 2.4 · 104 0.0352 28.4 4.39·10�30

p [ml/µg] 15.3 6.98 0.455 2.2 0.038
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Supplementary Discussion

A: Trade-O↵ Theories of Adapting Consumer-Resource Dynamics

1. Concavity and convexity: bounding the number of quasi-species

We begin with a theoretical derivation of the relationship between trade-o↵ geometry and the diversity of strategies

supported by a population. To do this we used an elegant formulation based on a di↵usion equation phenomenology

where consumers reside on a continuum of traits and seek to exploit two extracellular resources. In this model, the

one-parameter family of consumers can adopt a range of survival strategies that allow it to access the pair of resources

that are required for replication. These consumer phenotypes are denoted by x and, of the two resources available,

the concentration of each in the environment is denoted R
1

and R
2

, respectively. We assume each consumer, with

phenotype x, has density C(t, x) at time t and we suppose that a consumer ‘cell’ encounters resources ‘molecules’ at

a rate proportional to both the density of cells and the concentration of the available molecules. Finally, x represents

the probability that R
1

is utilized by C(x, t) at such an encounter.

Two important assumptions remain: first, the more able consumers of the first resource are less able to consume

the second resource. This imposes a condition that if ⌧(x) is the probability of phenotype x consuming, and therefore

metabolising, R
2

when an encounter arises between the two, then ⌧(x) is a decreasing function such that ⌧(0) = 1

and ⌧(1) = 0. Finally, we assume some consumers, irrespective of phenotype, can adapt their consumption strategy

(x) at any time. This fraction is controlled by a volatility parameter denoted �.

If we further assume that turnover ensures both consumers and resources are lost at rate d, where the resources

are replenished at rate ⇢, then one dynamical system representing the evolution of the population of consumers is

given by following the integro-partial di↵erential equation:

@

@t
C = �

@2

@x2

C + (xR
1

+ ⌧(x)R
2

� d)C,(1a)

d

dt
R

1

= ⇢�R
1

Z
1

0

xC(t, x)dx� dR
1

,(1b)

d

dt
R

2

= ⇢�R
2

Z
1

0

⌧(x)C(t, x)dx� dR
2

.(1c)

This is subject to the boundary condition that no consumer is allowed to ingest resource one with probability less

than zero or greater than one, meaning

(1d) 0 =
@C

@x
(t, 0) =

@C

@x
(t, 1) 8t > 0.

Here time has been scaled so the number of encounters per unit time between resource and consumer is unity.

Supplementary Remark 1. We begin this discussion with a two-resource model because most prior theory on

species coexistence is based on the existence of multiple extracellular nutrients. However, do note that the models

that we ultimately use to predict the coexistence of multiple (three) bacterial genotypes, as discussed in the main text

and later in this document, are predicated only on a single resource environment (i.e. one extracellular nutrient).

Equation (1) is not mathematically straightforward but it has been partially addressed2 assuming, not unreason-

ably, that its solutions converge to steady-state. In this case a series of simplifications ensue, as follows. First, we

can consider R
1

and R
2

as constant, if unknown, values depending on systemic parameters. From this we deduce

(2) � �
1

C

@2C

@x2

= xR
1

+ ⌧(x)R
2

� d.

As C is positive, describing a density, (2) informs us of where C(x), the equilibrium distribution, is convex and

concave, this is determined entirely by ⌧(x), and we can now infer how many quasi-species of consumers C can

contain in equilibrium.2 See Supplementary Figure 1 for an illustration of an evolutionary branching event in this

framework obtained when ⌧(x) is concave.

So, suppose d is constant and suppose too that ⌧(x) is concave. Noting that quasi-species are values of x where

C(x) has a local maximum, an argument using only elementary calculus2 shows that there can be no more than

one quasi-species of (1) if ⌧(x) is concave. One can also show that there can be no more than two quasi-species if

⌧(x) is convex. This framework does not imply that concavity leads to two quasi-species, just that concavity is a

necessary condition for two steady-state quasi-species to exist in steady-state. Thus, if a mathematical theory based

on a diversity of consumers constrained by resource-consumption trade-o↵s is to support three or more quasi species
14



in steady-state, then the trade o↵, here denoted ⌧(x), would have to be neither concave nor convex, but instead have

a ‘staircase’ form with di↵erent regions within which ⌧(x) were concave and convex.

1.1. Optimising linear functionals over 2-d domains. Di↵erent arguments support the theory that convex

trade-o↵s lead to unique evolutionary optima. Consider the abstract situation whereby a two-dimensional set of

traits, (x, y), is associated with a fitness value `(x, y) where the latter depends linearly on x and y, say `(x, y) = ax+by

where a, b > 0 are positive parameters. We assume that the traits selected for by evolution are those that maximize

the value of ` but those traits necessarily lie in a bounded set of biologically feasible values denoted ⌦.

As ` is linear it can have no extrema in the interior of ⌦ and so the successful traits necessarily lie on the

boundary of ⌦ which, note, is a one-dimensional curve that plays the role of a trade-o↵ (in Supplementary Figure 2

this boundary is described locally by a function y = T (x)). Thus, along the set of possible optima, the fitness values

are described by

(3) `(x, y) = `(x, T (x)) = ax+ bT (x)

and the optima therefore occur when d

dx

`(x, T (x)) = d

dx

(ax + bT (x)) = a + bT 0(x) = 0. For this optimum to be a

maximum we also require T 00(x) < 0. If the latter inequality holds everywhere there cannot be two points at which

`(x, T (x)) has a local maximum because a+ bT 0(x) = 0 must then hold at two values of x, a fact that follows from

the mean value theorem of elementary calculus. It is therefore only when T 00(x) changes sign that there can be two

optima of ` over ⌦.

Note that the meaning of equations (2) and (3) are entirely analogous and the predictions made by a di↵usion

equation approach within a resource-consumption framework and an optimality approach, as regards the importance

of trade-o↵ shape, appear identical. It is worth re-iterating that both frameworks do not guarantee the simultaneous

coexistence of two phenotypic traits if the trade-o↵ is non-convex, merely that non-convexity of trade-o↵s is a

necessary condition for coexistence.
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B: Mathematical Derivations of Trade-O↵ Geometries

2. Not quite a rate-affinity trade-off

Having established the importance of trade-o↵ geometry to theory, we now begin a process of seeking evidence

for trade-o↵s whose geometry can be predicted from physical principles. We do this by re-visiting a classical model

for the transport of an extracellular sugar into the periplasm of a Gram-negative bacterial cell, as illustrated in

Supplementary Figure 3.

2.1. First: finding a linear rate-a�nity correlation with no trade-o↵. The standard model for the passive

transport of a carbon source into a bacterial cell that we use takes the form

(4) S
ext

di↵usion

 ! S
ads

k

1

��*)��
k�1

TS


�! T + S
int

.

Here S
ext

is the bulk concentration of an extracellular sugar that di↵uses freely apart, that is, when in close proximity

to a protein transporter, due, for example, to an energetically favorable interaction between sugar and transporter.

We will write S
ads

for the concentration of ‘adsorbed’ sugar in a neighbourhood of the transporter that will in general

be di↵erent from the bulk concentration away from the cell.

This model makes several assumptions: any molecule adsorbed to the outer-membrane transporter has a non-zero

probability of being translocated into the periplasm of the cell. Such a molecule could also, however, di↵use away from

the cell with non-zero probability. Assuming mass action interactions between sugar molecules and the transporter

protein, we obtain the following standard mathematical model for sugar transportation, with the addition of bulk

sugar that di↵uses at a rate determined by D:

d

dt
S = D(S

ext

� S) + k�1

(TS)� k
1

T · S,(5a)

d

dt
T = k�1

(TS)� k
1

T · S + (TS),(5b)

d

dt
(TS) = �k�1

(TS) + k
1

T · S � (TS),(5c)

d

dt
S
int

= (TS),(5d)

where we write S ⌘ S
ads

to simplify notation. The purpose of the following calculation is to answer the question:

does this model contain a trade-o↵?

To answer this, first note that T (t) + (TS)(t) = T (0) + (TS)(0) =: T
0

, so the number of transporters is assumed

to be constant in number throughout what follows. If we assume (5a-d) is in steady-state, by adding (a) and (c) we

deduce that

(TS) =
D(S

ext

� S)


and therefore

d

dt
S
int

= D(S
ext

� S).

Thus the rate of sugar accumulation in the periplasm is proportional to the di↵erence in concentration between the

bulk sugar and the adsorbed sugar.

We now want to express S in steady-state as a function of S
ext

. From (5c) we obtain (TS) = k

1

T ·S
k�1

+

but

T = T
0

� (TS) = T
0

�D(S
ext

� S)/ and so comparing the di↵erent expressions we have found so far for (TS), we

find

(TS) =
D(S

ext

� S)


=

k
1

T · S

k�1

+ 
=

k
1

(T
0

�D(S
ext

� S)/) · S

k�1

+ 
.

This looks unhelpful, so we simplify further:

k�1

+ 

k
1

(S
ext

� S) =

✓
T

0

D
� (S

ext

� S)

◆
· S,

but the latter is a quadratic equation in S that we can write as

q(S) := S2 + S(a+ b� S
ext

)� aS
ext

= 0,

where a = k�1

+

k

1

and b = T

0

D

. A positive root of q(S) now defines S as a function of S
ext

, this will be written

S(S
ext

).

As q(0) = �aS
ext

< 0 and q(S
ext

) = bS
ext

> 0, it follows that the positive branch, S(S
ext

), satisfies

0 < S(S
ext

) < S
ext

.
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Thus the adsorbed sugar concentration can be no greater than the bulk sugar supply concentration, because the

sugars are translocated when in the vicinity of the transporter. Now, solving q(S) = 0 explicitly we can write

S = S(S
ext

) =
1

2

0

@S
ext

� (a+ b) + S
ext

 ✓
1�

a+ b

S
ext

◆
2

+
4a

S
ext

!
1/2

1

A ,

thus S(S
ext

) = S
ext

+O(1) when S
ext

large and, moreover, when S
ext

= 0 it follows that S = 0 too, as it must.

Di↵erentiating q(S(S
ext

)) = 0 with respect to S
ext

and using a prime (0) to denote such a derivative, we find that

0 ⌘

dq

dS
S0 +

dq

dS
ext

= 2SS0 + S0(a+ b� S
ext

) + S ⇥ (�1)� a

and so S0 = 0 can only occur if S(S
ext

) + a = 0. For S, a > 0 this is a contradiction which ensures that S(·) is a

monotone increasing function. Moreover, setting S
ext

= 0 into the above expression for the derivative of q(·) shows

that S0(0)(a+ b)� a = 0, or S0(0) = a/(a+ b). Hence

S(S
ext

) =
a

a+ b
S
ext

+O(S
ext

)2

for small S
ext

.

This information completes our calculation. Using T
0

= T+(TS) = T+T ·Sk
1

/(k�1

+) we now obtain T = T

0

1+kS

where k = k
1

/(k�1

+ ) and from (5c) it follows that (TS) = kT · S. We have thus derived an expression for the

uptake rate of sugars into the periplasm as a function of the external concentration of that sugar:

d

dt
S
int

= (TS) = kT · S =
T

0

S

k�1 + S
=

T
0

S(S
ext

)

k�1 + S(S
ext

)
(6a)



T
0

S
ext

k�1 + S
ext

.(6b)

So, the rate of transportation of sugar has the expected Michaelis-Menten form in (6a) but with an environmentally-

dependent correction that accounts for the di↵usion of sugar away from the cell membrane, reducing uptake to a value

below its classical value, given by (6b). This is consistent with other work which shows that di↵usive modifications

to the classical Michaelis-Menten uptake model can lead to changes in predicted uptake rates.3

Importantly, this model possesses a rate-a�nity correlation although, as we explain, this is not a trade-o↵. To

see this let V be the maximal rate of uptake of sugar,

V := max
S

ext

�0

T
0

S(S
ext

)

k�1 + S(S
ext

)
by def.

= T
0

,

which follows from the properties of S(S
ext

). The half-saturation constant, K, is then defined to be the value of S
ext

for which half-maximal uptake is attained. This is the value of S
ext

for which

1

2
V =

T
0

S(S
ext

)

k�1 + S(S
ext

)
.

As a result, K is defined by the condition S(K) = k�1 which occurs by definition when q(k�1) = 0 and S
ext

= K.

Thus k�2 + k�1(a+ b�K)� aK = 0, or

K =
1 + k(a+ b)

k2a+ k
=

2 + kb

2k
=

1

k
+

b

2
,

because a = k�1. Using k�1 = (k�1

+ )/k
1

= (k�1

+ V/T
0

)/k
1

, it follows that

K =
k�1

+ 1

T

0

V

k
1

+
V

2D
=

k�1

k
1

+

✓
1

T
0

k
1

+
1

2D

◆
V.

At this point we are a little swamped by notation. So, to put this more straightforwardly, given the assumptions

of this simple transportation model, we have found physiological constants ↵ and � such that K has an a�ne

dependence on V :

(7) K(V ) = ↵+ �V.

As then a�nity, which is defined by V/K, can be negatively correlated with V depending on the value of �, (7)

would seem to provide a candidate for a trade-o↵ in terms of rate and a�nity: the greater the maximal uptake

rate of sugar through the transporter, the lower the a�nity (and the higher the half saturation constant) of that

transporter.
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However, when we inspect the rate of sugar import into the periplasm,

(8)
d

dt
S
int

=
V · S(S

ext

)

K(V ) + S(S
ext

)
,

the a�ne nature of K with respect to V means this import rate is an increasing function of V for all sugar concen-

trations:
@

@V

✓
d

dt
S
int

◆
=

@

@V

V · S(S
ext

)

K(V ) + S(S
ext

)
=

↵+ �V

(K(V ) + S(S
ext

))2
> 0.

In other words, an increase in the maximal possible uptake rate of sugar by the transporter, due to a mutational or

regulatory change that alters one of the physical parameters defining ↵ and �, leads to a concomitant increase in the

uptake rate of sugar at all extracellular sugar concentrations. So, despite the increase in half saturation constant K

with increasing V , this is not a su�ciently severe increase to be deemed a rate-a�nity trade-o↵ because any increase

in V increases sugar import rates at all sugar concentrations.

Supplementary Remark 2. At this point we clarify a point of terminology that we adopt throughout, whereby the

term ‘a�nity’ is used for the parameter V/K. There are formulations of resource-uptake functions in which a�nity,

a := V/K, is explicitly defined and given by the derivative of that function, U(S), at S = 0. For example, one could

write the Monod-Michaelis-Menten function describing uptake as

U(S) =
aV S

V + aS
=

V S

V/a + S
,

where U(1) = V and U 0(0) = a, and so the parameter a is explicit. The half-saturation constant (usually written K)

is highlighted with a box. The fact that U 0(0) = a illustrates why a = V/K is usually seen as the a�nity parameter:

a controls the rate of increase in uptake rate at very low sugar concentrations.

3. A nonlinear K(v) relationship: the rate-affinity trade-off (the RATO)

The point we make in the previous section that a linear K�V relationship is not a rate-a�nity trade-o↵ requires

further clarification. Take a Michaelis-Menten import function of the general form

d

dt
S
int

=
V · S

T (V ) + S
,

where T (V ) is the half-saturation constant and S could be a function of S
ext

. We are writing ‘T (V )’ here to remind

us that we are seeking conditions under which this function is a trade-o↵. Now, a rate-a�nity trade-o↵ is said to

occur when an increase in the maximal import rate V produces an increase in half saturation T (V ) so severe that

the import rates by the transporter will decrease at some sugar concentrations.

So, while increasing V will always increase d

dt

S
int

for high enough extracellular sugar concentration because

V S/(T (V )+S) asymptotes towards V at large S, there could be a cost associated with this improvement given by a

reduction in d

dt

S
int

at lower extracellular sugar concentrations. This is the trade-o↵ we seek. The question we have

now is what biologically-relevant modification of the model defined by (5) will achieve this?

In order to obtain some information on what K � V relationships can form trade-o↵s, imagine there are two

di↵erent cell genotypes with di↵erent transporter structures that each have maximal uptakes rates V and V 0 where

K = T (V ) and K 0 = T (V 0), respectively, are the half-saturation constants. For a rate-a�nity trade-o↵ to occur, it

is necessary that the functions defining the respective sugar import rates for both genotypes (i.e. V S/(T (V ) + S)

and V 0S/(T (V 0) + S)) have a point where they cross, as illustrated in Supplementary Figure 4(right).

So, while V > V 0 implies V ·S
T (V )+S

> V

0·S
T (V

0
)+S

when S is large, this inequality must be reversed for some values of S

if there is to be a rate-a�nity trade-o↵ between these two cell genotypes. Hence there must be a sugar concentration

S for which V ·S
T (V )+S

= V

0·S
T (V

0
)+S

. A little algebra shows that if this crossing point exists, it occurs when

(9) S = (V T (V 0)� V 0T (V ))/(V 0
� V ).

It is easy to see that condition (9) cannot be satisfied in the biologically relevant regime S � 0, if T has the a�ne

form T (V ) = ↵+ �V with ↵ and � both positive, this a�ne function is not able to produce a rate-a�nity trade-o↵.

A quadratic function whereby T (V ) = ↵ + �V + �V 2 can, however, produce such a solution but what structure in

the cell might lead to such a nonlinear form? We now address this question.
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3.1. A nonlinear K(v): transport across both outer and inner membranes. The periplasm of Gram-negative

bacteria is separated by two lipid bilayers that sugars must be transported through in order to gain entry to the

cytoplasm of the cell where they can be metabolized. Thus, these bacteria have not one transporter for maltotriose

but two that form a serial pathway. The first is the product of the gene lamB that brings maltotriose into the

periplasm through the outer leaflet of the membrane, the protein product of malFGK then actively transports this

sugar into the cytoplasm at an ATP cost.

The prior transport model, equation (5), must therefore be modified to account for this additional complexity.

We therefore write a new uptake schema of the form:

S
ext

di↵use

 ! S
↵

k

1

��*)��
k�1

T
1

S
↵



1

�! T
1

+ S
per

(10)

#

S
per

di↵use

 ! S
�

k

2

��*)��
k�2

T
2

S
�



2

�! T
2

+ S
cyt

.

This neglects the ATP cost of transportation as this would increase the complexity of the model substantially.

Nevertheless, as we now show, (10) is su�cient to produce the nonlinear form for K(V ) necessary to observe the

existence of a rate-a�nity trade-o↵.

As before, sugar is held in bulk at concentration S
ext

and it can also be adsorbed to the cell surface, at concentration

S
↵

. The sugar is then transported into the periplasm and it can di↵use there, at mean concentration S
per

, before

adsorbing to a transporter in the inner membrane, at concentration S
�

, from where it is translocated into the

cytoplasm. The following mathematical model represents this cascade, with the concentration of sugars in the

cytoplasm denoted by S
cyto

:

d

dt
S
↵

= D
ext

(S
ext

� S
↵

) + k�1

(T
1

S
↵

)� k
1

T
1

· S
↵

,(11a)

d

dt
T
1

= k�1

(T
1

S
↵

)� k
1

T
1

· S
↵

+ 
1

(T
1

S
↵

),(11b)

d

dt
(T

1

S
↵

) = �k�1

(T
1

S
↵

) + k
1

T
1

· S
↵

� 
1

(T
1

S
↵

),(11c)

d

dt
S
per

= 
1

(T
1

S
↵

)�D
peri

(S
per

� S
�

),(11d)

d

dt
S
�

= D
peri

(S
per

� S
�

) + k�2

(T
2

S
�

)� k
2

T
2

· S
�

,(11e)

d

dt
T
2

= k�2

(T
2

S
�

)� k
2

T
2

· S
�

+ 
2

(T
2

S
�

),(11f)

d

dt
(T

2

S
�

) = �k�2

(T
2

S
�

) + k
2

T
2

· S
�

� 
2

(T
2

S
�

),(11g)

d

dt
S
cyto

= 
2

(T
2

S
�

),(11h)

Here D
peri

is the di↵usion coe�cient of sugar in the periplasm, T
1

and T
2

represent each transporter, and each of

the kinetic or rate parameters k⇤ and ⇤ are defined in the schema (10).

If, as before in §2.1, we define two parameters a
2

= k�2

+

2

k

2

and b
2

=


2

T

(0,2)

D

peri

and then set

q
2

(S) := S2 + S(a
2

+ b
2

� S
per

)� a
2

S
per

= 0,

a calculation entirely analogous to one presented in §2.1 shows that

(12)
d

dt
S
cyto

= 
2

(T
2

S
�

) =

2

k
2


2

+ k�2

T
2

· S
�

=

2

T
(0,2)

S
�

a
2

+ S
�

=

2

T
(0,2)

S
�

(S
per

)

a
2

+ S
�

(S
per

)
.

Here T
2

(t)+(T
2

S
�

)(t) is a constant that is equal to the value T
2

(0)+(T
2

S
�

)(0) =: T
(0,2)

and a solution of q
2

(S
�

) = 0

defines the function S
�

(S
per

).

Now (12) expresses the rate of entry of sugar into the cytoplasm as a function of that sugar in the periplasm,

but we now need to express both as a function of sugar in the extracellular environment. Thus expressing S
per

as a

function of S
ext

is our next step.

Adding (11a) and (11c), both assumed to be in steady-state, we obtain D
ext

(S
ext

� S
↵

) = 
1

(T
1

S
↵

) but from

(11c)

(T
1

S
↵

) =
k
1

k�1

+ 
1

T
1

· S
↵

=
1

a
1

· T
1

· S
↵

where a
1

:= k�1

+

1

k

1

.
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Now T
1

(t) + (T
1

S
↵

)(t) is a constant so we define T
(0,1)

:= T
1

+ (T
1

S
↵

) = T
1

+ T
1

· S
↵

/a
1

and therefore T
1

=

T
(0,1)

a
1

/(a
1

+ S
↵

). We deduce that

D
ext

(S
ext

� S
↵

) = 
1

T
(0,1)

·

a
1

S
↵

a
1

+ S
↵

which can be re-written as a quadratic equation

q
1

(S
↵

) := S2

↵

+ S
↵

(a
1

+ b
1

� S
ext

)� a
1

S
ext

= 0,

where b
1

:= T
(0,1)


1

/D
ext

. The positive branch of q
1

(S
↵

) = 0 now defines S
↵

as a function of S
ext

. From (11d) in

equilibrium,

S
per

�

S�(Sper

)z}|{
S
�

=

1

D
peri

(T
1

S
↵

) =

1

a
1

D
peri

· T
1

· S
↵

=

1

T
(0,1)

a
1

D
peri

·

a
1

S
↵

a
1

+ S
↵

which is su�cient to express S
per

as a function of S
ext

in principle.

To find the half saturation constant, K, of (12) and relate it to the maximal uptake rate, V , first note from (12)

that

V := 
2

T
(0,2)

· max
S

ext

�0

S
�

(S
per

)

k�1

2

+ S
�

(S
per

)
 

2

T
(0,2)

.

Let us not be concerned for the moment whether or not equality is achieved here and define v := 
2

T
(0,2)

= b
2

D
peri

.

The half-saturation constant, K, is then the value of S
ext

for which S
�

(S
ext

) = k�1

2

, and so we can write down three

equations that define relationships between the system parameters at which half-saturation is achieved, namely:

q
1

(S
↵

)|
S

ext

=K

= 0, q
2

(k�1

2

) = 0, S
per

= k�1

2

+

1

T
(0,1)

a
1

D
peri

·

a
1

S
↵

a
1

+ S
↵

.

The first two of these equations are quadratics and so

S2

↵

+ S
↵

(a
1

+ b
1

�K)� a
1

K = 0,(13a)

(k�1

2

)2 + (k�1

2

)(a
2

+ b
2

� S
per

)� a
2

S
per

= 0,(13b)

k�1

2

+

1

T
(0,1)

a
1

D
peri

·

a
1

S
↵

a
1

+ S
↵

= S
per

.(13c)

From (13b) we introduce constants A and B to write

S
per

=
1 + k�1

2

(a
2

+ b
2

)

a
1

k�2

2

+ k�1

2

=
2 + k�1

2

b
2

a
1

k�2

2

+ k�1

2

=: A+ vB

but then (13c) can be written, after a modification of the constants A and B that we mark with a prime,

A0 + vB0 =
S
↵

a
1

+ S
↵

< 1 =) S
↵

=
a
1

(A0 + B0v)

1� (A0 + B0v)
.

If we assume for the moment that A0+B0v ⌧ 1 so that S
↵

⇡ A00+B00v, it follows from (13a) that we can approximate

K by

K =
S2

↵

+ (a
1

+ b
1

)S
↵

a
1

+ S
↵

⇡

(A00 + B00v)2 + (a
1

+ b
1

)(A00 + B00v)

a
1

+ A00 + B00v
,

an expression that we can re-write as K(v) ⇡ Pv2

+Qv+R
S+Tv .

Thus in the regime where v is small enough, K(v) depends on v as an approximate quadratic, as v increases this

approximation for K exhibits linear (strictly speaking, a�ne) behaviour. Finally, V and v are in proportion by a

finite constant less than unity that depends on the kinetic parameters of the model, we are therefore justified in

redefining the meaning of some parameters and writing K(V ) ⇡ PV 2

+QV+R
S+TV . There are only four parameters in the

model and so we may write

(14) K(V ) ⇡
PV 2 + QV + R

1 + SV
.

This completes our derivation of the shape of a rate-a�nity trade-o↵ (RATO) in E.coli.

Supplementary Remark 3. The schema in (10) could be modified further to incorporate the role of MalE and the

ATP-driven transportation process into the cytoplasm of the cell. However, as it stands, (10) represents a minimal

change to the core schema given by (4) that allows for a nonlinear relationship between V and K. Moreover, adding

further biological detail is very unlikely to return that relationship to the linear form (7) that is observed when the

simpler schema (4) is used.
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3.2. Transporter optimality properties. Revisiting the rate of sugar import in (8), the nonlinear dependence of

K on V means that the import rate of sugars can be a unimodal function of V , for all sugar concentrations S > 0.

This means that, to each environment S > 0, we can associate a transporter and an associated uptake rate, V , that

is optimal for that particular environment.

To see this, consider the logarithm of the import rate of maltotriose

ln

✓
d

dt
S
int

◆
= ln (V · S(S

ext

))� ln (K(V ) + S(S
ext

)) ,

from where

@

@V

✓
d

dt
S
int

◆
= 0 ()

1

V
�

K 0(V )

K(V ) + S(S
ext

)
= 0,

() V K 0(V ) = K(V ) + S.

The latter can be considered an equation for an optimal transportation rate, V , given an environmental sugar

concentration S and it has a solution, V (S), for each fixed S > inf
V�0

(V K 0(V )�K(V )), provided

(15) lim
V!1

(V K 0(V )�K(V )) = +1.

Condition (15) fails if K is a�ne whereby, K(V ) = ↵+ �V , but it is satisfied if K(V ) = ↵+ �V p, provided p > 1.

When condition (15) is satisfied by K(V ) and V K 0(V ) �K(V ) is strictly monotone increasing in V we deduce

the promised optimality principle: for each value of the external maltotriose concentration, S
ext

, because d

dt

S
int

=

(V · S(S
ext

))/(K(V ) + S(S
ext

)), there is an optimal value of V , namely V (S(S
ext

)) for which the uptake rate d

dt

S
int

is maximized. For each environmental condition, S, to have a unique optimal maltotriose transporter configuration,

so that V (S) is a well-defined function, we also require 0 < (V K 0(V ) �K(V ))0 = V K 00(V ) which is the condition

that K(V ) is convex for V > 0.

3.3. Biophysical evidence of a RATO. Related observations have been made before using empirical and theo-

retical models of di↵usion-driven transport.4,5 The latter reference argues that the energetically favorable attraction

responsible for the high a�nity of a transporter to its substrate may also serve to increase the time each molecule

spends trapped, although di↵using, within a porin. As a result, other authors4 make the same prediction we do,

namely that to each small molecule (substrate) concentration, there is an optimal transporter that ‘compromises

between su�ciently high translocation probability and not too long blockage of the channel’. Our analysis indicates

that optimal transporter configurations are the result of a rate-a�nity trade-o↵. Moreover, a microfluidics approach

has been used to test the veracity of these predictions in the lab and [5, Figure 4(c)] shows the existence of an

optimal translocation rate across a range of molecule-transporter a�nities.

Optimization principles in aquatic microorganisms6 are relevant to this discussion, so too is other data presented

in the literature.7 Both discuss the potential for a nonlinear relationship between µ
max

, the maximal growth rate

observed at a given sugar concentration, and the half-saturation constant K, see for example [6, Fig. 6]. However,

even if we were to assume that uptake and growth rate, V
max

and µ
max

, were linearly related, their form for this

trade-o↵ would be di↵erent from ours.

Interestingly, there is a direct correspondence between [6, equation (7)] and [4, equation (6)], both of which

modify the standard Michalis-Menten uptake form to include additional square-root terms that depend on physical

characteristics of the transport systems under study. From [4, equation (6)] it can be deduced that translocation

rate for a given concentration of external sugar, there denoted c (whereas we write this S) and assuming no internal

sugar, is given by the expression

J
opt

(c) =
2D

b

Rc
⇣
1 + L

q
DbRc

Dch

⌘
2

=) max
c�0

J
opt

(c) =
2D

ch

L2

where the di↵usion coe�cient of the sugar molecule in the channel is D
ch

, smaller than the di↵usion coe�cient of

the molecule in bulk, D
b

. This assumes a cylindrical model channel of length L and radius R. Now, c
K

, the value

of c for which translocation rate is equal to one half of its maximum value, is given by

half-saturationz}|{
c
K

=
(3 + 2

p

2)D
ch

D
b

RL2

=

physical constantz }| {
(3 + 2

p

2)

2D
b

R
⇥

max. uptake ratez }| {
max
c�0

J
opt

(c) .

In other words, using our terminology, models presented in elsewhere4,6 are consistent with a linear K �V relation-

ship.
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4. The rate-yield or ‘waste from haste’ trade-off (the RYTO)

We now seek a basis for the rate-yield trade-o↵ (RYTO).8–10 Our derivation of its shape begins with the following

branched pathway in which a sugar molecule or substrate, at bulk concentration S
0

within the cell, di↵uses momen-

tarily into a region where two enzymes, E
1

and E
2

, are found. The substrate is then processed by the first of these

enzymes to form an intermediate product, X, which may be lost due to di↵usion or else further processed by E
2

into a product Y . From the first of these two steps, n molecules of ‘ATP’ are synthesized whereas the second step

leads to the production of m molecules of ATP, the concentration of the latter denoted by A.

A schema for this can be written as follows:

S
0

D

 ! S
k

1

��*)��
k�1

E
1

S


1

�! E
1

+X + n ·A,

X
k

2

��*)��
k�2

E
2

X


2

�! E
2

+ Y +m ·A,

S
D

! ;, X
D

! ;, Y
D

! ;.

This model assumes the enzymes do not di↵use, or else di↵use over a much longer timescale in relation to the

smaller substrate and intermediate metabolites, given the size of these molecules this is not an unreasonable first

approximation.

We now define the equilibrium yield of this pathway to be the equilibrium ATP produced per intermediate

processed per unit time: this is the quantity

c(S
0

) := lim
T!1

1

T

Z
T

0

A(t)

X(t)
dt.

Our aim is to understand the dependence of this yield on S
0

using the following mathematical model that describes

the reactions in this branched pathway (see Supplementary Figure 5 for an illustration):

d
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1

S · E
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dt
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X · E
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+ k�2

(E
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X)�DX,(16d)

d

dt
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= k�2
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X · E
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X),(16e)

d

dt
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X) = �k�2
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X · E
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� 
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X),(16f)

d

dt
Y = 

2

(E
2

X)�DY,(16g)

d

dt
A = n

1

(E
1

S) +m
2

(E
2

X).(16h)

Our logic is the following: due to the nature of sugar transportation, it is clear that higher values of S
0

in this model

are the result of higher uptake rates of sugar into the cell, it therefore follows that lower ATP yield (per intermediate

synthesized) results from faster uptake if we can show that c(S
0

) is a decreasing function of S
0

. This will then be

the rate-yield trade-o↵ we seek, where rate could mean either uptake rate or growth rate of the cell.

Now, equation (16) satisfies two conservation laws, so we define two constants:

E
10

:= E
1

(t) + (E
1

S)(t) and E
20

:= E
2

(t) + (E
2

X)(t).

If we assume (16) is in equilibrium, using (16f) it follows that (E
2

X) = k

2

k�2

+

2

·X · E
2

and therefore

(17) E
2

= E
20

/(1 + ↵X)

where ↵ := k

2

k�2

+

2

. From (16d) we then deduce that (E
1

S) = (�E
2

+D)X/
1

where � := k
2


2

/(
2

+ k�2

). This is

su�cient to provide the second term for d

dt

A in equation (16h) as a saturating and monotone function of X because

m
2

(E
2

X) = m
2

↵X · E
2

= m
2

E
20

↵X

1 + ↵X
.
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It follows from (16b) that (E
1

S) = k

1

k�1

+

1

· E
1

· S and so we define a := k

1

k�1

+

1

. From the above conservation

laws we deduce that E
1

= E
10

/(1 + aS) whence (E
1

S) = E
10

·

aS

1+aS

. So, subtracting (16a) and (16b) we obtain

D(S
0

� S) � 
1

(E
1

S) = 0 which gives a relation between the bulk sugar and the concentration of sugar molecules

being processed by the first step in this model metabolism: D(S
0

� S) � 
1

E
10

·

aS

1+aS

= 0. The latter can be

re-written

S
0

= S +
E

10


1

D
·

aS

1 + aS

and, although obvious on physical grounds, it follows that S < S
0

.

We can now express the rate of ATP production in a number of di↵erent, but equivalent ways, of which one is

d

dt
A = n

1

E
10

aS

1 + aS
+ m

2

E
20

↵X

1 + ↵X
.

Now, contained within the calculation so far is the relationship

(�E
2

+D)X


1

= (E
1

S) =
D(S

0

� S)


1

= E
10

·

aS

1 + aS

and therefore, using (17) above that relates X and E
2

,

(18) X

✓
�E

20

1 + ↵X
+D

◆
= 

1

E
10

·

aS

1 + aS
=: f(S),

where this defines f(S) as a bounded, monotone function of S. Collating all the information thus far, it follows that
d

dt

A = nX
⇣

�E

20

1+↵X

+D
⌘

+ m
2

E
20

↵X

1+↵X

or

1

X

dA

dt
= Dn+

E
20

1 + ↵X
(n� +m

2

↵).

As we are seeking conditions which can support a trade-o↵, rather than enumerating all the conditions that do,

for simplicity we now invoke a fast di↵usion, or large D, approximation. In this regime, because S
0

= S+ f(S)/D =

S + O(D�1) we can write S ⇡ S
0

+ O(D�1). An implicit function theorem argument applied to equation (18) for

large D can now be used to show that X = f(S
0

)/D+O(D�2). As a result, the equilibrium ATP yield is the integral

c(S
0

) = lim
T!1

1

T

Z
T

0

A(t)

X(t)
dt ⇡ Dn+D

(n� +m
2

↵)E
20

D + ↵f(S
0

)
.

From the form of the function f(S), we can express c(S
0

) in the form

(19) c(S
0

) =
P+ QS

0

R+ S
0

for independent parameters P,Q and R. Since f(S
0

) is an increasing function of S
0

, it follows that c(S
0

) is a

decreasing function of S
0

. Note that c(S
0

) can be re-written in the form c(S
0

) = P
R+S

0

+ QS

0

R+S

0

so that if

c
lo

:= lim
S

0

!1
c(S

0

) = Q and c
hi

:= c(0) = P/R

then

(20) c(S
0

) = c
hi

·

R

R+ S
0

+ c
lo

·

S
0

R+ S
0

= c
hi

·

1

1 + pS
0

+ c
lo

·

pS
0

1 + pS
0

where p = 1/R. If we finally assume that the branched pathway represents a coarse-grained form of glycolysis and

the TCA cycle and so its ATP yield correlates with cell yield, c(S
0

) is then a candidate description of the a trade-o↵

between a cell’s uptake of sugar and yield on that sugar (parameterized by the extracellular sugar concentration).

Other properties of glycolysis can enhance the strength of the RYTO. For example, the production of glucose

from maltotriose by the products of maltose regulon mal leads to the production of acetate that can di↵use into

extracellular space. But a high intracellular glucose concentration can result in excess NADH11 that represses citrate

synthase and, therefore, the TCA cycle. This regulatory property will enhance, not diminish, the RYTO, although

it may also modulate its shape.
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4.1. The RYTO as a curve in the (rate, yield)-plane. We can use the above calculation to formulate a shape

of the rate-yield trade-o↵ (RYTO), by writing growth rate, r, as the following Monod-Michaelis-Menten function of

sugar supply concentration, here written S
0

:

r(S
0

) = c
V S

0

K + S
0

.

If we now include the dependence of c on S
0

, we obtain

r(S
0

) =

✓
c
hi

·

1

1 + pS
0

+ c
lo

·

pS
0

1 + pS
0

◆
V S

0

K + S
0

.

This 5-parameter planar curve (r(S
0

), c(S
0

)) is the theoretical RYTO we were seeking, we now require a dataset to

corroborate its shape and this is the purpose of the next section.
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C: An E.coli B(REL606) mutant library

5. Estimating yield and growth rates of the library strains

In order to generate some of the empirical data we need to test the two trade-o↵s whose shape we derived

above, we now turn to a bespoke library of E.coli B(REL606) mutants consisting of fifty-one bacterial variants, in

addition to the wild-type, which possess mutations in their lamB gene (see Methods for experimental details on how

the library was constructed). This library includes strains with a variety of mutations, including single nucleotide

polymorphisms (SNPs), insertions and deletions of several nucleotide bases in lamB. These and other di↵erences

between the bacterial strains are detailed in Table S1. For completeness, the distribution of mutations is illustrated

in Supplementary Figure 6 on a decorated wild-type trimeric LamB structure.

5.1. Estimating metabolic parameters/phenotypes. In order to estimate cell yields and growth rates, we

require parameterized mathematical models of the growth kinetics of all the library strains, so we first need data on

their growth capabilities. Therefore, each strain was cultured in planktonic conditions for one day in the absence of

any competitors in order to measure the e↵ect of the known lamB mutation on key growth parameters (again, see

Methods). Each such culture created a 24h timeseries that we denote b
j

(t), with one j for each mutant, measured

in units of optical density at 600nm (OD
600nm

or just OD), where j is a label ranging from 0 to 51 where j = 0

denotes the wild-type data and parameter sets in what follows. Typical data is shown in Supplementary Figure 7.

Mutations in this gene are known to a↵ect the ability to uptake maltotriose, the ‘sugar’ or ‘resource’ we refer to in

the remainder is therefore maltotriose, unless otherwise stated.

The parameters that are to be estimated, K
j

, V
j

and c
j

(the half-saturation, maximal uptake and yield, respec-

tively, of each strain genotype labelled j) can be determined approximately if we assume that b
j

(t) can be described

by the following mathematical model:

(21)
d

dt
b
j

= ⌫
j

n
j

+G
j

(S)b
j

,
d

dt
S = �U

j

(S)b
j

,
d

dt
n
j

= �⌫
j

n
j

,

where n
j

represents the density of a non-growing bacterial phenotype that switches to a vegetative state from a

no-growing state at constant rate ⌫
j

> 0. This form of model is assumed because the cells are cultured in the lab

after having been taken from stationary phase in overnight culture where they are in a resource-depleted environment

and so may have down-regulated the maltose import system regulated by malT.12

The variable S denotes the extracellular concentration of maltotriose where S(0) > 0 is known from the maltotriose

supplied as part of the experimental procedure. The value b
j

(0) + n
j

(0) is the total initial population density that

can also be measured in the culture device. (The value of the parameter �
j

:= b
j

(0)/(b
j

(0) + n
j

(0)) is, however,

unknown and will be estimated for each growth experiment). Growth rate in this model is given by the value of

G
j

(S) = c
j

U
j

(S), where c
j

is the per maltotriose cell yield of the j-th genotype and the Monod-Michaelis-Menten

function

(22) U
j

(S) :=
V
j

S

K
j

+ S

represents the uptake rate of maltotriose into the cell in an environment where maltotriose is contained at concen-

tration S (in µg/ml).

Physical units for the model (21) are defined as follows. It is shown in the Supplementary Methods that 1⇥OD

unit corresponds to 3.8168 ⇥ 109 CFU per ml and 200ml were used for these experiments. The density units for

b
j

and n
j

are OD which we therefore assume from Supplementary Figure 24 can be converted in a linear manner

to cells per ml, time is measured in minutes, V
j

is measured µg per OD per minute, c
j

is measured in OD per µg

and K
j

in µg per ml. From here we can calculate the per minute maximal growth rate parameter, it is given by

µ
maxj := c

j

⇥ V
j

.

The best-fit to data for the wild-type strain of the model (21) is shown in Supplementary Figure 7 where S(0)

takes on a range of values, from 1 to 125µg/ml (not all datasets are shown) and the analogous datafit was applied

to every genotype for S(0) = 10, 25 and 250µg/ml, thus producing several estimates of the phenotype (c
j

,K
j

, V
j

, ⌫
j

)

for each strain in our library. Note that no datafit has an adjusted R2 lower than 0.99 and a representative sample

of those datafits for S(0) = 250µg/ml is shown in Supplementary Figure 8 for all strains.

Seeking to test for the consistency of di↵erent parameters, our estimates for K
0

and V
0

(wild-type K and V

phenotypes) were obtained at di↵erent sugar concentrations and Supplementary Figure 9 illustrates the consistency

achieved for these parameter estimates at di↵erent maltotriose concentrations as well as the variability between

replicates. The mean value (indicated ± s.e., n=42) of K
0

= 3.57± 0.64µg/ml was found by averaging across all 42
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replicates at all maltotriose concentrations. The maximal value we obtained for this parameter in any one replicate

was just under 11µg/ml and the lowest value estimated was 0.0006µg/ml.

Supplementary Remark 4. Note how the value of the parameter K
j

in equation (22) not only controls ‘smoothness’

of the density data in the transition from exponential to stationary phase, but it also controls a substantial part of the

exponential growth rate (this is shown in Supplementary Figure 10). Taken together with the size of the error bars

in Supplementary Figure 7, these two figures indicate that di↵erences in K of between 0 and 10µg/ml are not likely

to be detectable using our modelling approach. Noting that K
0

⇡ 3.57µg/ml is the value estimated for the wild-type

strain from our library, the variability in our prediction of K
0

when measured under di↵erent conditions as shown

in Supplementary Figure 9 must be expected, even for one strain. However, when we consider that some strains

report values in the range 10 � 150µg/ml (see Supplementary Table 1), we suspect from Supplementary Figure 10

that our approach is capable of indicating between those strains with very high and very low values of K. We return

to this later using a more careful parameter estimation approach that uses a MCMC algorithm to estimate posterior

distributions for these parameters.

5.2. Comparison parameter data with theoretical trade-o↵ predictions: the RATO. Using the above

data and predictions of growth rate from the model (21), Supplementary Figure 11 shows predicted growth rates

at all maltotriose concentrations for all of the genotypes in the library. It is noteworthy that this data shows the

existence of two clusters that together resemble Supplementary Figure 4(right). This is an initial indication that the

library has the potential to support trade-o↵s because some of the strains, like the wild-type, is estimated to have

a growth rate that changes little as the maltotriose concentration changes, whereas others, like ‘19a’ have a growth

rate that varies with maltotriose supply. Consistent with this, Supplementary Figure 12 shows that the estimated

(K
j

, V
j

) data obtained from the bacterial growth kinetics are positively correlated and consistent with the potential

presence of a RATO, although shape cannot be determined from this data.

Supplementary Remark 5. There are parametric variations that can lead to variability in parameter estimates

that are associated with arbitrary choices made during the data-fitting process, particularly variation in the time, T ,

over which the fits in Supplementary Figure 8 are taken. To account for such variation and that the use of di↵erent

values for T would not a↵ect the presence of trade-o↵s in the data, we highlight Supplementary Figure 12. This

shows error bars associated with the parameters K
j

, V
j

and µ
maxj after using values T = 400, 425, 450, 475, 500, 525

and 550 minutes.

The analysis of this section indicates that the E. coli strain library possesses a K � V correlation that is positive

but which is too noisy to definitively claim the existence of a RATO or to resolve its shape. For this reason, the

main text contains RATO data for a series of genetically-manipulated yeast strains whose glucose import properties

have been manipulated. These strains do show evidence of a RATO, including the predicted geometry. We therefore

conclude that the library is consisted with the existence of a RATO, but further analysis (which includes conducting

radio-labelled maltotriose uptake assays) is required to establish this definitively. In search of a further evidence of

trade-o↵s within this library, we now turn to the RYTO.

5.3. Comparison with theoretical trade-o↵ predictions: the RYTO. In order to determine the presence, or

otherwise, of a rate-yield trade-o↵ in the library we now examine population density data determined from the growth

kinetics of the wild-type strain at seven di↵erent maltotriose concentrations (S(0) ⇡ 1, 2, 4, 8, 16, 32, 63, 125µg/ml)

and we used three concentrations (S(0) ⇡ 10, 25, 250µg/ml) to determine the analogous dataset for all the other

strains. We used this data (some of which can be found in Supplementary Figure 7 and 9) to determine cell yields

per maltotriose supplied using two methods that we call the robust and naive approaches.

The naive yield estimate computes yield from the formula:

(23) naive yield =
1

S(0)
⇥ max

0t24h

filter(OD)(t).

In order to de-noise the experimentally measured optical density data, OD(t), this time-series was low-pass filtered

before the maximum in (23) was determined using the max function in Matlab. The robust yield estimate is the

value, c
j

, obtained by fitting the mathematical growth model (21) to raw OD time-series.

First seeking evidence of a RYTO between strains, Supplementary Figure 13 shows the variation in yield (both

robust and non-robust measures) determined for three maltotriose supply concentrations for all strains. This figure

provides no evidence of such a trade o↵ and, rather, shows a high degree of consistency of cell yield between cells.

Seeking evidence of a RYTO in the bacterial library, we now turn to the more detailed growth data gathered for the

wild-type E.coli strain.
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5.4. A within-strain RYTO: the wild-type. We have the following initial evidence of a within-strain RYTO:

Supplementary Figure 14(a) and (b) show that the functional form (20) provides a quantitatively accurate fit to

wild-type yield data produced by both robust and naitve yield estimates. The same figure shows that both yield

estimates are consistent at all maltoriose supply concentrations although the robust measure has lower variance

between replicates, explaining our use of the term. Thus, there is evidence of a within-strain rate-yield trade-o↵ and

one that sees a loss in yield by a factor of approximately 3 as maltotriose supply ranges from 1µg/ml to 10µg/ml

and beyond.

When the culture device is supplied with more than 10µg/ml of maltotriose, Supplementary Figure 14 shows no

decrease in yield at the higher maltotriose concentrations tested and this observation is consistent with the absence

of a between-strain rate-yield trade-o↵ apparent in Supplementary Figure 13.

5.5. Positive r-k correlations from wild-type growth data. Our conclusions (on the existence of within-strain

RYTO) are not dependent on the data-fitting techniques, analogous conclusions can be obtained using di↵erent

analysis techniques. For example, Supplementary Figure 15 (and figures in the main text) depict the results of

applying a prior analysis13 to density data of the wild-type E.coli strain when cultured at di↵erent concentrations of

maltotriose. This yields a range of estimates of growth rate, r, when explicitly manipulating the carrying capacity,

k, and it too is consistent with the existence of a RYTO (see main text).

The datafits in Supplementary Figure 15(a) are based on the solutions of the logistic equation

d

dt
x = rx(1� x/k)

where x represents OD
600nm

. The assumptions used in §4.1 are borne out by these datafits, as follows. If S
0

is

maltotriose supply and we assume k ⇡ c · S
0

and growth rate r = r(S
0

) = c · V S

0

K+S

0

then

(24)
k

r
⇡ c · S

0

·

K + S
0

cV S
0

=
K

V
+ S

0

·

1

V

and so k/r should have linear (a�ne) dependence on S
0

. Inspecting Supplementary Figure 15(b) that shows a linear

regression between maltoriose concentration and the value of k/r, this figure indicates a strong correlation between

k/r and S
0

. The parameters V and K can be determined directly from this regression from the slope and intercept

of the fitted line. The assumption of an approximately linear relationship between k and S
0

is also born out by

Supplementary Figure 15(b) showing a clear, positive correlation. The main purpose of §4.1 is to understand how

k/S
0

deviates subtly from linearity.

We note that the method used to produce the data given in Supplementary Table S2 is a di↵erent one from

that used, for example, in Supplementary Figure 9 and the value of K reported in the former is higher for the

wild-type strain than in Supplementary Table S1. In particular, the data of Supplementary Table S2 assumes a

linear relationship between k/r and maltotriose in equation (24) whereas Supplementary Figure 15(b) shows that

relationship appears to be nonlinear. This nonlinearity must impact on the size of the error when estimating both K

and V , and the former more than the latter, as the coe�cient of variation data in Supplementary Table S2 indicates.
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D: Theoretical Predictions and Empirical Observations of Allele Frequency Dynamics

6. Predicting coexistence in a feast-famine environment using a RATO

6.1. Coexistence in an uptake-only model: a 3-strain RATO. Supplementary Figure 11 highlights five library

strains that appear to be the fittest competitors in constant maltotriose environments, from the figure these are 9a,

19a, 62b, 29a and 71b. In a microcosm where maltotriose is not constant but rather but dependent on time, so

that S
ext

= S
ext

(t) is dynamic, then at each moment in time a di↵erent strain, and a di↵erent configuration of

the maltoriose transporter, will be momentarily most fit. As that sugar is consumed and used for cell growth it

necessarily reduces in concentration, that particular transporter will subsequently lose its favourable, most-fit status

and a di↵erent transporter will soon become most fit, at least for a short while.

We predict on the basis of this verbal rationale that many di↵erent transporter structures (i.e. di↵erent bacterial

strains) may be able to persist in an environment where the supply of sugar is in constant flux, sometimes high,

sometimes low, and we therefore ask which of the five dominant strains identified above will be able to co-exist in

one microcosm. For the remainder of the document, as we now explain, we concentrate on three: strains 9a, 19a

and 62b the colours of which are used to identify each strain in the figures of this document.

To validate our expectation from Supplementary Figure 11 that these three strains form the trade-o↵s needed

to be able to co-exist in a batch culture with a seasonal resource dynamic, we performed a series of datafits using

the Matlab MCMC Toolbox to estimate the posterior distribution of the parameter values for each strain contained

with the model (21). We used uninformative, uniform priors with the Metropolis-Hastings implemented as described

in the mcmcrun m-file in the toolbox found at http://helios.fmi.fi/
~

lainema/mcmc/. A typical outcome of this

procedure is shown in Supplementary Figure 16 which illustrates posterior marginal distributions of the parameters

K and V for the three strains. While the maximum likelihood estimates of the (K,V ) data for each strain presented

in Supplementary Figure 16(a) is not significantly nonlinear, there is the possibility within the entire dataset of a

(K,V ) correlation consistent with the existence of a rate-a�nity trade-o↵ between these three strains.

In order to use the data in Supplementary Figure 16 to study the coexistence between the three strains in a

seasonal environment we use the following mathematical model. Define the following vectors:

c := (c
j

),V := (V
j

),K := (K
j

),U(S) := (U
j

(S)) and G(S) := (G
j

(S)),

where G
j

(S) = c
j

U
j

(S) and U
j

(S) = V
j

S/(K
j

+ S) where j takes on the three values relevant to the three strains

9a, 19a and 62b. Then define a di↵erential-di↵erence equation, as follows. For 0  t  T where T is the length of a

season, solve

d

dt
B

i

= G(S
i

)B
i

,(25a)

d

dt
S
i

= �hU(S
i

),B
i

i ,(25b)

where the boundary conditions apply for i � 1, where i denotes the index of each season

(25c) B
i

(0) = ⌘B
i�1

(T ), S
i

(0) = S
0

+ ⌘S
i�1

(T ),

with the initial conditions

(25d) B
0

(0) = � · (1, 1, 1)T , S
0

(0) = S
0

.

The boundary condition in (25c) has the following meaning: while S
0

is the sugar supplied to the microcosm anew

after the end of each season, ⌘ is the fraction of sugar transferred to the next season of the microcosm that remains

unspent from the previous season.

Here S
i

(t) is the maltotriose concentration within season i, B
i

is a vector containing the densities of each bac-

terial genotype, S
0

is the maltotriose supply concentration (that was also written S
ext

above) � is a small number

representing the density of the bacterial inoculum in the first season and we assume that all genotypes are initially

present in equal densities. Finally, ⌘ > 0 is a parameter representing the volume of matter that survives from one

season to the next. We will use ⌘ = 1% = 0.01 and T = 24 hours in the following unless otherwise stated, so that

the terms ‘season’ and ‘day’ are equivalent. (Also, to ensure results are robust to experimental variation, in some of

the simulations we present, ⌘ will be a uniformly distributed random variable taking values in the interval (0, 0.05)

with mean 0.025 and standard deviation 0.02.)

Equation (25) is completely parameterized by the data given in the right-hand column of Table 1 and we can

therefore use (25) to predict which mutants in the library might coexist at di↵erent values of the maltotriose supply

parameter, S
0

. Representative numerical simulations of equation (25) in Figure 17(a) illustrate that the three strains
28

http://helios.fmi.fi/~lainema/mcmc/


identified above can indeed persist when S
0

⇡ 300µg/ml. The purpose of the next section is to test this prediction

empirically.

7. Three-strain coexistence in a feast-famine environment

The results of the previous section, particularly, Supplementary Figure 17 makes a prediction we can test ex-

perimentally. We therefore co-cultured strains 9a, 19b and 62b in a laboratory microcosms containing DM media

supplemented with maltotriose (see Methods for details) to understand whether these three strains would be stably

co-maintained in the device.

Two comments are necessary regarding this experiment: it is impossible to conduct it ad infinitum, the experiment

must be stopped at some point and so we can never validate stable coexistence in the manner possible when using a

mathematical model; secondly, while it is present each strain will support a genetic lineage that may itself diversify

into further lineages that we cannot detect using the genetic markers discussed in the appendix. However, our

purpose is only to ask whether the biological mechanism underpinning the trade-o↵s discussed in this document

are su�cient in themselves to support multiple co-existing lineages. This is a question we can answer using a

mathematical model, although no mathematical model will ever capture the variety of adaptive changes each E. coli

lineage will likely undergo.

7.1. The 3-strain coexistence data. Data obtained from co-culturing 9a, 19b and 62b at 333µg/ml of maltotriose

(as described in Methods) is illustrated in Supplementary Figure 18. This shows 18-day density and frequency

dynamics of the three strains, it shows that all three strains are maintained for the duration of the experiment.

However, the observed dynamics are very di↵erent from those obtained using the theoretical model, as illustrated in

Supplementary Figure 17. In particular, 9a dominates empirically, whereas it is the strain with the lowest equilibrium

frequency in the model. A theory of strain dynamics comprising only maltotriose uptake is therefore insu�cient to

described the dynamics of the strains and the theory must therefore be altered.

In order to probe whether the density of each strain has reach stasis after 18 days of growth, we computed the

ratio of densities for each strain on days n and n + 1, for n  17. This value represents the transfer-to-transfer

growth rate of each strain and the resulting data is shown in Supplementary Figure 19(a). Values of unity represent

stasis, or near-equilibrium behaviour, non-unity values represent an increase or a decline in strain densities. Indeed,

Supplementary Figure 19(a) provides some evidence that the three strains have reach a period of stasis, giving

statistics of transfer-to-transfer growth rates. None of the strain growth rates are consistently below unity in the

manner that would be expected if fewer than three strains were to persist in the experimental device (whereby one

strain would be lost at an exponential rate). Nor are these values above unity in the manner that would be expected

were one strain to dominate in the device.

Consistent with this observation, Supplementary Figure 19(b) shows the results of applying the following serial

one-way anova test to frequency data from Supplementary Figure 18. Suppose (F
j

) for days j = 0, 1, ..., N = 18 is a

time series of frequencies of one of the clones, so that each F
j

is a set of replicate observations of those frequencies

and here there are three replicates. Now let F

n

:= (F
j

)N
j=N�n

be a backwards-in-time longitudinal sequence of

sets containing empirical frequency observations for a given strain on day j. We claim significant non steady-state

dynamics on day N � n if a one-way anova can detect significant di↵erences in the means of each such set of

observations, F
n

for n � 1, for any of the three strains used. Supplementary Figure 19(b) shows that this test

fails and so we cannot reject the hypothesis that the dynamics are in steady-state until we reach day 10, whereupon

significant changes in the mean frequencies of strain 62b can be detected with respect to later dynamics. Thus day

10 is the earliest possible day at which equilibrium frequency dynamics could be claimed, according to this test.

(Nevertheless, subsequent experiments detailed below in §8.1 will show that the system cannot yet be claimed to

have achieved equilibrium.)

Supplementary Figure 20 shows analogous dynamics of strain densities and frequencies in conditions when one of

the strains is lost from the device, in one case exponentially rapidly (Supplementary Figure 20(b)). These experiments

were conducted in di↵erent maltotriose conditions or with a di↵erent season length from those experiments illustrated

in Supplementary Figure 18.

We recapitulate an important observation made above: although it predicts that the long-term coexistence of

the three strains highlighted in Supplementary Figure 18 is possible, Supplementary Figure 17 does not capture

the correct order of those strains in relation to the empirical data in Supplementary Figure 18. It follows that the

parameterized model in equation (25) which only assumes di↵erences in the lamB gene, and therefore di↵erences in
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sugar uptake, does not faithfully capture the frequency dynamics of the experimental microcosm and so that model

needs to be improved.

8. Theoretical coexistence from a RATO and a RYTO

In order to find a biologically-relevant modification of equation (25) to account for the the strain frequency

dynamics data in Supplementary Figure 18, we now turn to an aspect of glucose metabolism upon which our

derivation of the RYTO was based. This is the derivation that lead to equation (20) that we showed to be consistent

with the yield of the E.coli wild-type in our library in Supplementary Figure 14.

One notable di↵erence between the dynamics of Supplementary Figure 18 in comparison with Supplementary

Figure 17 is the order of the strains: in the empirical data strain 9a is dominant, present at frequencies of nearly

90% by day 18, however the same strain is present at very low frequencies in the theoretical simulations shown in

Supplementary Figure 17. We must therefore find a modification of equation (25) which changes this order, but

which does not assume any genetic di↵erences in the subsequently modelled strains other than in lamB. This change

must also have the paradoxical property that higher levels of maltotriose uptake lead to slower growth than cells

with lower maltotriose uptake. However, it is exactly this property of E.coli metabolism that enabled a derivation

of the RYTO in §4: fast uptake leads to the promotion of ine�cient metabolism which reduces yield and leads to

slow growth in circumstances when the carbon source is scarce.

We therefore adapt the prior mathematical model to include a form of the RYTO, as follows:
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This model is phenomenological in the sense that it has not been derived from known physiological or metabolic

laws, but it is based on the following assumptions that are illustrated in Supplementary Figure 21.

First, a subscript i denotes the seasons associated with each variable, beginning with i = 0 for the initial condition.

Extracellular maltotriose, at concentration S
ext

, is imported into cell according to Monod-Michaelis-Mented uptake

that is di↵erent between the three cell strains that we are considering (and whose maximal uptake rates are defined

in Table 1). Following uptake, the external sugar becomes an internal sugar that is held at a per-cell concentration

in the 3-vector, S
i

.

Motivated by the fact that maltotriose is converted to glucose by the products of the genes regulated by malT, this

internal sugar (that we hereafter assume to have been processed by MalT and refer to as ‘glucose’) is metabolized to

produce ‘ATP’ which leads to cell growth. However, a secondary metabolite is also produced that can be thought

of as an ‘acetate’ molecule, at concentration A
i

. While acetate is also further processed and also leads to the

production of ATP, acetate production is inhibited by high glucose concentrations and this inhibition is determined

by a function r(·) as stated within the model. Notice how r diverts S
i

into the production of either A
i

(‘acetate’)

or B
i

(‘biomass’) where the latter denotes the density of cells in the microcosm.

Therefore, the term ↵(1 � r)S
i

� �rA
i

in equation (26c) reflects the idea that r 2 (0, 1) is a fraction that

controls how much internal glucose is converted rapidly to biomass and how much is converted into the metabolic

intermediate, acetate, and the hyperbolic form of the function r(·) is taken from the earlier derivation of the RYTO

shape in (20). The parameter ↵ is the maximal rate at which acetate can accumulate from glycolysis, the value of �
c

is an additional biomass yield that is gained from metabolizing acetate over and above that biomass obtained from

glucose alone. We further remark that equation (26) is forced to use one value of the yield parameter c for all three

cells. This is done to ensure that the persistence of three di↵erent lamB mutants is due to, and only to, di↵erences

in cells that arise because of the lamB gene.
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Supplementary Remark 6 (Some intuition: coexistence by virtue of being a victim of your own success). The

coexistence we observe is possible because a genotype with fast maltotriose uptake can grow quickly initially when

resource are plentiful but it also depletes its own environment, creating low-sugar conditions in which more e�cient

cells grow more quickly even though they uptake sugars more slowly. Depending on how much maltotriose is supplied,

this principle can be enough for several genetic lineages to coexist, where each genetic lineage possesses a di↵erent

sugar transporter structure.

It might be possible that many genotypes can coexist by the same reasoning because the optimality principle of §3.2

makes a prediction that a seasonal environment has infinitely many potential niches, as follows. As sugars decline,

at each moment in time a di↵erent transporter is momentarily most fit, thus creating a continuum of niches and the

potential for many genetic lineages to be supported in a seasonal microcosm.

8.1. Testing the theoretical predictions on coexistence frequencies. Supplementary Figure 22 illustrates

the outcome of empirically testing the equilibrium values of the strain frequencies of 9a, 19a and 62b as predicted

by the mathematical model (26)(a-f) and which are stated in Supplementary Figure 21, namely (96.1, 2.1, 1.7)%.

For this experiment, the strains 9a, 19a and 62b were inoculated into a microcosm under identical conditions (a

batch transfer protocol) as those used to produce Supplementary Figure 18, except the initial relative frequencies of

the three strains were set to their predicted equilibrium values. The resulting density and frequency dynamics are

shown in Supplementary Figure 22 and the null expectation, if the model predictions are correct, would be that the

frequencies remain constant through time.

We tested a null hypothesis of constant strain frequencies in the data resulting from this protocol in two di↵erent

ways that are illustrated in Supplementary Figure 23, as follows. Suppose (F
j

) for days j = 0, 1, ..., N = 8 is a time

series of frequencies of one of the clones, so that each F
j

is a set of replicate observations of those frequencies where,

again, there are three replicates. In order to determine when the frequencies are out of equilibrium we could ask for

which value of n � 1 can the means of the values in (F
j

)n
j=0

be successfully distinguished at the p = 5% level using

a one-way anova for any of three strains used? As a second test that is likely to be more sensitive to experimental

variation, and therefore less conservative, we could also ask for what value of n can a t-test distinguish the means of

F
0

and F
n

?

As Supplementary Figure 23(a) shows, the first of these tests is unable to reject the null hypothesis that the

frequency dynamics for all three strains are the same for a period of eight days. This is consistent with those

dynamics residing at equilibrium for the entire duration of this microcosm. However, the second test is able to reject

the same null hypothesis provided n � 7. Thus both tests are consistent with the statement that frequency dynamics

remain in equilibrium for 7 days. Moreover, it is not surprising that the dynamics eventually move away from the

equilibrium predicted by the mathematical model as it uses information about so few genes and de novo mutations

are sure to render the model inapplicable eventually.

Supplementary Remark 7. In microcosms with a seasonal feast-famine dynamic, as here, stationary phase sees

the onset of a complex set of regulatory stress responses in bacteria,14–17 none of which have been included in our

mathematical models but which can have important evolutionary implications.18–20 This is quite purposeful on our

part as here we are interested in the question of whether genetic di↵erences in a transporter might be su�cient to

explain the existence of a stable polymorphism and the co-maintenance of three genetic lineages. There are many

mechanisms in other genes that might also lead to the stable maintenance of polymorphisms and we contend that

such di↵erences only serve to increase, rather than diminish, the genetic diversity observed here.
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Supplementary Methods

9. Colony-forming units (CFUs) to optical density (OD
600

) conversion

Throughout the document we refer to two di↵erent measures of bacterial density as measured in laboratory

devices. In some instances we use CFUs as density units, the number of colony-forming units per millilitre, whereas

plate readers used routinely in microbiology laboratories measure optimal densities, here at a wavelength of 600nm.

To ensure both represent the same cell density, we present Figure 24 which shows a strong, linear correlation for

both measures across a one order of magnitude density range.

From Supplementary Figure 24 we deduce that a value of 0.26OD as measured in a micro plate reader where

the liquid volume is 200µL, the value we use throughout, corresponds to approximately 109CFU per ml and this

corresponds to 2⇥ 108 live bacterial cells. Thus 0.13 OD corresponds to 108 cells in our protocols and so 1 OD unit

⇡ 7.6⇥ 108 cells which is 3.8⇥ 109 CFU per ml.
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