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Abstract 

Synthesis of photo-switchable, Zn
2+

 sensitive hybrid materials was achieved by facile non-

covalent functionalization of graphene, graphene oxide and carbon nanotubes with a pyrene-

appended spiropyran.  Solution phase binding studies, using UV-visible and fluorescence 

spectroscopy, indicated that the pyrene-spiropyran dyad was highly selective for Zn
2+

 over a 

range of potentially competitive cations and that binding occurred with 1:1 stoichiometry and 

a binding constant of K = 1.4 × 10
4
 mol

�1
 dm

3 
at 295 K.  Zn

2+
 binding was promoted by UV 

irradiation or in darkness and reversed upon irradiation with visible light.  

1. Introduction 
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A spiropyran (a spiro-fused chromene-indoline (e.g. 1, Scheme 1)) is a photochromic 

molecule that under UV illumination switches to its structural isomer merocyanine (e.g. 2), 

with the reverse process promoted by visible light (or heat) (e.g. Scheme 1).
1
   

 

Scheme 1 � Spiropyran�merocyanine equilibrium 

The uncharged spiropyran and the zwitterionic merocyanine have markedly different physical 

and optical properties, which has led to much research into their use in producing dynamic 

materials.
2
  For example, spiropyrans have been attached to carbon nanotubes both by 

covalent
3
 and non-covalent

4
 means, the latter predominantly by linking the spiropyran to a 

pyrene and using �-� stacking between the pyrene and nanotube as anchorage.  The usual aim 

of these studies is to utilise the large difference in dipole moment between the spiropyran and 

the merocyanine to confer light-addressable switching of the electronic and/or optical 

properties of the nanotube.
3,4

  For this purpose, non-covalent modification appears to be 

preferable to covalent modification, in that it does not unduly disrupt the carbon 

framework.
5
  Pyrene-appended spiropyrans (e.g. 3, Figure 1) have been non-covalently 

attached to graphene and shown to confer reversible optical modification of the Dirac point
5
 

and the theoretical aspects of the spiropyran-nanotube
6
 and the spiropyran-graphene

7
 

interaction have been considered. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

4 

 

 

Figure 1 � Covalent and non-covalent attachment of spiropyrans 3 and 4 to graphene and 

carbon nanotubes 

Departing somewhat from the usual rationale of a light-addressable switch, Del Canto et al.
8
 

looked to create a carbon-nanotube-borne, photo-releasing Zn
2+

 drug-delivery system from 

spiropyran-modified carbon nanotubes (4, Figure 1).  Their methodology used amide 

coupling to link a polyethylene glycol moiety appended to the indolic nitrogen of spiropyran, 

to single-walled carbon nanotubes pre-functionalized (using diazonium-salt chemistry) with 

benzoic acid groups.  The benzopyran unit of the spiropyran was modified with a methoxy 

����� �� �	
 �� ������� ��	 �	�� ������� �� �	
 ��
2+

 occurred in the merocyanine form, 

bridging between the methoxy oxygen and the negatively charged phenolate ion, with 

additional stabilisation of the complex provided by the insertion of an electron-withdrawing 

����� ����� �� �	
 �
�������� �� ��������  The binding was light-reversible (binding in the 

dark, releasing in visible light) in a mixed solvent of dichlorobenzene and acetonitrile, plus it 

was possible to produce a suspension of the material in water. 
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Figure 2 � Zn(II)-binding spiropyrans 

In previous studies
9,10

 the same group have synthesised analogous light-reversible, Zn
2+

-

binding spiropyrans without attachment to any support, in one case
9
 with a butanoic acid side 

chain appended to the indolic nitrogen (Figure 2, 5) � giving a 2:1 spiropyran-to-zinc 

complex stoichiometry in acetonitrile (with possible involvement of the carboxylic acid in the 

binding interaction) � and in a further case
10

 with functionalization of the indolic nitrogen 

with a methyl pyridine moiety (Figure 2, 6), such that chelation of the Zn
2+

 (now in 1:1 

stoichiometry in acetonitrile) could occur between the pyridine nitrogen lone pair, the 

phenolate anion and the oxygen of the methoxy group (Figure 3).  Compound 5 proved 

unselective amongst M
2+

 cations, whereas 6, studied by UV-visible, fluorescence and 
1
H 

NMR spectroscopy, showed Zn
2+

 selectivity over a range of possibly competing ions in 

acetonitrile and was thus viewed as a potential sensing label for Zn
2+

 in a biological and 

environmental context, though no measurements were made in aqueous media. 
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Figure 3 � Proposed
10

 tridentate binding of the merocyanine isomer of 6 with Zn
2+

 

An attractive proposition is to produce a pyrene-appended analogue 7 (Figure 4) of the 

pyridine-containing spiropyran 6.  Firstly, in solution, the pyrene itself is a second fluorescent 

label for Zn
2+

 in addition to the spiropyran itself and, secondly, it permits simple, non-

covalent attachment to carbon-based materials � in particular, to graphene, graphene oxide 

and carbon nanotubes.  As noted above, spiropyran-pyrene dyads have previously been used 

for non-covalent derivatisation of carbon nanotubes
 
and graphene;

4,5
 however, this has yet to 

be exploited with respect to spiropyran-based cation receptors.  Furthermore, graphene oxide 

��� ���� �� ��	 �
������ ����	��	� �		� ���-covalently modified with spiropyran using 

pyrene anchor groups (it has been non-covalently modified by self-assembly of a silyl-

appended spiropyran
11

 for the purposes of detecting fluoride in aqueous media).  
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Figure 4 � Proposed Zn
2+

 binding spiropyran with ether-linked pyrene anchor group 

In the work presented here, a pyrene-appended Zn
2+

-binding spiropyran 7 has been 

synthesised.  This material is shown by UV-visible and fluorescent spectroscopy to bind 

Zn
2+

 selectively and light-reversibly in a wide range of solvents and also to attach non-

covalently to graphene oxide, graphene and carbon nanotubes.  The latter two hybrid 

materials display retention of the Zn
2+

-binding action and so provide new carbon-based 

platforms for sensing and switching applications. 
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2. Results and Discussion 

2.1. Synthesis of spiropyran-pyrene dyad 7 

7 was synthesised from commercially available starting materials in three steps (Scheme 2). 

Treatment of 1-pyrenebutanol (8) and bis(bromomethyl)pyridine (9; 2 eq.) with sodium 

hydride in refluxing THF gave the ether 10 in 61% yield.  N-Alkylation of 2,3,3-

trimethylindolenine (11) with 10 was sluggish and highly sensitive to reaction stoichiometry.  

Optimal conditions required exposure of 10 (1 eq.) to 2,3,3-trimethylindolenine (1.7 eq.) in 

the presence of excess potassium carbonate under acetonitrile reflux for 40 h.  The indolium 

salt intermediate was not isolated; rather, base-mediated rearrangement occurred in-situ to 

give the enamine 12.  12 was sensitive to silica gel chromatography, hence condensation with 

3-methoxy-5-nitrosalicylaldehyde (13) was performed on crude material to give the target 

spiropyran�pyrene dyad 7 in 11% overall yield. 

 

 

 

Scheme 2 � Synthesis of spiropyran 7. R = Pyrenebutyl. 
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2.2. Binding studies of 7 with metal cations 

2.2.1. Zn
2+

 selectivity of 7   

Initial experiments employed UV-visible spectroscopy to assess the metal cation binding 

behaviour of 7.  Addition of 2.5 eq. Zn(NO3)2.5H2O to a 0.1 mM solution of 7 in acetonitrile, 

followed by white light irradiation, gave a colourless solution which displayed limited visible 

absorbance (Figure 5).  After 5 minutes in the dark, the same solution became orange and 

showed a strong absorbance at 485 nm, consistent with merocyanine formation and 

concomitant metal chelation.  A stable equilibrium was attained after 30 minutes.  UV 

irradiation (366 nm) of a similar solution of 7 and Zn(NO3)2.5H2O in acetonitrile promoted 

more rapid merocyanine formation, requiring under 15 minutes to establish a similar 

merocyanine concentration to that observed under darkness.  Exposure of this solution to 

several light-dark cycles gave reproducible and persistent photochromic behaviour (Figure 6).  

In contrast, in the absence of Zn
2+

, a solution of 0.1 mM of 7 in acetonitrile containing no 

Zn
2+

 remained colourless, regardless of darkness, UV or white light irradiation (Figure 5b).  
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Figure 5 � Absorbance spectra of 7 (0.1 mM in MeCN): a)[green] 7; b)[red] 7 after UV 

irradiation; c)[pink] 7 + Zn(NO3)2 (2.5 eq.) after white light irradiation; d)[blue] 7 + 

Zn(NO3)2 (2.5 eq.) after UV irradiation. Inset: Expansion of 400�575 nm region. 

 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

11 

 

 

Figure 6 � Reproducible photochromic behaviour of 7. Absorbance intensity at 485 nm of a 

solution of 7 (0.1 mM in MeCN) + Zn(NO3)2 (2.5 eq.), exposed to alternating light [white 

bars], dark [purple bars] and UV [pink bars] cycles.  

 

Emission spectra were recorded for solutions of 0.1 mM 7 in acetonitrile, exciting both at 

pyrene (350 nm) and merocyanine (485 nm) wavelengths, and in the absence and presence of 

Zn
2+ 

(Figures 7 and 8).  Excitation at 350 nm in the absence of Zn
2+

 resulted in a strong 

pyrene emission at 400 nm.  The intensity of this emission was reduced upon Zn
2+

 addition, 

with an additional emission peak observed at 620 nm, consistent with merocyanine 

fluorescence (Figure 7).  In this case, the presence of Zn
2+

 promotes merocyanine formation, 

hence this additional peak is presumably due to merocyanine emission promoted by energy 

transfer from the pyrene excited state
12

 (hence 7 could, in principle, function as a ratiometric 

fluorescence probe for Zn
2+

 by excitation at 350 nm and then measurement of I620 nm/I400 nm as 
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a function of [Zn
2+

].)
13

  Excitation at 485 nm in the absence of zinc produced no emission; 

however, in the presence of Zn
2+

 an emission peak at 620 nm was observed (Figure 8).  

 

 

Figure 7 � Emission spectra (exciting at 350 nm) of: a) 7 (0.1 mM in MeCN; b) 7 (0.1 mM in 

MeCN) + Zn(NO3)2 (2.5 eq.). Each measurement was taken following 15 minutes in the dark. 

 

Figure 8 � Emission spectra (exciting at 485 nm) of: a) 7 (0.1 mM in MeCN; b) 7 (0.1 mM in 

MeCN) + Zn(NO3)2 (2.5 eq.); c) 7 (0.1 mM in MeCN) + Co(NO3)2 (2.5 eq.). Each 

measurement was taken following 15 minutes in the dark. 
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In addition to Zn
2+

, 1 mM solutions of 7 in acetonitrile were exposed to a range of potentially 

competing metal cations and their response was assessed by UV-visible spectroscopy (Figure 

9).  Of these cations, only Co
2+

 showed any capacity to promote merocyanine formation and, 

in this case, absorbance at 485 nm was considerably lower than that observed in the presence 

of Zn
2+

.  Furthermore, an acetonitrile solution of 7 and Co
2+

 produced very limited emission 

upon excitation at 485 nm, i.e. fluorescence spectroscopy provides an effective method to 

distinguish Co
2+

 and Zn
2+

 in situations where they might be competitive for 7 (Figure 8).  

This contrast in metal ion selectivity between absorbance and fluorescence measurements has 

previously been observed in spiropyran-aminoquinolone dyads.
13

   

 

Figure 9 � Absorbance spectra of 7 (0.1 mM in MeCN) in the presence of various metal salts 

(2.5 eq.): Zn(NO3)2 and Co(NO3)2 (highlighted); AgNO3; Cu(NO3)2; Al(NO3)3; Mg(NO3)2; 

KNO3; Cr(NO3)3; Ni(NO3)2; CaCl2; NaCl; FeCl3; Pb(OAc)2.   

 

2.2.2. Complex stoichiometry and binding constant of 7 + Zn
2+
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With the Zn
2+

 selectivity of the spiropyran-pyrene dyad established, we next sought detailed 

understanding of the physical parameters of Zn
2+

 chelation.  The stoichiometry of the 

complex formed between the spiropyran 7 ������ ��� 	�
2+

 in acetonitrile was determined 

from the Job plot shown in Figure 10.
14

  This plot is of absorbance, A, at 485 nm (the peak 

absorbance wavelength for the complex) as a function of the mole fraction of zinc ion, 

x(Zn
2+

), defined in terms of [Sp]T and [Zn
2+

]T, the total (bound-plus-unbound) concentrations 

of Sp and Zn
2+

, respectively, as 

T

2

T

T

2
2

]Zn[]Sp[

]Zn[
)Zn( 







�
�x      (1) 

with the value of T

2

T ]Zn[]Sp[ 
� here held constant at 0.2 × 10�

3
 mol dm�3

.  The maximum 

absorbance occurs at x(Zn
2+

) = 0.5, indicating a ratio of spiropyran to Zn
2+

 of, on average, 

1:1.  Considering this result and the spiropyran molecular structure, the complex is presumed 

to involve a single spiropyran molecule and a single Zn
2+

 ion, and is represented as Sp:Zn
2+

 

in the reaction stoichiometry 

Sp + Zn
2+

 = Sp:Zn
2+

     (2) 

The binding constant, K, for this complex formation is defined in terms of [Sp:Zn
2+

], [Sp]u 

and [Zn
2+

]u, the concentrations of the complex, the unbound spiropyran and the unbound 

Zn
2+

, respectively, as 

u

2

u

2

]Zn[]Sp[

]Zn:Sp[
�

�

�K      (3) 

In order to determine the value of K (here at 295 K), the value of [Sp]T was fixed 0.1 × 10
�3

 

mol dm
�3

 and absorbance values at 485 nm recorded as a function of [Zn
2+

]T, as shown 

Figure 11.  These absorbance values are presumed to be a sum of two Beer-Lambert law 

terms as 

llA ]Zn:Sp[]Sp[ 2

SZuS

�
�� ��     (4) 
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where �S and �SZ are the molar absorption coefficients at 485 nm of the unbound spiropyran 

and the complex, respectively, and l is the path length of the cell. 

Noting the following relation between concentrations 

]Zn:Sp[]Sp[]Sp[ 2

uT

���      (5) 

 and defining lA TS0 ]Sp[�� as the absorbance at [Zn
2+

]T = 0, equation (4) is recast as 

� � lAA ]Zn:Sp[ 2

SSZ0

�	
	 ��     (6) 

Then, in addition to equation (5), the relation between concentrations 

]Zn:Sp[]Zn[]Zn[ 2

u

2

T

2 ��� �     (7) 

is used to recast equation (3) as 

])Zn:Sp[]Zn])([Zn:Sp[]Sp([

]Zn:Sp[
2

T

22

T

2

���

�

��
�K    (8) 

before rearranging to a quadratic in [Sp:Zn
2+

] with the physically-reasonable solution 

�
�

�

�

�
�

�

�
������

2

tot2

difftot

2 121

2

1
]Zn:Sp[

KK

C
C

K
C    (9) 

where T

2

Ttot ]Zn[]Sp[ ���C  and T

2

Tdiff ]Zn[]Sp[ � !C .   

(Written for the limit of large K, the general solution to the quadratic is 

"
#
$%

&
' ()* 2

difftot

2

2

1
]Zn:Sp[ CC  

but the positive term in parentheses is rejected since it returns the unreasonable result that 

[Sp:Zn
2+

] = [Sp]T when [Zn
2+

] = 0.) 

Equation (9) was independently-derived but is equivalent to that published by Olson and 

Bühlmann.
14

 As a novel means to extract binding constants from absorbance data, the 

equation was used to generate values of [Sp:Zn
2+

] with simple trial-and-error variation of K 

until, in accord with equation (6) and judged by linear regression analysis using the standard 

r
2
 value, the greatest degree of linearity was achieved in a plot of [Sp:Zn

2+
] as a function of A 
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Also apparent from the data presented in Figure 11 is the upper limit of the [7]:[Zn
2+

] ratio 

that 7 can tolerate as an effective sensor for Zn
2+

.  Maximum binding for 7 with Zn(NO3)2 in 

acetonitrile required ~5 eq. of the zinc salt; any further increase in [Zn
2+

] did not result in an 

increase in [7-MC].  Consequently, 7 can function as an effective sensor for [Zn
2+

] up to a 

point where [Zn
2+

] is in five-fold excess. 

 

In general, the solution behaviour of 7 towards Zn
2+

 (selectivity, binding stoichiometry, 

binding constant and photochromism) closely followed that of the parent compound 6 (Figure 

2) lacking the pyrene moiety.  Detailed analysis of the 6�Zn
2+

 complex by Natali et al.
10

 

identified tridentate Zn
2+

 coordination through phenolate, methoxy and pyridine groups (see 

Figure 3); we assume that a similar binding model for 7�Zn
2+

 is appropriate. In any case, that 

the Zn
2+

 binding properties of 6 and 7 are similar, despite the inclusion of a pyrene group in 

the latter, gave us incentive to use 7 to derivatise carbon surfaces.   

 

2.3. Hybrid materials: non-covalent functionalisation of graphene oxide, graphene and 

carbon nanotubes with 7 

2.3.1. Synthesis of 7-GO, 7-G and 7-CNT 

Having assessed its solution behaviour, the non-covalent functionalisation of graphene oxide, 

graphene and CNTs using 7 was examined. The addition of 7 to a dispersion of each carbon-

based material in acetonitrile (see experimental section) was followed, after 1 hour, by 

analysis using UV-vis and fluorescence spectroscopy (Figure 13).  In each case, absorbance 

at 340 nm confirmed the presence of 7, but excitation at 340 nm resulted in sufficiently little 

emission to indicate quenching of pyrene fluorescence and so the adsorption of pyrene on the 

carbon surface.  Non-covalent interactions of pyrene and carbon surfaces allow efficient 
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energy transfer from � and hence quenching of � pyrene excited states and therefore 

fluorescence quenching indicates that such pyrene�carbon interactions have formed.
4a

  

 

 

Figure 13 � Absorbance and (inset) emission spectra of 7 and 7 adsorbed onto CNTs, 

graphene and graphene oxide. Pyrene absorbance is retained in the hybrid materials, 

whereas pyrene fluorescence is quenched. 

 

2.3.2. Zn
2+

 binding properties of 7-GO, 7-G and 7-CNT 

The Zn
2+

 binding behaviour of each novel hybrid material was examined: dispersions of 7-

GO, 7-G and 7-CNT in acetonitrile were exposed to zinc(II) nitrate, then kept in darkness for 

5 minutes.  Both graphene- and carbon nanotube-supported 7 showed strong absorbance at 

485 nm, consistent with merocyanine formation and concomitant Zn
2+

 binding, and 

confirmed that the solution behaviour of 7 could be preserved whilst non-covalently bound to 

a carbon surface (Figure 14).  Moreover, 7-G and 7-CNT displayed similar photochromic 

behaviour to free 7, with exposure to alternate dark / light cycles triggering Zn
2+

 binding and 

release respectively.  In contrast, 7-GO did not display any evidence of merocyanine 

formation upon exposure to zinc(II) nitrate, regardless of darkness or light irradiation, even 
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with addition of excess Zn
2+

.  Furthermore, addition of dispersed GO in acetonitrile to a 

solution of Zn
2+

-bound MC-7 in darkness resulted in rapid decolouration and irreversible loss 

of merocyanine absorbance.  We assume that the oxygen-based functionality displayed by 

GO (and not present in either graphene or CNTs) can disrupt the precise Zn
2+

 binding site 

offered by MC-7, thus rendering the merocyanine form inaccessible.  Although GO is able to 

adsorb metal cations such as Zn
2+

,
15

 the idea that GO is competing with the spiropyran for 

Zn
2+

 can be discounted because the merocyanine form is not observed when 7-GO is exposed 

to a sufficiently large excess of Zn
2+

 such that free binding sites on the GO are likely to be 

saturated.    

 

 

Figure 14 � Absorbance spectra of hybrid materials 7-GO, 7-CNT and 7-G in the presence of 

Zn(NO3)2 after 5 minutes of darkness.
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3. Conclusion  

We have developed a spiropyran-based cation receptor capable of non-covalent 

functionalization of carbon surfaces.  Cation binding occurs with concomitant isomerisation 

of the spiropyran to a highly-coloured merocyanine form; hence bound cation concentration 

can be estimated by simple absorbance or emission spectroscopy.  The receptor shows high 

selectivity and sensitivity towards Zn
2+

 over other potentially competitive species.  Analysis 

of Zn
2+

 binding in acetonitrile shows 1:1 binding stoichiometry with a binding constant of 1.4 

× 10
4
 mol�

1
 dm

3
.  The merocyanine-Zn

2+
 complex is light sensitive and irradiation with white 

light promotes photoisomerisation to the spiropyran form with release of Zn
2+

.  Return to 

dark conditions, or UV irradiation, promotes merocyanine formation and Zn
2+

 uptake.  This 

photochromic behaviour is reproducible over many light-dark cycles. 

 

The design of the receptor incorporates a pyrene unit.  In solution, the pyrene can serve as a 

reference chromophore to quantify changes in merocyanine absorbance or emission, hence 

invites possible use of 7 as a ratiometric probe for Zn
2+

.  Furthermore, the pyrene moiety 

provides a versatile anchor group for facile non-covalent attachment of the spiropyran 

receptor to carbon-based materials.  Accordingly, we have synthesised hybrid spiropyran-

carbon materials based upon carbon nanotubes, graphene and graphene oxide.  Although 

spiropyran adsorption was successful in all cases, spiropyran bound to graphene oxide did not 

undergo isomerisation to its merocyanine form upon exposure to Zn
2+

.  Conversely, hybrid 

spiropyran-graphene and spiropyran-CNT exhibited spiropyran-merocyanine photoisomerism 

in the presence of Zn
2+

.  To our knowledge, these materials constitute the first examples of 

spiropyran-based cation receptors non-covalently attached to carbon surfaces.  Investigation 

into the spectroelectronic properties of these novel dynamic materials is ongoing. 

 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

22 

 

4. Experimental 

4.1. General experimental 

All chemicals were purchased from Aldrich and were used as received.  The fraction of light 

petroleum ether boiling in the range 40 to 60 °C is referred �� �� �������	.  
1
H NMR spectra 

were recorded at 300 MHz using a Bruker ACF300 spectrometer.  Chemical shifts are quoted 

in ppm relative to tetramethylsilane, the residual solvent peak being used for referencing 

purposes where possible. Coupling constants are quoted to the nearest 0.5 Hz with peak 

multiplicities for single resonances being labelled as: s, singlet; d, doublet; t, triplet; q, 

quartet; m, unresolved multiplet.  
13

C NMR spectra were recorded on the same instrument at 

75 MHz.  Analytical thin layer chromatography was carried out using Merck Kieselgel 60 

F254, coated on aluminium plates, with visualisation of spots where necessary by quenching 

of UV(254 nm) fluorescence or by staining with KMnO4.  Silica gel with particle size 40
63 

mm was used for flash chromatography.  A Büchi R110 Rotovapor was used for the removal 

of solvents under reduced pressure, with a water or dry ice condenser being used as 

appropriate.  Mass spectra were obtained by the EPSRC National Mass Spectrometry 

Facility, Swansea, UK using positive ion electrospray ionisation (labelled as ES).  Infrared 

spectra were recorded using a NicoletMagna 550 spectrometer.  Generally, only major 

absorbances are quoted.  Thin film samples were produced by evaporation of a dilute 

chloroform or dichloromethane solution of the sample on a sodium chloride plate.  UV-

Visible absorption measurements were recorded on a Thermo Scientific Evolution Array UV-

Visible Spectrophotometer, scanning from 190 - 1100 nm and using quartz cuvettes of 1 cm 

path length.  
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4.2. Synthesis 

2-Bromomethyl-6-(4-((1-pyrenyl)butoxy)methyl)pyridine 10 

Anhydrous THF (16 mL) was slowly added, with stirring, to sodium hydride (30 mg of a 

60% dispersion in mineral oil, 0.755 mmol, 2 eq.) at 0 °C under N2. To the resulting 

suspension was added 1-pyrenebutanol (104 mg, 0.379 mmol, 1 eq.) then 2,6-

bis(bromomethyl)pyridine (200 mg, 0.755 mmol, 2 eq.) and the reaction was heated to reflux. 

After 18 h, the reaction was cooled to 0 °C and water (15 mL) was slowly added. The 

reaction was extracted with ethyl acetate (3 × 15 mL), and the combined organic fractions 

were dried (MgSO4) and concentrated in vacuo. The resulting crude product was purified by 

flash chromatography, eluting with 1:9 then 2:8 ethyl acetate:petrol, to give the pyridine 10 

(108 mg, 62%) as a colourless oil, Rf 0.4 (2:8 ethyl a�������������	
 �max/cm
-1

: 3040, 2936, 

2862, 1591, 1456, 1121 and 846; 
1
H NMR (300 MHz, CDCl3	� �  ���� �� �� �� J = 9.0 Hz, 

pyrene 8-H), 8.20-7.95 (7 H, m, pyrene 3-7, 9,10-H), 7.89 (1 H, d, J = 8.0 Hz, pyrene 2-H), 

7.63 (1 H, t, J = 7.5 Hz, pyridine 4-H), 7.36 (1 H, d, J = 7.5 Hz, pyridine 5-H), 7.30 (1 H, d, J 

= 7.5 Hz, pyridine 3-H), 4.61 (2 H, s, ArCH2O), 4.50 (2 H, s, CH2Br), 3.66 (2 H, t, J = 6.5 

Hz, CH2CH2O), 3.39 (2 H, t, J = 7.5 Hz, pyreneCH2), 2.10-1.93 (2 H, m, CH2CH2O) and 

1.93-1.78 (2 H, m, pyreneCH2CH2); 
13

C NMR (75 MHz, CDCl3	� �  ������ ������ ������

136.8, 131.5, 130.9, 129.8, 128.6, 127.5, 127.3, 127.2, 126.6, 125.3, 125.11, 125.05, 124.9, 

124.8, 124.7, 123.5, 122.1, 120.5, 73.5, 71.0, 33.8, 33.3, 29.8 and 28.4; HRMS-ES (m/z): 

Found: 458.1106 (MH
+
, C27H25ONBr requires: 458.1114). 

 

1-(6-(4-((1-pyrenyl)butoxy)methyl)pyridin-2-yl)methyl-3,3-dimethyl-2-methylidene-2,3-

dihydro-1H-indole 12 

2,3,3-Trimethylindolenine (49 µL, 0.303 mmol, 1.7 eq.) was added to a stirred suspension of 

the pyridine 10 (82 mg, 0.179 mmol, 1 eq.) and potassium carbonate (99 mg, 0.714 mmol, 8 
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eq.) in acetonitrile (8 mL) under N2. The reaction was heated to reflux for 40 h and then 

partitioned between water (10 mL) and dichloromethane (10 mL). The aqueous phase was 

extracted with dichloromethane (3 × 10 mL) and the combined organic fractions were dried 

(MgSO4) and concentrated in vacuo. The resulting crude indole 12 was used directly in the 

following step.
 1

H NMR (300 MHz, CDCl3�� � � ���� �� 	
 �
 J = 9.0 Hz, pyrene 8-H), 8.08-

7.85 (7 H, m, pyrene 3-7, 9,10-H), 7.77 (1 H, d, J = 8.0 Hz, pyrene 2-H), 7.45 (1 H, t, J = 7.5 

Hz, pyridine 4-H), 7.27-7.05 (2 H, m, pyridine 3 and 5-H), 6.96 (1 H, t, J = 7.5 Hz, indole 6-

H), 6.80 (1 H, d, J = 7.5 Hz, indole 4-H), 6.70 (1 H, t, J = 7.5 Hz, indole 5-H), 6.39 (1 H, d, J 

= 7.5 Hz, indole 7-H), 4.72 (2 H, s, ArCH2O), 4.55 (2 H, s, CH2N), 3.78 (2 H, s, =CH2), 3.60-

3.46 (2 H, m, CH2CH2O), 3.34-3.22 (2 H, m, pyreneCH2), 1.98-1.65 (4 H, m, CH2CH2O), 

1.32 (3 H, s, Me) and 1.20 (3 H, s, Me). 

 

8-Methoxy-3�,3�-dimethyl-6-nitro-1�-((6-(4-((1-pyrenyl)butoxy)methyl)pyridin-2-

yl)methyl)-spiro(chromene-2,2�-indoline) 7 

3-Methoxy-5-nitrosalicylaldehyde (35 mg, 0.179 mmol) was added to a stirred solution of the 

crude indole 12 in ethanoldichloromethane (4:1, 5 mL) and the reaction was stirred at 55 °C. 

After 20 h, the reaction was concentrated in vacuo and the resulting crude product was 

purified by flash column chromatography, eluting with 25:75 ethyl acetate:petrol, to give the 

spiropyran 7 (23 mg, 18% from 10) as a green oil, Rf ��� ���� ����� ���������������� �max/cm
-1

: 

2922, 2850, 1718, 1459, 1335, 1270, 1090 and 848; 
1
H NMR (300 MHz, CDCl3�� � � ���� ��

H, d, J = 9.0 Hz, pyrene 8-H), 8.10-7.86 (7 H, m, pyrene 3-7, 9,10-H), 7.78 (1 H, d, J = 8.0 

Hz, pyrene 2-H), 7.54 (1 H, d, J = 2.5 Hz, chromene 5-H), 7.48 (1 H, d, J = 2.5 Hz, chromene 

7-H), 7.48 (1 H, t, J = 8.0 Hz, pyridine 4-H), 7.19 (1 H, d, J = 8.0 Hz, pyridine 3-H), 7.14 (1 

H, d, J = 8.0 Hz, pyridine 5-H), 7.04 (1 H, d, J = 7.5 Hz, indoline 4-H), 6.97 (1 H, t, J = 7.5 

Hz, indoline 6-H), 6.78 (1 H, t, J = 7.5 Hz, indoline 5-H), 6.70 (1 H, d, J = 10.5 Hz, 
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chromene 4-H), 6.20 (1 H, d, J = 7.5 Hz, indoline 7-H), 5.77 (1 H, d, J = 10.5 Hz, chromene 

3-H), 4.52 (1 H, d, J = 10.0 Hz, CH2N), 4.51 (2 H, s, ArCH2O), 4.25 (1 H, d, J = 10.0 Hz, 

CH2N), 3.64 (3 H, s, OMe), 3.54 (2 H, t, J = 6.5, CH2CH2O), 3.30 (2 H, t, J = 7.5 Hz, 

pyreneCH2), 1.92-1.81 (2 H, s, CH2CH2O), 1.80-1.68 (2 H, m, pyreneCH2CH2), 1.26 (3 H, s, 

Me) and 1.18 (3 H, s, Me); 
13

C NMR (75 MHz, CDCl3�� � � ������ ��	�
� ������ ��	���

146.4, 140.4, 137.7, 136.7, 136.1, 131.4, 130.9, 129.8, 128.7, 128.6, 127.6, 127.5, 127.3, 

127.2, 126.6, 125.8, 125.1, 125.0, 124.84, 124.79, 124.7, 124.6, 123.4, 121.8, 121.0, 119.9, 

119.8, 118.1, 115.3, 107.9, 107.6, 106.0, 73.3, 71.1, 60.4, 56.2, 52.5, 33.3, 30.2, 28.4, 20.0 

and 14.2; HRMS-ES (m/z): Found: 716.3116 (MH
+
, C46H42O5N3 requires: 716.3119). 

 

7-Graphene Hybrid (7-G) 

Graphite (20 mg) was added to acetonitrile (5 mL) and the resulting suspension was sonicated 

for 18 h then centrifuged (10000 rpm, 10 mins).
16

 2.5 mL of supernatant was isolated from 

aggregated material, and spiropyran 7 (150 µL of a 6 mg/mL solution in acetonitrile; 0.9 mg, 

0.00126 mmol) was added and stirred for 1 h to give the 7-graphene hybrid dispersed in 

acetonitrile. 

 

7-Carbon nanotube hybrid (7-CNT) 

Carbon nanotubes (0.5 mg) were added to acetonitrile (3 mL) and sonicated for 5 minutes 

then allowed to settle for 10 minutes.
4
 2.5 mL of supernatant was isolated from aggregated 

material, and spiropyran 7 (150 µL of a 6 mg/mL solution in acetonitrile; 0.9 mg, 0.00126 

mmol) was added and stirred for 1 h to give the 7-CNT hybrid dispersed in acetonitrile. 

 

7-GO hybrid (7-GO) 
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Graphene oxide flakes (5 mg) were added to acetonitrile (5 mL) and the resulting suspension 

was sonicated for 4 h then centrifuged (10000 rpm, 10 mins).
17

 2.5 mL of supernatant was 

isolated from aggregated material, and spiropyran 7 (150 µL of a 6 mg/mL solution in 

acetonitrile; 0.9 mg, 0.00126 mmol) was added and stirred for 1 h to give the 7-GO hybrid 

dispersed in acetonitrile. 

 

4.3. Binding Studies of 7 

4.3.1 Comparison of binding of 7 to various metal cations 

MLn (5 µL of 0.1 M solution in water, 0.5 µmol, 2.5 eq.) was added to 7 (2 mL of a 0.1 mM 

solution in acetonitrile, 0.2 µmol, 1 eq.). The resulting solution was shaken, irradiated with 

white light for 1 minute, placed in darkness for 5 minutes then analysed by UV-visible and 

fluorescence spectroscopy. 

 

4.3.2. Determination of maximum binding of 7 with Zn(NO3)2 in acetonitrile 

Aliquots containing 7 (0.2 µmol, 1 eq.) and Zn(NO3)2.5H2O (0 � 1.4 µmol, 0 � 7 eq.) in 

acetonitrile (2.01 mL) were placed in darkness for 20 h, then analysed by UV-visible 

spectroscopy. 

 

4.3.3. Determination of 7-Zn
2+

 binding stoichiometry by Job Plot analysis 

11 aliquots were prepared, each containing a total of 0.0004 mmol of Zn(NO3)2.5H2O + xx in 

acetonitrile (2.004 mL), such that [Zn
2+

] / ([Zn
2+

] + [7]) varied from 0 to 1.0, in 0.1 

increments. Each aliquot was placed in darkness for 20 h, then analysed by UV-visible 

spectroscopy. 
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