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Abstract

Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly
focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their
systems dynamics and experimental challenges. Bacterial two-component signaling systems offer a rich diversity of sensory
systems that are built around a core phosphotransfer reaction between histidine kinases and their output response
regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-
response relationship arising from a specific motif found in two-component signaling. In this motif, a single histidine kinase
(HK) phosphotransfers reversibly to two separate output response regulator (RR) proteins. We show that, under the
experimentally observed parameters from bacteria and yeast, this motif not only allows rapid signal termination, whereby
one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR), but also implements a sigmoidal signal-
response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal
signal-response relationships and define key parameters that control threshold levels and sensitivity of the signal-response
curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the
Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We find that the level of
sigmoidality in this system can be experimentally controlled by the presence of the sink RR, and also through an auxiliary
protein that is shown to bind to the HK (yielding Hill coefficients of above 7). These findings show that the one HK-two RR
motif allows bacteria and yeast to implement tunable switch-like signal processing and provides an ideal basis for
developing threshold devices for synthetic biology applications.
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Introduction

Cells process external cues in order to produce appropriate

responses that ensure survival and efficient proliferation. They

achieve this goal through a myriad of signaling and gene regulatory

networks, which implement specific signal processing capabilities

such as switch-like threshold dynamics, logic gates, oscillations, and

noise filtering [1–8]. Understanding the architecture and response

dynamics of these systems is of fundamental value, providing us with

a better insight into cell biology and allowing us to engineer de novo
biological systems. The field of synthetic biology exploits the

understanding and components from natural systems to rationally

design synthetic systems that implement specific signaling dynamics.

So far, this led to the development of oscillatory systems [9,10],

systems with threshold dynamics [1,11–12] and logic gates [13–15].

In most cases, these studies use transcriptional regulation to

implement the desired dynamics, while a few studies have explored

the possibility of extending synthetic design approaches to signaling

networks [16–18].

Bacterial systems are particularly attractive for attempting

synthetic engineering of signaling networks. Most bacteria and

certain eukaryotic microbes and plants utilize the so-called two-

component signaling systems for signal transduction [19–21]. In

their most simple implementation, these systems consist of a

histidine protein kinase (HK) and a response regulator (RR). The

activity of the HK is controlled in most cases by an environ-

mental stimulus, which controls the rate of autophosphorylation.

Once phosphorylated, the HK transfers its phosphoryl group to a

cognate RR, which in its phosphorylated form mediates the

output of the signaling pathway [21]. The phosphotransfer

reaction is at the core of all two-component systems, and

regulating its specificity could allow direct control over microbial

(and to some extent plant) physiology, as well as creating synthetic

signaling systems. Thus, several studies have attempted to

decipher the coupling specificity of HK and RR proteins [22–

26] and have generated chimeric HKs with specified and

controllable inputs [27–31]. More recently, artificial molecular

scaffolds have been used to increase the local concentrations of
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HK and RR proteins, allowing significant control over the

phosphotransfer rate [17].

Generating synthetic systems with specified signal processing

capabilities, however, requires a deeper understanding of system

properties such as the signal-response relationship they embed.

Around the core HK-RR interaction, different two-component

systems have diverse architectures, which could underpin specific

signal processing capabilities. For example, the commonly

observed phosphorelays, where the flow of phosphoryl groups

from the HK to the RR is relayed through several proteins, are

believed to allow signal integration and specific response

properties such as control of noise and ultrasensitivity [32–36].

Other architectural features such as presence of a bifunctional or a

split HK, formation of specific ‘‘dead-end’’ complexes and also

transcriptional feedbacks have been shown to allow ultrasensitivity

and even bistability [37–39]. Of such different architectural

features, one that has not attracted much attention is the ‘‘sink’’

system, where two RRs can compete for the phosphoryl group

from a single HK. This architectural motif has been identified in

several microbial and plant systems [40–44]. In the Sinorhizobium
meliloti chemotaxis pathway, the two response regulators CheY1

and CheY2 are phosphorylated by their cognate kinase CheA. Of

these, only CheY2 in its phosphorylated form can bind to the

flagellar motor and control its rotation [40]. Both CheYs can also

perform reverse phosphotransfer, where they return the phospho-

ryl group to CheA. Given its high phosphorylation rate (from HK),

low reverse phosphorylation rate (to HK), and the observation that

the S. meliloti chemotaxis system lacks a dedicated phosphatase, it

is proposed that CheY1 acts as a sink that accelerates dephos-

phorylation of CheY2 [40]. A similar situation is described in the

Rhodobacter sphaeroides and Helicobacter pylori chemotaxis

pathways [41,42] and the yeast osmoregulation pathway [43,45].

In the latter case, the HK, SLN1 autophosphorylates in response

to changes in the membrane structure and phosphorylates two

downstream RRs, SSK1 and SKN7. In vitro phosphotransfer

studies found similar dynamics as in the S. meliloti chemotaxis

pathway with SKN7 displaying significant reverse phosphotransfer

to SLN1, while SSK1 showing no such activity [45]. Interestingly,

both SSK1 and SKN7 are functionally active in this system, with

SSK1 activating the downstream HOG1 MAP kinase cascade

[46,47] and SKN7 acting as a transcription factor for genes

involved in various stress related responses [48,49].

Here, we use mathematical and experimental approaches to

identify the full signal processing capabilities of this two-

component system. We first develop a generic model of the one

HK – two RR motif and perform both analytical and simulation-

based analyses. These reveal that this system is capable of both

enhancing signal termination time and implementing a threshold

signal-response relationship, i.e. the system displays a sigmoidal

signal-response relationship in which the steady state levels of the

phosphorylated output RR remains low until a threshold level of

signal is crossed. We then verify these dynamics experimentally by

in vitro re-constitution of the two-component proteins from the

chemotaxis pathway of S. meliloti. Using this in vitro setup, we

further show that specific properties of the threshold dynamics can

be controlled through the concentrations of the core components,

as well as through presence of an auxiliary protein that is known to

bind the HK in S. meliloti [50]. These findings allow better

understanding of the physiological responses mediated by phos-

phate sink-containing two-component systems in microbes and

plants, and will facilitate design of synthetic threshold devices using

two-component signalling proteins.

Results

Analysis of response dynamics in the one HK – two RR
motif

While the implementation of the phosphate sink motif in diverse

two-component systems could differ in the molecular details of the

proteins involved and their exact kinetic rates, the sink mecha-

nisms can be formulated as a general architectural motif

(Figure 1A and S1A); a two-component system comprising a

single HK and two RRs, namely the output-RR and the sink-RR

(as referred to, in the rest of the text). We have developed a generic

model of this motif and parameterized it using experimental

measurements from the reaction kinetics of the S. meliloti
chemotaxis and yeast osmoregulation systems (see Methods). To

monitor temporal dynamics in the presence of a signal, we

simulated two conditions, one with the sink-RR and one without

the sink-RR. Using the ‘‘controlled comparison’’ approach [51],

we simulated each scenario at a signal level that resulted in 90%

phosphorylation of the output-RR at steady state. The signal was

then removed and the half-time for the decay of phosphorylated

output-RR measured. We found that under the experimentally

measured parameters, the presence of the sink-RR decreases the

half-time for the output-RR dephosphorylation by more than 2-

fold in both S. meliloti and yeast (Figure 1B and S1B). These

simulation results are consistent with previous experimental results

[40], which led to the sink hypothesis, and show that in the

experimentally observed parameter regime, a sink-RR can

accelerate the dephosphorylation of the output-RR.

The one HK – two RR motif can exhibit a sigmoidal
signal-response relationship

Besides temporal dynamics, another key characteristic of any

signaling system is the signal-response relationship that it

implements, i.e. the steady state output of the system for any

given signal level [52]. Focusing again on experimentally

measured parameters, we found that the presence of the sink-

RR changes the signal-response relationship in the system from

hyperbolic to sigmoidal (Figures 1C and S1C). In other words, the

presence of the sink-RR allows threshold dynamics in these natural

systems, whereby the steady state level of the phosphorylated

output-RR remains low until a threshold signal level is reached, at

Author Summary

Two-component signaling systems are found in bacteria,
fungi and plants. Their modular structures make them
ideal targets for de novo engineering through synthetic
biology. Here, we explore the signal-response relationship
arising from a common two-component system, where a
single HK phosphotransfers reversibly to two separate
output RRs. We show that under the experimentally
observed parameters, this motif implements a sigmoidal
signal-response relationship, whereby one of the RRs acts
as a phosphate sink towards the other. We identify two
mathematical conditions on the system parameters that
are necessary for sigmoidality and define key parameters
that control threshold levels and sensitivity. We confirm
these findings experimentally by in vitro reconstitution of
the ‘‘one HK-two RR’’ motif found in S. meliloti. Particularly,
we show that the level of sigmoidality in this system can
be experimentally controlled by the amount of sink RR and
also through an auxiliary protein, CheS. These findings
show that the one HK-two RR motif can open the way to
the design of novel threshold systems in synthetic biology.

Phosphate Sinks as Threshold Devices
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which point the capacity of the sink-RR is filled (Figure S3). Once

the sink RR is filled, the steady state level of phosphorylated

output-RR is highly sensitive to small changes in signal.

To better understand whether the sensitivity and threshold

levels in the sigmoidal signal-response curve can be controlled, and

by which parameters, we performed a sensitivity analysis around

experimentally measured kinetic rates from S. meliloti and yeast

(Figures 2, S4, S5 and S2). This revealed several kinetic features

for ensuring a sigmoidal signal-response relationship (see below for

exact necessary conditions). For example, we found that a key

kinetic feature is for phosphotransfer to the sink-RR (parameter kS)

to be faster than reverse phosphotransfer from the sink-RR back to

the HK (parameter krS). Under this condition, the steady state

phosphorylation level of output-RR remains low until the sink-RR

is almost fully phosphorylated (Figure S3), resulting in a high level

of sigmoidality in the signal-response curve (Figures 2A and S2A).

We also found that both the sharpness of the sigmoidal signal-

response relationship and the threshold signal level can be

controlled through changes in parameters and the ratio of the

concentration of HK to the two RRs (Figures S4 and S5). In

Figure 1. The one HK – two RR motif as seen in the S. meliloti chemotaxis signaling pathway (A) A cartoon diagram of the CheA/
CheY1/CheY2 system. The diagram is arranged to highlight the role of CheY1 as a phosphate sink for CheY2. Rate constants are shown on the
relevant reactions. In the case of reversible reactions, two rate constants are given as kforward and kreverse. (B) Role of the sink, RR1 (CheY1) in signal
termination (i.e. dephosphorylation of RR2 (CheY2)). The x- and y-axis show the time and the corresponding steady state levels of phosphorylated
RR2, respectively. A value of ka was selected that resulted in ,90% of the total RR2 being phosphorylated at steady state. At t = 0, ka was reduced to
zero and the progress of the reaction to the new steady state simulated. The solid line represents the presence of the sink, while the dashed line
shows the absence of the sink. (C) Signal-response relationship in the presence (solid line) and absence (dashed line) of sink, RR1 (CheY1). The x- and
y-axis show the signal (ka) and the corresponding steady state level of phosphorylated RR2 (CheY2), respectively.
doi:10.1371/journal.pcbi.1003890.g001
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particular, the phosphotransfer rate constant between the HK and

sink-RR (Figures 2A and S2A), and the autodephosphorylation

rate constant of the sink-RR (Figures S4 and S2) can affect the

sharpness of the signal-response curve, while the threshold signal

level is determined by the amount of sink present (Figures 2B and

S2B). The effect of the autodephosphorylation rate of the sink-RR

can be intuitively understood as increasing this rate directly

increases the level of signal required to ‘‘fill’’ the sink-RR. The

effect of the forward phosphotransfer rate (between the HK and

sink-RR) can be understood when considering the dynamics of the

system. When the phosphotransfer from the HK to the two RRs

occurs at comparable rates, the increase in the phosphorylation of

both RRs occurs in linear fashion. In other words, any increase in

the signal levels trickles down the system to affect both RRs.

However, what is required from an ultrasensitive signal-response

relationship is that one of the RRs remains largely unaffected by

increasing signals until a threshold signal is reached. To create

such dynamics, having a higher phosphotransfer rate to the other

RR is essential, such that any small increases in signal

predominantly result in alterations of only this RR.

Necessary conditions for the one HK – two RR motif to
exhibit sigmoidal signal-response relationships

To understand more completely the effects of parameters on the

signal-response curve, we derived an analytical description for this

curve and computed its second derivative when the signal level is

zero (see Text S1). The second derivative at zero can be used as an

indicator of sigmoidal or hyperbolic nature of the signal-response

relationship; a hyperbolic shape of the signal-response curve

implies that the second derivative of this function is constantly

negative on its domain (i.e. positive signals), while a sigmoidal

shape implies that the second derivative is initially positive and

then it changes sign. Thus, the sign of the second derivative of the

signal-response curve at zero can be taken as a test for sigmoidality

Figure 2. The effect of parameter changes on the ‘‘sigmoidality’’ of the signal-response curve. The level of sigmoidality, Hill coefficient, is
shown as a heat map on each panel. (A) Effect of varying the forward and reverse phosphotransfer rates for the sink RR (CheY1; x-axis; kS and y-axis;
krS). (B) Effect of varying the total concentration of the output RR (CheY2; y-axis) and sink RR (CheY1; x-axis). (C) Effect of changing the
phosphotransfer rate (ks) from CheA to the sink protein (CheY1) on the signal response curve. Each curve is coloured to match the parameter values
indicated by the coloured spots on the heatmap shown in panel (A). (D) Effect of changing the concentration of the sink protein (CheY1) on the
signal response curve. Each curve is coloured to match the parameter values indicated the coloured spots on the heatmap shown in panel (B).
doi:10.1371/journal.pcbi.1003890.g002
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[53]. Using this approach we found two necessary conditions on

the parameters of the system for achieving a sigmoidal signal-

response relationship (i.e. conditions that are required for a

positive second derivative at zero): (i) kS?khS?[RR1]tot?0 and (ii)
kS.krS, where khS is the autodephosphorylation rate constant of

the sink-RR, [RR1]tot is the total amount of sink-RR, and kS (kM)

and krS (krM) are the forward and reverse phosphotransfer rate

constants of the sink-RR (output-RR) respectively (see Text S1).

The first condition shows that the sink-RR is necessary for the

system to exhibit sigmoidality. Provided these two conditions are

satisfied and, additionally krS/kS,krM/(kM+krM), having high

concentrations of the HK and the sink-RR (i.e. the RR with

no/weak reverse phosphotransfer to the HK), and low concen-

tration of the output-RR further ensures sigmoidality. It is

important to note that experimentally measured values from both

the S. meliloti chemotaxis and yeast osmoregulation systems fit

with these analytical conditions for sigmoidality (see Tables 1 and

S1). We found that these analytical results on the necessary

conditions for the sigmoidality of the signal-response relationship

are further simplified when assuming complex formation in the

phosphotransfer reactions (Text S1). In particular, the second

condition (i.e. of having kS/krS.1) is not a strict requirement for

the second derivative of the signal-response curve at zero to attain

a positive value. In this extended model, the second necessary

condition becomes either kS/krS.1 or kS/krS.(kyM-kyS)/kyrS,

where kyM, kyS, kyrS are the inverse of the Michaelis-Menten

constants of the added complexes in the forward phosphotransfer

reactions of the sink-RR and output-RR, and the reverse

phosphotransfer reaction of the sink-RR, respectively (see Text

S1). We conclude that for sigmoidality to arise, the quotient kS/krS

must be larger than a specific value, which depends on the

parameters of the system and, further, sigmoidality cannot arise

simply by the introduction of complex forming reactions in a

system without a sink-RR.

The finding that achieving a sigmoidal signal-response relation-

ship for the single HK- two RR system is facilitated by the

presence of complexes, prompted us to use the chemical reaction

network toolbox [54] to analytically assess the potential of

bistability. We found that when the phosphotransfer reactions

are modelled as bi-molecular reactions, the system is not capable

of bistability (see Text S2 and S2). However, when considering

complex formation and alternative reaction schemes involving the

different possible binding events among the HK, the two RRs and

their complexes, we found that a certain scenario allows for the

presence of bistability in the system (see Text S2 and S3). In this

scenario, the HK can bind to both of the RRs, irrespective of its

own phosphorylation state and the phosphorylation states of the

two RRs. The resulting system contains four complexes between

the phosphorylated/unphosphorylated HK and the phosphory-

lated/unphosphorylated RRs, and can permit bistability under

certain parameter regimes (see Text S2 and S3).

Experimental verification of the sigmoidal signal-
response relationship in a one HK – two RR motif

To test the model findings experimentally, we re-constituted in
vitro the CheA, CheY1 (sink-RR) and CheY2 (output-RR) proteins

from S. meliloti. In vivo, CheA kinase activity is controlled by

interaction with the signaling domain of chemoreceptor proteins

[55]. Since it is experimentally difficult to re-constitute chemore-

ceptors in the in vitro system, we varied the kinase activity of CheA

by varying the concentration of its substrate, ATP, as a proxy for the

in vivo signal. This allowed us to monitor the steady state levels of

phosphorylated CheY1 and CheY2 at different levels of kinase

activity, i.e. to derive an experimental signal-response curve. We

found excellent quantitative agreement between the signal-response

curves resulting from the model and experiments. In the presence

(absence) of CheY1, the steady state levels of phosphorylated CheY2

displayed a sigmoidal (hyperbolic) relation with increasing ATP

levels (Figure 3). Thus, these experiments strongly suggest that the

S. meliloti one HK – two RR motif displays a sigmoidal signal-

response relationship in vivo and could potentially function as a

threshold device.

CheS sharpens the signal-response curve
In the S. meliloti system, the behavior of the sink-RR (CheY1)

was found to be altered by a small auxiliary protein, CheS [50]. In

particular, it was shown that CheY1 binds 100-fold more strongly

to the CheA:CheS complex than to CheA alone and that the

decay of phosphorylated CheA (CheA-P) in the presence of CheY1

is faster with CheS than without. This suggests that CheS might

directly or indirectly promote CheY1 dephosphorylation and thus

make the sink-RR more efficient in allowing signal termination

[50]. Analysis of the analytical solution of our model suggests that

Table 1. The parameters used for the model of the S. meliloti phosphate sink.

Parameter Description Value Unit Reference

k1 Rate constant for formation of the CheA.ATP complex 1 (mMs)21 [40]

k2 Rate constant for dissociation of the CheA.ATP complex 100 s21 [40]

ka Autophosphorylation rate constant (i.e. rate constant for
conversion of the CheA.ATP complex into CheA-P+ADP).

Varied s21

kS CheA-P to CheY1 (sink RR) phosphotransfer 1 (mMs)21 Fitted to data from [40] (see Methods)

krS CheY1-P to CheA Reverse phosphotransfer 0.01 (mMs)21 Fitted to data from [40] (see Methods)

kM CheA-P to CheY2 (main RR) phosphotransfer 2 (mMs)21 Fitted to data from [40] (see Methods)

krM CheY2-P to CheA Reverse phosphotransfer 1 (mMs)21 Fitted to data from [40] (see Methods)

khS Autodephosphorylation of CheY1 (sink RR) 0.056 s21 [40]

khM Autodephosphorylation of CheY2 (main RR) 0.066 s21 [40]

[A]tot Total concentration of CheA 10 mM see Methods

[Y1]tot Total concentration of CheY1 2.5 mM see Methods

[Y2]tot Total concentration of CheY2 2.5 mM see Methods

doi:10.1371/journal.pcbi.1003890.t001
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another way of increasing the efficiency of the sink is to increase

the rate at which phosphoryl groups are transferred from CheA to

the sink CheY (i.e. by increasing ks). Moreover, since CheA:CheS

binds CheY1 100-fold more strongly than CheA alone [50], it is

conceivable that CheS, in addition to its effects on CheY1-P

dephosphorylation, could also accelerate phosphotransfer from

CheA-P to CheY1. This would further enhance the possibility of

the analytical conditions for sigmoidality to be fulfilled (see above).

Towards obtaining a better understanding of the role of CheS in

the system and quantifying its potential effects on the signal-

response curve, we first re-constituted CheS in the in vitro assay

along with CheA, CheY1 and CheY2. Running phosphotransfer

experiments in the presence or absence of CheS, we found that the

presence of CheS in the system resulted in the sharpening of the

signal-response curve (Figure 4), with the Hill coefficient increasing

from 3.43, in the absence of CheS, to 7.61, in the presence of CheS.

This increase in the Hill coefficient is in line with the observed

capacity of two-component systems to display high levels of

ultrasensitivity [36] and potentially bistability [37–39]. In an

attempt to recapitulate these experimental findings in our mathe-

matical model, we optimised two parameters: the rate of CheY1-P

dephosphorylation (khs) and/or the rate of phosphotransfer between

CheA and CheY1 (ks). We found that the experimentally observed

sharpening of the signal-response curve by CheS can be best

recapitulated by increasing both ks and khs (Figure 4), suggesting

that CheS may increase both the rate at which CheA-P donates

phosphoryl groups to the sink CheY and the rate at which the sink

CheY dephosphorylates. These results suggest that the function of

CheS is to sharpen the threshold of the sigmoidal signal-response

curve given by the system comprising CheA, CheY1 and CheY2.

Discussion

We have analyzed the system dynamics of an architectural motif

found in bacterial two-component signalling pathways where a

single HK can reversibly phosphorylate two RRs. We have shown

that this one HK-two RR motif can accelerate signal termination,

i.e. act as a sink, as hypothesized before [40], but more interestingly,

allows the system to exhibit a sigmoidal signal-response relationship.

This high level of sigmoidality and corresponding high Hill

coefficients can be explained by the effect of the sink-RR on the

response dynamics. Due to differing phosphotransfer kinetics, as

signal levels increase from zero and kinase activity increases,

phosphoryl groups are preferentially given to sink-RR rather than

the output-RR (Figure S3). This continues until the sink-RR becomes

saturated with phosphoryl groups i.e. is completely phosphorylated.

At this threshold point, phosphorylation levels of the output-RR rise

dramatically with increasing signal, giving the observed sigmoidal

Figure 3. Experimental validation for the role of the sink RR in shaping the signal-response curve. The steady-state level of phosphorylated
CheY2 was measured in the presence or absence of the sink (i.e. CheY1) at different 32P-ATP concentrations. (A) Phosphorimages showing
phosphorylated CheY2 levels in the presence or absence of CheY1 at low (0.2 mM) and high (2 mM) ATP levels. The indicated quantity of [c-32P] ATP was
added to a reaction mixture containing 10 mM CheA, 2.5 mM CheY2, and where indicated 2.5 mM CheY1. (B) Graph comparing the observed steady state
levels of phosphorylated CheY2 with and without the sink, CheY1. The phosphorylated CheY2 levels predicted by the model are shown with a dashed
line (in absence of sink) and with a solid line (in presence of sink), while the experimentally measured values are shown by squares (in absence of sink)
and circles (in presence of sink). Error bars show the standard error of the mean obtained from three independent experiments.
doi:10.1371/journal.pcbi.1003890.g003
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response. We have shown that such threshold behavior is observed

under experimentally measured parameters from the S. meliloti
chemotaxis and yeast osmoregulation pathways. Further, theoretical

analyses showed that the presence of a sigmoidal signal-response

relationship necessitates two conditions on the system; (i) the sink-RR

to be present and (ii) kS.krS, where kS and krS are the forward and

reverse phosphotransfer rate constants of the sink-RR respectively.

Factors that promote operation of the sink e.g. increasing the kinetic

preference of the kinase for the sink-RR over the output-RR, and/or

increasing the rate at which the sink can autodephosphorylate all

increase this sigmoidality by sharpening the transition at the threshold

point (Figure 4). We verified these findings experimentally, showing

that the auxiliary protein, CheS in the S. meliloti chemotaxis

pathway, can modulate levels of sigmoidality (resulting in Hill

coefficients of 7.6) by sharpening the response threshold.

These findings have important implications for understanding

bacterial physiology and designing synthetic signaling circuits. In

broad terms, the findings of this study will have implications for any

two-component signaling circuit where multiple response regulators

compete for phosphorylation by a single phosphodonor. This

includes the cases where the HK acts as the phosphodonor, as well

as the cases where this function is performed by an Hpt domain or

protein. These include the majority of bacterial chemotaxis systems

(which employ CheY and CheB as response regulators) [40–42],

fungal osmoregulatory circuits [43] and certain plant signaling

systems [44]. Additional examples include the E. coli kinases NarX

and NarQ that can both phosphorylate the response regulators,

NarL and NarP [56]. Similarly, in Caulobacter crescentus, the

kinases DivJ and PleC can each phosphorylate the two response

regulators, DivK and PleD [57]. The present study indicates that

these systems might be acting as a threshold device, whereby cells

commit to a specific outcome only above certain signal thresholds.

Alternatively, the threshold behavior could be used for regulating

the noise characteristics of the system [35,58]. It is important to note

however, that the one HK – two RR architectural motif is able to

display sigmoidal signal-response relationships, but does not

preclude hyperbolic relationships. In other words, this motif cannot

be taken as proof for threshold behavior but should be taken as

indicative and be considered in experimental design when analyzing

the response dynamics in associated signaling systems.

Synthetic biology has so far concentrated on designing small

circuits based on transcriptional regulation. While two-component

systems have been recognized as potential candidates for synthetic

design, the main efforts have concentrated on engineering

chimeric proteins and interaction specificity [15,17,27–31]. Our

findings show that a system dynamics perspective can allow

understanding of the signal processing capabilities of natural

bacterial signaling pathways and new avenues for reengineering

these. Exploiting the single HK - two RR system in the

construction of synthetic signaling circuits will require coupling

of an appropriate output (e.g. an RR that can act as a transcription

factor) to a useful signal that can control HK activity. This could

be accomplished through mutational alterations on the signal and

output of an existing natural system (such as the one used here),

using chimeric proteins, or by artificially engineering phosphate

sinks into existing two-component systems.

Two-component proteins are highly modular, and evolution

seems to have exploited this feature in creating diverse architec-

Figure 4. Effect of CheS on the signal-response curve. The x- and y-axis show the ATP level and the corresponding steady state level of
phosphorylated CheY2, respectively. The experimentally measured values are shown in circles (absence of CheS) and squares (presence of CheS). The
phosphorylated CheY2 levels predicted by the model are shown with a dashed line (absence of CheS) and with a solid line (presence of CheS; where
the CheA-P to CheY1 phosphotransfer reaction rate constant (ks) and CheY1-P dephosphorylation rate constant (khs) were optimized for best fit to the
experimental data; ks = 50 and khs = 0.067). See Figure S6 for alternative fits to these experimental data where we have individually modelled the
effect of CheS altering only ks or khs. Error bars show the standard error of the mean obtained from three independent experiments.
doi:10.1371/journal.pcbi.1003890.g004
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tures in signaling. Studies such as those provided here should allow

us to understand these functionalities and ultimately lead to their

application in synthetic biology.

Methods

A mathematical model for a phosphate sink
To model the one HK - two RR motif, the dynamics was

considered in isolation of other cellular components. The reactions

in this system that we have included in the model are;

HKzATP/?
k1

k2

HK :ATP ?
ka

HKpzADP

HKpzRR1 /?
kS

krS

RR1pzHK

HKpzRR2 /?
kM

krM

RR2pzHK

RR1p ?
khS

RR1zPi

RR2p ?
khM

RR2zPi

where HK, RR1, and RR2 stand for CheA, CheY1 and CheY2

respectively in the S. meliloti chemotaxis system (Figure 1) and for

SLN1, SSK1 and SKN7 in the yeast osmoregulation system

(Figure S1). The -p suffix represents phosphorylated forms of these

proteins. The above reaction scheme can be used to derive a

system of ordinary differential equations (ODEs), which describe

the changes in concentrations of proteins over time;

d½HKp�
dt

~½HK :ATP�:kaz½RR1p�:½HK �:krSz½RR2p�:½HK �:krM

{½RR1�:½HKp�:kS{½RR2�:½HKp�:kM

d½HK :ATP�
dt

~½HK �:½ATP�:k1{½HK :ATP�:(k2zka)

d½RR1p�
dt

~½RR1�:½HKp�:kS{½RR1p�:½HK �:krS{½RR1p�:khS

d½RR2p�
dt

~½RR2�:½HKp�:kM{½RR2p�:½HK �:krM{½RR2p�:khM

In addition, we have three conservation equations;

½HK�tot~½HK �z½HKp�z½HK :ATP�

½RR1�tot~½RR1�z½RR1p�

½RR2�tot~½RR2�z½RR2p�

To analyze the behavior of the system with increasing signal, the

incoming signals were simulated (e.g. chemoreceptors in case of

the chemotaxis system or membrane alterations in the yeast

system) as an increase in the autophosphorylation rate constant of

the HK (ka). The model was parameterized with data from

literature (see Table 1). In the case of the S. meliloti chemotaxis

system the parameters for phosphotransfer to CheY1 and CheY2

(kS, krS, kM and krM) were derived through fitting the simulation

data to previously published in vitro experiments [40]. Fitting was

done using a hybrid genetic algorithm (functions ga and fmincon

from the MATLAB Global Optimization Toolbox).

Temporal simulations and signal-response curve. The

model was numerically integrated to derive time course and steady

state signal-response relationships. The latter analysis gives the

steady state phosphorylated RR levels at a given signal (ka), where

signal was taken as the rate constant of HK autophosphorylation

and allows deriving a so-called signal-response curve. This curve is

found by numerically integrating the system to steady state at a fixed

signal level and then numerically ‘‘following’’ this steady state, while

changing the signal. This analysis is equivalent to allowing the

system to reach steady state under different signal values. Both time

course and signal-response analyses were performed using the

software packages XPPAUT (http://www.math.pitt.edu/,bard/

xpp/xpp.html) and Oscill8 (http://oscill8.sourceforge.net). An

explicit description of the inverse of the signal-response curve was

also obtained, using a recently developed recursive technique

[35,59] (see Text S1). The resulting analytical function for the

signal-response curve was then used to verify the results of the

numerical approach and to derive the necessary conditions that the

parameters must fulfill for the signal-response curve to be sigmoidal.

This analytical approach is also used to extend the analysis to the

case with complex formation (see Text S1).

Measuring ‘‘sigmoidality’’ of signal-response curves and

sensitivity of this feature to parameters. To measure

sigmoidality of the signal-response curve the Hill coefficient was

used as previously described [60,61]. The Hill coefficient is

measured as ln81/ln(S90/S10) where S90 and S10 are the signal

levels for achieving 90 and 10 percent of output saturation,

respectively. Using alternative measures, such as the maximum

value of the response coefficient across the signal domain produces

qualitatively similar results as those shown in Figures 2, S4 and S5.

To quantify the sensitivity of sigmoidality of the signal-response

curve to variations in each of the parameters, these were varied

from their described experimentally measured values (Table 1)

and in a biologically relevant range. Each parameter was varied

around its basic value up/down 10-fold and the Hill coefficient of

the resulting signal-response curves measured as described above.

Experimental design. The CheA, CheY1, and CheY2

system was reconstituted in vitro to measure the signal-response

curve in the presence/absence of CheY1. For this, phosphorylated

CheY2 levels were measured under increasing ATP levels as a

proxy for signal. The protein concentrations used for these

experiments were 10 mM, 2.5 mM, 2.5 mM for CheA, CheY1 and

CheY2 respectively. This gives a ratio of 4:1:1, which is different

from the in vivo measured ratio of 1.5:20:20 [40], but the higher

HK concentration gave increased capacity to measure CheY1 and

CheY2 phosphorylation levels at low levels of signal. We found

that the system can display sigmoidality under a range of ratios of

sink- and output-RRs to HK, including the experimentally

measured ratio, but the level of sigmoidality is altered by this

ratio (Figure S5).

Plasmids and strains. See Table 2 for the plasmids and

strains used. E. coli strains were grown in LB medium at 37uC.

Antibiotics were used at concentrations of 100 mg ml21 for

ampicillin, 34 mg ml21 for chloramphenicol and 25 mg ml21 for

kanamycin, where needed. E. coli M15pREP4 cells were made

competent using the calcium chloride technique [62]. Transfor-

mations were performed according to [63].
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Protein purification. His-tagged S. meliloti CheA,

CheA:CheS, CheY1 and CheY2 proteins were purified as

described previously [50]. Protein purity and concentration was

measured as described in [64]. Purified proteins were stored at 2

20uC.

Preparation of CheA-32P and CheA-32P:CheS. CheA-32P

and CheA-32P:CheS were phosphorylated using [c-32P] ATP and

purified as described before [65], but with the following

modifications: Proteins were phosphorylated in reactions per-

formed at 20uC in phosphotransfer buffer (50 mM Tris HCl, 10%

(v/v) glycerol, 5 mM MgCl2, 150 mM NaCl, 50 mM KCl, 1 mM

DTT, pH 8.0). The final reaction volumes were 2 ml. Reactions

were initiated by addition of 2 mM [c-32P] ATP (specific activity

14.8 GBq mmol21; PerkinElmer). After 1 hour incubation,

samples were purified by using Ni-NTA columns (Qiagen) as

described previously [66]. This purification step removed the

unincorporated ATP from the CheA-32P and CheA-32P:CheS

preparation. Purified proteins were stored at 220uC.

Measurement of CheY2-P at different 32P- ATP

concentrations with and without CheS. Assays were per-

formed at 20uC in phosphotransfer buffer. Either CheA (10 mM)

or CheA:CheS (10 mM) was added to a mixture of 2.5 mM CheY1

and 2.5 mM CheY2 under different ATP concentrations. Follow-

ing the addition of 32P -ATP, reaction aliquots of 10 ml were taken

at the indicated time points and quenched immediately in 10 ml of

26 SDS-PAGE loading dye (7.5% (w/v) SDS, 90 mM EDTA,

37.5 mM Tris HCl, 37.5% glycerol, 3% (v/v) b-mercaptoethanol,

pH 6.8). Quenched samples were analyzed using SDS-PAGE and

phosphorimaging as described previously [67].

Supporting Information

Figure S1 SSK1 is a phosphate sink for SLN7 in the yeast

osmoregulation pathway (A) A cartoon diagram of the SLN1-

YPD1-SSK1-SKN7 system. The diagram is arranged to highlight

the role of the SSK1 as a phosphate sink for SKN7. Rate constants

are shown on the relevant reactions. In the case of reversible

reactions, two rate constants are given as kforward and kreverse. (B)

Role of the sink RR (SSK1) in dephosphorylation of SKN7-P

(RR2-P). The x- and y-axis show the time and the corresponding

phosphorylated RR2 (SKN7-P) level at steady-state respectively. A

value of ka was selected that resulted in ,90% of the total RR2

being phosphorylated at steady state. At t = 0, ka was reduced to

zero and the progress of the reaction to the new steady state was

simulated. Solid line represents the presence of the sink (i.e. SSK1),

while dashed line shows the absence of the sink. (C) Signal-

response curve in the presence (solid line) and absence (dashed

line) of the sink RR (SSK1). The x- and y-axis show the signal (ka)

level and the corresponding steady state level of phosphorylated

SKN7 (RR2-P) respectively.

(TIF)

Figure S2 Effect of varying the key parameters in the yeast

osmoregulation system on the shape of the signal-response curve.

The x- and y-axis show the signal (ka) level and the corresponding

level of phosphorylated output RR (SKN7-P) at steady state

respectively. Each panel shows a signal-response curve for different

parameter values. The results of the basic model are shown in black.

The arrow on each panel indicates increasing values of the changed

parameter. (A) The forward phosphotransfer rate (kS) for the sink

RR was varied from basic model value (of 66.67 mMs21) to 660, and

0. (B) Concentration of the sink RR was set to 0 mM, 1.5 mM (basic

model) and 3 mM. (C) The rate of auto- dephosphorylation of sink

RR-P (khS) was set to 0 s21, 0.5 s21 (basic model) and 1 s21. (D)

The forward phosphotransfer rate (kM) for the main RR, was set to

1 mMs21 (basic model), 0.5 mMs21, and 10 mMs21.

(TIF)

Figure S3 Signal-response relationship for the sink RR and the

output RR in the S. meliloti system. The x- and y-axis show the

signal (ka) level and the corresponding steady state level of either

phosphorylated sink (blue line) or main RR (black line).

(TIF)

Figure S4 The effect of parameter changes on the signal-

response curve of the S. meliloti system. The signal-response curve

Hill coefficient is shown on each panel as a heat map. (A) Effect of

varying the auto-dephosphorylation rate of the output RR (khM; y-

axis) and sink RR (khS; x-axis). (B) Effect of varying the forward

phosphotransfer rates to the output and sink RR (kM and kS). (C)

Effect of varying the forward and reverse phosphotransfer rates to

the output RR (CheY2; x-axis; kM and y-axis; krM). (D–F) Signal-

response curves for models corresponding to parameter values

indicated as colored circles on the heat maps above; the black

circle represents the basic model.

(TIF)

Figure S5 Effect of the stoichiometric ratio of CheA to CheY1,

and CheY2 total concentrations on the shape of the signal-

response curve for the S. meliloti system. (A) The signal-response

curve Hill coefficient is shown as a heat map. The x-axis shows the

total concentration of CheA, while the y-axis shows the total

concentration of CheY1 and CheY2 (where [CheY1]tot = [Ch-

eY2]tot). (B) The signal-response curves resulting from the

stoichiometric ratios considered in the in vitro experimental

system (10:2.5:2.5), in black, and the measured values from S.

Table 2. The strains and plasmids used in this study.

Strains/plasmid Description Source/Reference

E. coli strain M15pREP4 Expression host containing pREP4; kanamycin resistant Qiagen

pQE30 IPTG inducible expression vector. Introduces RGS(H)6 at the N terminus of the expressed protein. Confers
ampicillin resistance

Qiagen

pQE60 IPTG inducible expression vector. Introduces RGS(H)6 at the C terminus of the expressed protein. Confers
ampicillin resistance

Qiagen

pRU1735 (pQE60Y1) Plasmid for overexpressing C-terminally His-tagged CheY1 from S. meliloti. pQE60 derivative [41]

pRU1736 (pQE60Y2) Plasmid for overexpressing C-terminally His-tagged CheY2 from S. meliloti. pQE60 derivative [41]

pRU1742 Plasmid for overexpressing N-terminally His-tagged CheA from S. meliloti. pQE30 derivative [41]

pBS174 (pET27bmodA/S) Plasmid for coexpressing S. meliloti N-terminally His-tagged CheA and CheS. pET27bmod derivative [50]

doi:10.1371/journal.pcbi.1003890.t002
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meliloti (1.5:20:20), in red. The corresponding Hill coefficients are

1.75 and 1.59, respectively.

(TIF)

Figure S6 Effect of CheS on the signal-response curve. On each

panel, the x- and y-axis show the ATP level and the corresponding

steady state phosphorylated CheY2 levels, respectively. The

phosphorylated CheY2 levels predicted by the model are shown

with a dashed line (absence of CheS) and with a solid line

(presence of CheS), while the experimentally measured values are

shown in circles and squares on respective graph. Error bars show

the standard error of the mean obtained from three independent

experiments. Panel A shows the model prediction when only the

forward phosphotransfer rate to CheY1 rate is optimized (ks),

while panel B shows model prediction when only the CheY1

autodephosphorylation rate (khs) is optimized.

(TIF)

Table S1 The parameters used for the model of the yeast

phosphate sink.

(DOC)

Text S1 The main supplementary text. Sections 1 and 2 of this

file contain the mathematical analysis of a two-component system

with one histidine kinase HK and two response regulators RR.

Section 3 describes the mathematical model for the two-

component system regulating yeast osmoregulation.

(PDF)

Text S2 This file contains the results of the analysis using the

Chemical Reaction Network toolbox for the reaction system

described in the basic model without complex formation.

(DOC)

Text S3 This file contains the results of the analysis using the

Chemical Reaction Network toolbox for the reaction system with

formation of complexes during phosphotransfer reactions.

(DOC)

Text S4 This file contains the ordinary differential equation

model for the S. meliloti system as described in the main text. The

file (.ode extension) is compatible with the XPPAUT and other

modeling software.

(ODE)
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