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Abstract

Civil structures such as floor systems with open-plan layouts or lightwéagiibridges can be susceptible to excessive
levels of vibrations caused by human activities. Active vibration con#lQ) via inertial-mass actuators has been shown to
be a viable technique to mitigate vibrations, allowing structures to satisfy vihragoviceability limits. The application of
AVC to complex structures requires the use of several Actuator/Semsimg necessary the implementation of multiple-input
multiple-output (MIMO) strategy. The present work proposes a twp-steategy for designing MIMO optimal-based AVC
suitable for structures with a large number of vibration modes and with e laughber of test points.

I. INTRODUCTION

Floor systems with open-plan layout and lightweight fomtges are examples of civil structures in which excessive

vibrations caused by human activities can occur. Activeratibn control (AVC) using inertial-mass actuators hasrbee
shown to be a viable technique to impart damping to thesetsiies, especially when the structures are very lively aed a
excited by a small number of humans, allowing the constoaatif slender structures leading to significant materiairggs/
[1]. The excessive level of vibration is usually a problenaoklatively wide area not just at a single location, whiafuiees
the use of several inertial-mass actuators to achieve tiration reduction requirements. Recently, this was detnates!
in [2], where multiple SISO (single-input single-outpuysgems were designed. However, the structural system duiesch
independently at each control location, which results erieed for a reduction of the control gain (and hence perfocela
of each SISO system to guarantee stability.

A better control performance with the same number of actsatan be obtained if a multiple-input multiple-output
(MIMO) strategy is used [3]. However, the simplificationsased in the design of an optimal control [3] may not viable
if the resulting AVC is going to be implemented in practiceecBntly, an approach which considers the actuator dynamics
(among other issues) has been presented in [4]. This agplwscbeen successfully implemented in practice on an indoor
walkway sited at the recently constructed award winninguRobuilding at the University of Exeter (Exeter, UK). The
algorithm presented in [4] is useful when the number of teshts is not too high. However, if the number of possible
locations of the actuator positioning is large, this altjor is not convenient due to its high computational cost.

An optimal set of Actuator/Sensor (A/S) locations can beamtgd by usingH, andH. norms strategies (see for example
[5]). However, although these strategies are useful toimlataeduced number of nodes where the actuators and semsors ¢
be placed with a low computational cost, the choice of the memof actuators and sensors and the tuning of the MIMO
controller are not obvious.

The present work proposes a two-step strategy for desigiptimmal-based active vibration control for floor and foadige
structures with a large number of test points. Thus, thegseg design strategy finds an optimal set of A/S locationsas
on Hy norm placement criterion [5] (i.e., reduces the number sf points) to design a MIMO direct velocity feedback by
using the control algorithm proposed in [4]. A simulated rapde, where a finite element (FE) model of a complex floor
structure is used, illustrates the computational costagolu and shows the viability of the design for different riaems of
actuators and sensors.

This paper is organised as follows. Section 2 explains aemice office floor in the UK. Section 3 describes the control
scheme elements. Section 4 explains the design method@&egtion 5 provides an application example using the FE imode
of the structure explained at Section 2. Section 6 concltigegaper.

Il. STRUCTUREMODEL

Before designing and implementing and AVC, It is convenigntarry out an experimental modal analysis (EMA) to
obtain an accurate structure model. However, in many casesnt possible to perform an EMA firstly. Therefore, this
paper proposes to design the optimal MIMO AVC based a FE mofigie structure. In addition, this section presents a
comparison between the models derived by EMA and FE in oashbw that model errors are not significant.
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The structure considered in this paper is a steel-concraetepaosite office floor sited in London (UK). The general
arrangement of beams, as shown in Fig. 1(a), has a degreeegtilarity but is loosely based on primary steel beams
(PG500x 200x 241) at 13 m spacing and secondary steel beams (P&%60x 94) at 3 m spacing. The column spacings
also have some irregularity but are loosely based on 2 93n grid. A 130 mm lightweight concrete slab, supported by
Holorib decking, acts compositely with the steel beams.

The experimental modal analysis (EMA) was performed on tiecture using the test grid shown in Figure 1(b).
Honeywell QA750 accelerometers were placed at a total ofd@btg located to try and maximise the number of observed
modes. 4No. APS-Dynamics actuators (2No. Model 113 and BMalel 400) were used to provide excitation at key points
within the structure, denoted by triangles on Fig. 1(b). Tésulting measured frequency response functions (FRF we
curve fitted using ME’Scope [6] to derive the mode shapes asguiEncies that are shown in Figs. 2 and 3.

The FE model was created in ANSYS [7] using BEAM188 elementstlie primary and secondary steel beams and
SHELLG63 elements for the orthotropic concrete slab. The ahpdoperties were calculated and compared with the results
from EMA. It was found that the frequencies from the FE modelrevtoo high so some manual model updating was
performed. Here, it was decided that the use of lightweigimceete may require a lower Young’s Modulus than the 38MPa
assumed. Therefore, this was reduced by 20 % tdNdPa [2]. This office has a very open-plan layout with the bt#a
exception of a small office and some meeting rooms. The oertior the office, located between gridpoints D5 and E5 on
Fig. 1(a) appeared to be significantly increasing the s#fnlocally. Therefore, this was explicitly modelled as asglplate
4mm thick. The partition was attached to a false ceilingaathan the main structural slab, which would have resulteal i
loss of effective stiffness. So numerical updating wasqrered to choose a suitable value of Young’s Modulus to repres

this; a value of 5GPa was found to match the experimental lolesa
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(a) General Arrangement for Structure. (b) Test Point Locations for Experimental Modal Testingahgles

denote actuator locations.

Fig. 1. London floor structure.

The updated modal properties for the FE model are compargdtihose from the EMA in Figs. 2 and 3. It is observed
that the mode shapes themselves correlate quite well. Howthe frequency values of higher frequency modes are less
accurate. Despite this, the accuracy of the model is deenfédient to represent the dynamics of the structure welhimit
the frequency range of interest. For the purposes of lateulations, a modal damping ratio had to be assumed for each

mode: based on the EMA results, a value of 3 % was used.

IIl. CONTROL SCHEME

This section explains the general scheme shown in Fig. 4 tasdefine an optimal DVF MIMO control from the proposed
optimisation design process. The dynamics included in #igre grouped into the following blocks:
1) The flexible structure. The inputs are the force generayep actuators ({s) andr perturbationsws). The velocity at
actuator locations are considered as outpwuts (

2) The control gain matrix.
3) The saturation nonlinearity models the actuator forodtétion, which is limited by the maximum power amplifier

input. This maximum value can be decreased to reduce theofiskroke saturation but also reducing the actuator

performance.
4) The dynamics of the inertial-mass actuators.
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A. Description of the control scheme components
The standard state-space representation of the modeli$ofiéRible structure is represented as follows:

XS == A3Xs+ le US+ BSQWS (1)
Ys = CsXs.
If model (1) is defined in modal coordinates, the state-spaatices are as follows [5]:
0 I 0
AS— |: 7Q2 —270 :| ) BSrl - CDU :| ) (2)
0
-] el 0l

whereQ is anx n diagonal matrix formed by the natural frequencigsi(--- , wy]), Z is anx n diagonal matrix formed by
the damping ratios[{1, - -- , {n]) and®,, ®y andd,, are matrices with dimensiomsx p, g x n andn x r, respectively. Each
K" column of ®, and ®,, and each row ofp, is formed by thek!h vibration mode values at the positions of the actuators
(Py), perturbations @) and sensorsdy).

The control gain matrixK) in a general form is defined as:

Kiz Kz -+ Kyg
Koap Koo -0 Ky

K=| . . s 3)
Kpr Kp2 -+ Kpg

in which Kpq is the control gain applied at control inpptdue to control outpud.

The outputs of the saturation block, which are the commarithge inputs of thep actuators, are denoted li. The
actuator considered is an inertial actuator that genefatess through acceleration of an inertial mass to the s&tracon
which it is placed. The actuator consists of an inertial (@ving) massma attached to a current-carrying coil moving in
a magnetic field created by an array of permanent magnetsinEngal mass is connected to the frame by a suspension
system. The mechanical part is modelled by a spring stiéfkgsand a viscous dampingy. The electrical part is modelled
by the resistanc®, the inductance of the coll and the voice coil constai@g, which relates coil velocity and the back
electromotive force (Fig. 5(a)) [8]. Combining the meclwahiand the electrical part, the linear behaviour of the atoiu
can be closely described as a third-order dynamic models,Time state space model of tpeactuators is as follows:

Xa = AarXa+ Bar Ua (4)
yA - CAT XA7

being the matriced\p; = diag(Aa, -+ ,Aa), Ba; =diag(Ba, -+ ,Ba) andCa, =diag(Ca,---,Ca) block diagonal, where
Ana, Ba andCp are defined as follows [9]:

00 En 0
Ap=|1 0 wi+2awnéa |,Ba=| 0 [, Ca=[0 0 1], (5)
0 1 &+20awn ga

where the actuator is defined by > 0, its damping ratiaa and natural frequencga. The value ofe models the low-pass
properties of the actuator. The actuator in this work is ars AB/namics Model 400 electrodynamic shaker, which is shown
in Fig. 5(b). The identified parameters of (5) are [8} = 13.2 rad/s (2.1 Hz){a = 0.5, ga = 12000 andsp = 47.1.
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Fig. 5. Inertial-mass actuator.

B. State-space model of the closed-loop system
The state equation of the closed-loop system is obtained ffig. 4 and (1)-(5), and results in

?.(S _ As - le CAT Xs (6)
XA BAT K CS AAT XA
B
+ 052 W.

The eigenvalues of the(2+ p) x 2(n+ p) state-space matrix are considered into the restrictiofimete in the design.
These eigenvalues (i.e., the poles of the closed-loop mystee denoted by-{ci,wxi, £ joq;LT,/l—ZCZLT, where T €
[1,---,2(n+p)] and j is the imaginary unit.

C. Human vibration perception

The vibration that can be perceived by a human depends onirnetion of incidence to the human body, the frequency
content of the vibration (for given amplitude) and the diaratof sustained vibration, among other factors. The fregye
sensitivity variation for a body position can be taken intw@unt by attenuating or enhancing the system response for
frequencies where perception is less or more sensitivpectisely. The degree to which the response is attenuated or
enhanced is referred to as frequency weighting. Thus, &eguweighting functions are applied in order to accounttlier
different acceptability of vibrations for different ditdans and body positions. ISO 2631 [10] and BS 6841 [11] mlevi
details for frequency and direction weighting functionattban be applied which are all based on the basicentric owded
system shown in Fig. 6. These have been included in currestdiesign guidelines such as the SCI guidance [12]. Accgrdin
to ISO 2631, for z-axis vibration and standing and seatimg fitequency weighting functioMg) is a filter with the frequency
response shown in Fig. 7.

Human comfort under vibration is also related to the duratid sustained vibration [13]. Thus, persistent vibrations
should be penalised in the control design, giving more irfgrae to transient vibration of long-duration than those of
short-duration. This is taken into account by multiplyitige tsystem response by an exponential time weighting &%),
wherea > 0 adds a constraint in the relative stability of the con&olsystem. Note that persistent states are penalised more
heavily asa is increased.

The human vibration perception is considered in the cdetralesign by weighting the state vector of the structure
Xs = [Xs;, -, Xs,,] (SEE (1)) as follows:

Xay = (e7%g (1)) * Gew (), | € [1,---,2n], (7)

where (*) denotes the convolution process ajpl(t) is the impulse response function of a system with the frequen
response function (FRF) shown in Fig. 7. Note that the weigvectorxg, is only used to calculate the Pl used to derive
the optimal sensor/actuator locations and the gain madtmixather words, the weighting functions are not includedhie t
closed-loop system of Fig. 4.

IV. CONTROL DESIGN METHODOLOGY

The design process proposed in this work is based on two.ss@s 1 finds an optimal set of A/S locations based on a
H> norm placement criterion and Step 2 obtains the optimal Afations and the control matrix defined in (3).
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A. Step 1. K norm placement criterion.

The H, norm placement criterion considered is based on referesicelhe objective of this section is to explain how
to implement arH, criterion to find a set of good locations to place the A/S pdiisst of all, let us consider the modal

representation of the flexible structure defined in (1)-@Yalows:

)-(m == Ame + BmluS
yS = CmXS.

where the perturbationng) is not considered and the matricAg, Bn andCy, are defined as follows:

Am = diag(Am,Am,, -, Am,) s
Bn=Bm Bm - Bm ],
Cm:[cml sz Cmn}’
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Fig. 8. Step 1.

wheren is the number of considered vibration modes and each mBgiandCy, are defined as follows:

0 1
Am‘{ﬁf ZEKW}’ (10)
Bn=| Bmqg Bme - Bm‘p]:[(na P (lkp:|7
T
T “e
Crno=[ Cmy Cmy -+ Cnyc ] :{%l qlaz (n(;p} ’

where ¢ is the mode shape for tHé" vibration mode at thé" A/S location.
The Hy norm of the structure is defined as follows:

n
IGI2 2 [ Y lIGkl3, (11)
k=1

where||Gy||, is the H, for a mode. If a set ofj sensors ang actuators are defined, thé, norm for theit" actuator (or
sensor) and for th&" mode is

[P
H, norm for thek™™ mode and a set op actuators}{Gy/, = Zl”GkiH% (12)
i=
2 2
H, norm for thek™ mode and a set af sensors{Gy||, = Z\|Gki||2,
i=

whereGy; is the H, norm for theit" actuator (or sensor) and for th& mode, which is defined as follows:

. Brng|[5 /ICrm I3

H, norm for thei" actuator and fok!" mode|Gyil|, = Hm"z—m 13

2 || kIHZ 2\/m ( )
B I3ICm 5

H, norm for theit" sensor and fok" mode]|Gyil|, = — 21 —"% 112

2 H kl||2 2\/@

The Step 1, which is shown in Fig. 8, can be divided at: (i) ni@dduction, (ii) placement indices and (iii) correlation
coefficients.

1) Model reduction:Then, the number of considered vibration modes are reduasedoon the value of thd, norm of
each mode when all the nodes are considered as possible édfolws. Thus, the model can be defined as follows:

A{Aof AOJ’B{EI]’C[CF c . (14)

wherer andt means reduced and truncated model, respectively. The@frtbis model reduction can be defined as follows:

n
&=G-Gl,=[Gl.=,/ ¥ IGi3 (15)
k=ny+1



wheren; is the order of the reduced order model. The model reductondone by defining a maximum value &f or by
defining a coefficienR.qet With the following restriction:

(16dlz)/ (mx(1Gul) ) > Reer (16)
2) Placement indicesThe objective is to find the most important nodes for each idensd vibration mode. Firstly, a
preliminary number of A/S is consideredtll{). Secondly, the followingH, placement indices are defined

o — ICxl2
Gl

17)

where gy is the placement index for tHé" vibration mode and!" node. Then, thé\,, highest values for each vibration
mode are considered. Note that the considered nodes arerlesgpial toN;,, multiplied by the number of vibration modes
of the reduced order model.

3) Correlation coefficientsThis final step analyzes the correlation between the nodedéneldl with the placement indices.
First of all, the following factor for ark!" node is defined:

&
Gaill,
i = : (18)
HGni”z
Then, the correlation index between tifeand ji" is defined as follows:
Ta.
lij = 7& gJ (19)
laillz gl
Finally, the set of possible nodes are obtained by consigdhie following criterion:
_J 0 if rj>1—¢ foro;<gandforj>1
(k) = { 1 elsewhere (20)

wheree is a small positive number(= 0.01— 0.20). The nodes with(k) = 1 are taken into account in the optimization
algorithm explained in the following section.
B. Step 2. Optimization algorithm.

This step is based on the minimisation of a Pl related to tksightion energy of the whole structure due to the AVC
action for a given excitation. The PI, which is calculatedusing the time and frequency weighted structure states)of (7
is defined as follows:

1%+
IKA) = é(/0 XL (K, A)Qxay (K, A)dt, (21)
where the matrixQ is a 2 x 2n positive definite matrix, which is taken as [3]

'afq;fmax 0 0 0

0 PR O e O
Q=] o . 0T @ .. 0o |’ (22)

,max

i 0 0 0 qﬁmax i
in which @ max is the maximum value of thid" eigenvectomy. Note that the displacement states are weighted by theatatur
frequencies, thus making the displacement states conlpat@tthe velocity states. The variabfe contains the locations
of a set ofp actuators andj sensors. Finally, the value of is the simulation time to obtain the PI, which must be large
enough to achieve the steady stateJgf,A) (i.e., the weighted vectaxg, = 0).
The Step 2, which is summarized in Fig. 9, is as follows:
0] Consider the set of structure nodes obtained at Step Hefie each possible combination for actuator and sensors.
The set of these possible values foris denoted by\p;.
(i)  Define the following restrictions to minimize the Bl= (K,A): a) A € Ap; and b) 0< o < ming ({kwx), Yk €
[1,---,n]|, where the upper limit ofr (miny({kax)) guarantees that the system simulation converges to zero.
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(i)  Define the system perturbance to assess the contrpieiormance. Note that the design of optimal controllers
for unknown disturbances is not trivial since prescribestutbances are needed within the design process. The
solution adopted in this work, similar to that used in [3]tasapproximate the influence of zero initial conditions
and a spatially distributed, but temporally impulsive taibance force by an appropriate initial condition and zero
disturbance force. This is achieved by introducing a naw-z@tial condition to the velocity states of the structure
Thus, the system perturbance is definedxg®) = [xs, = 0, ,Xg, = 0,Xs,,; = X, (0), -+ , Xs,, = Xs,(0)], where
each value ok (0) is obtained as follows:

Xs< (0)= Fo® max (23)

where Fy represents the impulse loading applied to a particularatitsn mode. Note that the impulsive force is

applied to the point of maximum amplitude of each vibrationd®, creating thus an extreme scenario for the

initial disturbance. It is expected that the control systeith perform successfully under other loading conditions.
(iv)  Find the values ofA andK that minimizeJ(K,A) of (21). Operationally, it can be divided into the following
(iv.a) The values ofl are obtained for each € Ap| as follows

I =minJ(K.A), (24)

where eachly is calculated by using the MATLAB functiofminsearch which minimises the function defined
by the simulation of the control scheme of Fig. 4 with theiatitonditions defined by (23), and the restrictions
defined at (ii).
(iv.b) The final values oK andA are those corresponding to the minimum valuelafwhich is denoted adop and is
defined as follows:
Jop = rr}\inJ,\. (25)

V. APPLICATION EXAMPLE

The application example consists of designing a MIMO desteakzed control for the structure defined at Section llugh
the control matrix defined at (3) is diagonal. Figs. (2) angg3ows that there are four main bays. Therefore, the number
of A/S considered is 4N, s =4). If the FE model described in Section Il is used, the stmattmodel has 113 vibration
modes and 1653 nodes (test points). This number of modesates makes the Step 2 practically non-implementable. Let
us consider the parameteRsoet = 0.75, € = 0.1 andNy/s to carry out Step 1, whose results are:

® Model reduction reduces the order fram= 113 ton, = 11 with an errore; = 0.0071
(i)  Placement indices reduces the number of test points ft653 nodes to 44 (see green circles at Fig. 10)
(i)  Correlation coefficients reduces the number of teshfsofrom 44 to 13 (see blue circles at Fig. 10)

After Step 1, the possible values for the variables for StefpRare obtained as the combination of the 13 test nodes
obtained after Step 1. In order to reduce the number of cationls, the combinations are obtained by setting the fo& A/
as follows:

(i)  Actuator A can be placed &t(6.18 —2.68),(7.69,—10.63),(7.83 —12.58)}.
(i)  Actuator B can be placed dt19.29,3.00),(18.70,—1.99),(17.92 —12.34)}.
(i)  Actuator C can be placed 4(31.93 4.11),(32.00,2.00), (32.00,0.00), (31.00,—3.00), (27.22, —11.46)}.
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Fig. 10. Test nodes obtained with placement indices (greetes) and correlation coefficients (blue circles).

(i)  Actuator D can be placed dt43.50,3.99),(43.64,—6.04)}.

Therefore, Step 2 obtains 90 optimal valueskaf These 90 optimal controllers are obtaining by considedng 0.25
andFy =100 N. The optimal controller is obtained wiflap = 0.0018 and the following location and control matrix:

Aop = {(6.18,—2.68), (19.29,3.00), (32.00,0.00), (43.64, —6.04)} (26)
524 0 0 0
Kep_ | O 919 0 0
0 0 421 0 |’
0 0 o0 288

where/\op are marked at Fig. 11 with red circles. Fig 12 shows the FRFsptmal nodesAop). In order to compare the
optimal control, it can be said that the value of functiodas equal to 0.0046. That is, the value &fp is approximately
36 % of the maximum J. In addition, if the FRF App are obtained, it can be seen at Fig. 12 the damping reductittn w
the optimal controller.

VI. CONCLUSIONS

This work presents a novel two-step strategy for designipiintl-based active control for human-induced vibrations
Preliminary results are presented by considering an ivieoffice floor in the UK with a large number of modes and test
points. The results show that an optimal MIMO can be desigyetematically and without having a non-implementable
computational cost.

The implementation of this technique in practice will be trext work.
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