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ABSTRACT

In the context of phase 5 of the Coupled Model Intercomparison Project, most climate simulations use

prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon

cycle feedbacks. However, the representative concentration pathway 8.5 (RCP8.5) scenario has additionally

been run by earth system models with prescribed CO2 emissions. This paper analyzes the climate projections

of 11 earth system models (ESMs) that performed both emission-driven and concentration-driven RCP8.5

simulations. When forced by RCP8.5 CO2 emissions, models simulate a large spread in atmospheric CO2; the

simulated 2100 concentrations range between 795 and 1145 ppm. Seven out of the 11 ESMs simulate a larger

CO2 (on average by 44 ppm, 9856 97 ppm by 2100) and hence higher radiative forcing (by 0.25Wm22) when

driven by CO2 emissions than for the concentration-driven scenarios (941 ppm). However, most of these

models already overestimate the present-day CO2, with the present-day biases reasonably well correlated

with future atmospheric concentrations’ departure from the prescribed concentration. The uncertainty in

CO2 projections is mainly attributable to uncertainties in the response of the land carbon cycle. As a result of

simulated higher CO2 concentrations than in the concentration-driven simulations, temperature projections

are generally higher when ESMs are driven with CO2 emissions. Global surface temperature change by 2100

(relative to present day) increased by 3.98 6 0.98C for the emission-driven simulations compared to 3.78 6
0.78C in the concentration-driven simulations. Although the lower ends are comparable in both sets of sim-

ulations, the highest climate projections are significantly warmer in the emission-driven simulations because

of stronger carbon cycle feedbacks.

1. Introduction

In the Fourth Assessment Report of the Intergov-

ernmental Panel on Climate Change (IPCC AR4), the

best guess and likely range (66% probability) of global

temperaturewarming by 2100 were 1.8 (1.1–2.9), 2.4 (1.4–

3.8), 2.4 (1.4–3.8), 2.8 (1.7–4.4), 3.4 (2.0–5.4), and 4.0 (2.4–

6.4) for the B1, B2, A1T, A1B, A2, and A1FI illustrative

Special Report on Emissions Scenarios (SRES), respec-

tively (Meehl et al. 2007). One can easily note that the

best guess is not centered in the likely range interval; the

distribution is asymmetrical with a 240/160% distribu-

tion around the best estimate (i.e., the average of the

likely range is 10% above the best estimate). This

asymmetrical ‘‘240/160%’’ distribution was based on

several lines of evidence as described in detail in Knutti

et al. (2008). It was argued that the projected warming as

simulated by 23 atmosphere–ocean general circulation

models (AOGCMs) at that time, as part of the World

Climate Research Programme’s phase 3 of the Coupled

Model Intercomparison Project (WCRPCMIP3) (Meehl

et al. 2007), did not explore the full range of possible

warming for a given scenario. Although estimating such

a full range is virtually impossible, one can use other lines

of evidence to estimate whether the full uncertainty
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ranges are offset (i.e., to correct a potential bias), are

wider (i.e., to reflect additional uncertainties), and/or are

more or less skewed (i.e., to reflect additional skewed

uncertainties).

When providing best-estimate projections and un-

certainty ranges for emission scenarios, there are two

major sources of uncertainty that need to be taken into

account. The first relates to physical processes and feed-

backs, and the uncertainty they induce on climate re-

sponse for a given greenhouse gas (GHG) concentration

and aerosol forcing in terms of the global-mean temper-

ature response, and regional climate change; while the

second relates to carbon cycle processes and feedbacks,

with the associated uncertainty on the relationship be-

tween CO2 emissions and CO2 concentration.

A lack of understanding and observations of physical

feedbacks reflected in model spread is indeed the main

source of uncertainty in long-term climate projections

(e.g., Hawkins and Sutton 2009).While the initial Planck

response to an increase in atmospheric CO2 is known,

the cascade of feedbacks arising from the warming-

induced changes in water vapor, lapse rate, clouds, snow,

and ice is far from being completely understood (Bony

et al. 2006). The equilibrium climate sensitivity (ECS),

defined as the equilibrium global mean surface warming

for a doubling of atmospheric CO2, was estimated to be

3.38 6 0.78C (1s,) for the slab ocean versions of CMIP3

climate models included in the IPCC AR4 (Meehl et al.

2007). A lower mean ECS was found for the coupled

model versions and estimated to be 2.88C by Forster and

Taylor (2006) and 2.98C by Meinshausen et al. (2011a).

Taking into account multiple lines of evidence, the IPCC

AR4 concluded: ‘‘The equilibrium climate sensitivity is

likely to be in the range 28C to 4.58C with a best estimate

of about 38C, and is very unlikely to be less than 1.58C.
Values substantially higher than 4.58C cannot be ex-

cluded, but agreement of models with observations is

not as good for those values’’ (Solomon et al. 2007,

p. 12). ECS being outside the CMIP3 rangewas possible—

and in particular, no very likely statement was given for

the upper end of the range.

The second major cause for uncertainties relates to

the global carbon cycle. CMIP3 models were driven by

CO2 concentrations along with non-CO2 GHG and

aerosol forcing for each SRES scenario (Nakicenovic

et al. 2000) provided by a former version of the Bern

carbon cycle–climate model (Bern-CC). In the real

world, changes in atmospheric CO2 concentration result

from the imbalance between CO2 emissions from fossil

fuel burning and deforestation (Friedlingstein et al.

2010; Peters et al. 2012) and CO2 uptake by the oceans

and the terrestrial biosphere (Le Qu�er�e et al. 2009;

Denman et al. 2007). Processes controlling these uptakes

as well as their response to change in atmospheric

composition (mainly CO2) and climate are far from

being well understood. For about two decades now, land

and ocean carbon cycle models have been attempting to

simulate the historical and/or future evolution of the

carbon cycle with very modest improvement in terms of

uncertainty reduction (e.g., VEMAP 1995; Cramer et al.

2001; Orr et al. 2001; Friedlingstein et al. 2006; Sitch

et al. 2008). At the time of AR4, the Coupled Carbon

Cycle Climate Model Intercomparison Project (C4MIP)

highlighted the large uncertainty in future projections of

the carbon cycle (Friedlingstein et al. 2006). Starting

from the same historical and twenty-first-century an-

thropogenic emissions of CO2, 11 carbon cycle climate

models (hereafter C4MIPmodels; model names listed in

Table 1) simulated atmospheric CO2 ranging between

700 and 1000 ppm by 2100 for the SRES A2 emission

scenario. Reasons for this large range were mainly due

to the large uncertainty in the response of land carbon

cycle to increasing CO2 (carbon–concentration feed-

back) and climate change (carbon–climate feedback)

(Friedlingstein et al. 2006; Gregory et al. 2009). Ocean

carbon cycle models showed a more consistent picture.

However, two models [L’Institut Pierre-Simon Laplace

Coupled Model, version 2C (IPSL-CM2C) and Uni-

versity of Maryland (UMD)] showed a substantial de-

viation from the bulk of the C4MIP models, featuring

substantially higher ocean carbon uptake. Nevertheless,

it was found that on average, the C4MIP models were

simulating a larger atmospheric CO2 than the one pre-

scribed to the standard CMIP3 climate models used in

AR4 for climate projections, at that time based on

a reference simulation with the Bern-CC. As a result,

the C4MIP warming range was higher than the CMIP3

models’ warming range, and critically important, it was

found that the upper end of the C4MIPmodels’ warming

was significantly larger than the one simulated by the

CMIP3 models (Meehl et al. 2007).

The combined uncertainty in climate response and

carbon cycle response led to a decision, based on expert

judgment, to expand the range of global temperature

projections (Meehl et al. 2007; Knutti et al. 2008). The

CMIP3 multimodel average was used, but the range was

calculated using a 240%/160% scaling factor as dis-

cussed above. The choice of those particular values was

also based on a number of different quantitative methods

using a variety of models and statistical methods, con-

sidering uncertainties in radiative forcing, climate feed-

backs, ocean heat uptake, and the carbon cycle derived

frommodels and observations (see Knutti et al. 2008, and

references therein).

TheWorld Climate Research Programme’s phase 5 of

the CMIP (CMIP5) is the main resource for the IPCC
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AR5 assessment of climate projection. Even if the

models perform well, there is no a priori reason that an

ensemble of opportunity, in which the sampling of the

models is not designed in any particular way, should

cover all the relevant uncertainties (Tebaldi and Knutti

2007). We investigate whether a potential offset is nec-

essary, by comparing the earth system models’ (ESMs)

results of the emission-driven CMIP5 runs to the pre-

scribed CO2 concentrations, and put that in the context

of the findings at the time of the IPCC AR4. The aim of

this paper is to describe the CMIP5 simulations driven

by CO2 emissions and to analyze their results in terms of

the carbon cycle response, thereby assessing whether the

standard CMIP5 climate simulations (with prescribed

atmospheric CO2) might have resulted in significantly

different climate projection ranges if they were emission-

driven—not concentration driven—experiments. The

assessment of CMIP5 models’ transient climate response

and whether it does explore the possible range, as well

as an assessment of potential bias in non-CO2 forcing

(e.g., aerosols), are not in the scope of this paper.

Hence, this paper will not give a definitive answer on

what scaling would have to be used if the CMIP5 results

should be transformed to estimated climate projections

for emission-driven runs. We will only attempt to quan-

tify the additional uncertainty arising from the carbon

cycle.

Section 2 below describes the CMIP5 experiments

used here; section 3 presents the historical simulations and

their evaluation against observations; sections 4 and 5

analyze the twenty-first-century changes in CO2, tem-

perature, and the global carbon cycle.

2. CMIP5 experiments, emission-driven protocol,
and model implementations

Despite the importance of the carbon cycle and its

feedback on the climate system, the CMIP5 experiment

protocol was designed to allow participation of groups

having a climate model without an interactive carbon

cycle as well as groups having an ESM including the

global carbon cycle (Hibbard et al. 2007; Taylor et al.

2012). Most of the proposed experiments are performed

using prescribed globally averaged CO2 concentration,

not CO2 emissions, allowing participation of both

AOGCMs and ESMs. For a given model, the projected

climate change is then independent of the strength of its

feedbacks associated with the carbon cycle. Concentration–

carbon and climate–carbon feedbacks would affect the

carbon fluxes between the atmosphere and the un-

derlying land and ocean simulated by an ESM, but these

would not affect the atmospheric CO2 concentration as

it is prescribed. With an ESM, from the prescribed

atmospheric CO2 growth rate and the simulated land

and ocean carbon fluxes, one can diagnose the CO2

emissions compatible with the prescribed CO2 concen-

trations (Matthews 2005, 2006; Jones et al. 2006, 2013).

The magnitude of the emissions compatible with the

RCP concentrations would be affected by the carbon

cycle feedbacks; a model with a large negative climate–

carbon cycle feedback would have lower sinks, and

hence lower compatible emissions (Jones et al. 2013).

Four concentration-driven (C driven) scenarios were

proposed for the twenty-first century and beyond, the

representative concentration pathways (RCPs) 2.6,

4.5, 6.0, and 8.5 (Moss et al. 2010; van Vuuren et al.

2011; Meinshausen et al. 2011c). Integrated assessment

models (IAM) simulated the greenhouse gas and aero-

sol emissions for these four RCPs scenarios (van Vuuren

et al. 2011). These emissions were harmonized with

historical estimates and then translated into concentra-

tions using theModel for theAssessment ofGreenhouse

Gas Induced Climate Change, version 6 (MAGICC6)

(Meinshausen et al. 2011a,b,c). MAGICC6 is a simple

climate model that also includes a representation of the

global carbon cycle and atmospheric chemistry. The

carbon cycle is composed of three land carbon pools, an

ocean carbon component, and multiple temperature-

dependent terrestrial and oceanic carbon fluxes, as well

as a parameterization for the CO2 fertilization effect.

Through the optimization of several parameters,

MAGICC6 can closely reproduce the temporal behav-

ior of higher-complexity physical climate and climate–

carbon cycle models [see Meinshausen et al. (2011a) for

details on the optimization method]. For the CMIP5

experiments, MAGICC6 used a multimodel average

setup of parameters for climate sensitivity, combined

with the carbon cycle emulation of the Bern-CC (Joos

et al. 2001) taken as the ‘‘best estimate’’ for the carbon

cycle behavior. This is essentially because the Bern-CC

and its earlier versions have been used for the consoli-

dated concentrations of IPCC SRES scenarios presen-

ted in the ThirdAssessment Report (Prentice et al. 2001;

see also appendix II in Houghton et al. 2001).

The CMIP5 protocol recommended that only one

scenario, the RCP8.5, be run twice, with CO2 concen-

tration as well as with CO2 emissions as a forcing (Taylor

et al. 2012). For these emission-driven simulations, his-

torical CO2 emissions of fossil fuel (Andres et al. 2011)

and land use change emissions (Houghton 2010, and

updates) as well as twenty-first-century emissions for

RCP8.5 (https://tntcat.iiasa.ac.at:8743/RcpDb .This allows

a formal comparison between their simulated climate

when atmospheric CO2 concentration is prescribed (C-

driven runs) and when atmospheric CO2 concentration

is calculated from the balance between prescribed CO2
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emissions and the simulated atmosphere–land and

atmosphere–ocean CO2 fluxes [emission (E)-driven

run]. Several modeling groups have performed these two

RCP8.5 simulations. Results from 11 ESMs are analyzed

here and their main characteristics are listed in Table 1.

Although conceptually simple, the implementation of

the E-driven runs was not identical for all models—in

particular, with respect to the treatment of the land use

change (LUC). Land cover change (LCC) was provided

as a standard CMIP5 forcing for all models for the his-

torical period and for each RCP scenario (Hurtt et al.

2006; cmip-pcmdi.llnl.gov/cmip5/forcing.html). This al-

lows ESMs to calculate CO2 emissions that result from

the imposed changes in land cover, taking into account

that deforestation leads to a direct emission of CO2 as

well as indirect emissions due to soil degradation and the

later decay of wood products (e.g., McGuire et al. 2001).

Conversely, reforestation leads to an initial increase in

simulated wood biomass followed by an increase in soil

carbon, as the rate of litter fall in forests is higher than

for croplands. In addition, tillage in croplands implies

that litter and soil decomposition rates are higher over

croplands than in forests. Not all models simulate all the

LUC-related processes that affect CO2 emissions.

Models that do not explicitly calculate LUC emissions

can adopt an alternative approach, where LUC CO2

emissions are prescribed as an external forcing in a

manner similar to CO2 fossil fuel emissions.

The vertically integrated globally averaged carbon

budget equation for the atmosphere is written as

dCA

dt
5EF 2Fo 2FL 5 (EF 1ELUC)2Fo 2FLn , (1)

where CA is the global atmospheric carbon burden

(PgC); FO and FL are the atmosphere–ocean and

atmosphere–land CO2 fluxes (PgC yr21), respectively;

and EF is the rate of anthropogenic fossil fuel emissions

(PgC yr21), which was prescribed for all ESMs. The

modeled atmosphere–land CO2 flux is represented

as FL 5FLn 2ELUC, where ELUC is the flux (assumed

positive into the atmosphere) due to anthropogenic land

use change and FLn is the natural component, also re-

ferred to as the residual land sink (RLS) in Le Qu�er�e

et al. (2012). The net exchange of CO2 between the at-

mosphere and the land surfaces, FL, is often referred as

the net biome production (NBP).

Seven out of the 11 ESMs analyzed here interactively

simulated LUC CO2 emissions (ELUC) from the pre-

scribed land cover change (see Table 1). For these

models, only the FL field is provided and not its separate

components (i.e., ELUC and FLn). The reason is that this

separation requires doing an additional ESM simulation
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in which land use change forcing is switched off—that is,

a simulation with the same GHG and aerosols forcing

but not including any land cover changes (e.g., Arora

and Boer 2010).

Three ESMs (BCC-CSM-1, INM-CM4.0, and MRI-

ESM1) prescribed both fossil fuel (EF) and LUC (ELUC)

emissions as an external forcing, not accounting for

carbon fluxes resulting from land cover change in the

model. One model (HadGEM2-ES) adopted a some-

what hybrid methodology, accounting for land cover

changes, hence calculating FL 5FLn 2ELUC, but the

change in atmospheric CO2 was calculated using the

externally prescribed land use change emissions (ELUC),

potentially leading to inconsistency in the model but

reducing the impact of any potential biases in the sim-

ulated land use flux. Finally, we note that while MRI-

ESM1 used the externally prescribed LUC emissions,

it nevertheless accounts for this prescribed loss of car-

bon following LUC in its total land carbon inventory.

The different manners in which interactive land use

change is implemented in ESMs imply that a direct

comparison of simulated land use change emissions is

not possible across models. These differences in model

implementation of land use change need to be kept in

mind when analyzing model results—in particular at-

mosphere–land CO2 fluxes, as not all models simulate

the same quantity, although they are generally reported

as the same variable, FL (NBP variable in the CMIP5

archive).

3. Simulated atmospheric CO2 and carbon cycle
over the historical period

The models simulate the historical changes in atmo-

spheric CO2 and carbon cycle in response to the pre-

scribed anthropogenic perturbation. Fossil fuel emissions

combined with the LUC forcing lead to a rapid increase

in atmospheric CO2, similar to the observations. How-

ever, while the observed atmospheric CO2 reached

379 ppm by 2005, the simulated atmospheric CO2 con-

centrations range between 358 (MRI-ESM1) and 403ppm

(HadGEM2-ES) for 2005, both underpredicting and

overpredicting the historical atmospheric CO2 increase

by more than 20% (Fig. 1a; Table 2). Only five models

(BCC-CSM-1, CanESM2, INM-CM4.0, MPI-ESM-

LR, and NorESM1-ME) are within 10% of the ob-

served CO2 increase. HadGEM2-ES, CESM1-BGC,

GFDL-ESM2G, and MIROC-ESM are substan-

tially above the observed concentration by 2005, while

IPSL-CM5A-LR and the MRI-ESM1 are significantly

below.

A priori, reasons for departure from the observed CO2

have to be found in the simulation of the land and ocean

CO2 net fluxes [FO and FL in Eq. (1)], assuming here that

anthropogenic fossil fuel emissions provided in the

CMIP5 protocol represents real-world historical emis-

sions. A brief evaluation of the global atmosphere–land

FIG. 1. Historical (a) atmospheric CO2 concentration (ppm),

(b) air–ocean carbon net flux (PgC yr21), and (c) air–land car-

bon net flux (PgC yr21) simulated by the 11 ESMs. Data in red

are the observational constraints. For the land, observations

are both FL (dark red) and FLn (light red) as estimated in

Le Qu�er�e et al. (2012). Blue lines are for ESMs accounting for

a terrestrial nitrogen cycle; green lines are for ESMs pre-

scribing the LUC emissions, hence calculating FL, not FLn (see

Table 1).
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and atmosphere–ocean CO2 fluxes is presented here,

and we refer to Anav et al. (2013) for a more in-depth

analysis of the carbon cycle in ESMs. The best estimates

of the ocean sinks come from both cumulative carbon

inventories over the historical period (Sabine et al. 2004,

and updates) and from combined oceanic (pCO2 mea-

surements and oceanic inversions) and atmospheric es-

timates (atmospheric O2 measurements) for the recent

decades (Le Qu�er�e et al. 2012). Most ESMs simulate

a (1850–2005) cumulative ocean sink ranging between

91 and 155PgC compared to the observation-derived

sink of 1416 27 PgC (Table 2). The exceptions are INM-

CM4.0, which overestimates the ocean sink by more

than a factor of 2 (360 PgC), and CanESM2, which un-

derestimates the ocean sink by about 30%. The behavior

of CanESM2was already reported inArora et al. (2011),

where possible underestimation of the simulated sink

was linked to the absence of marginal basins and con-

tinental shelves in the model. The large oceanic uptake

simulated by INM-CM4.0 is not yet fully understood

(E. M. Volodin 2013, personal communication). As

shown in Anav et al. (2013), the main reason for dis-

crepancy comes from the tropical ocean, where INMCM4

simulates a strong sink (;1 PgCyr21) in clear contra-

diction with the large CO2 outgassing (21 PgC yr21)

observed. When looking at the decadal mean ocean

sink, as estimated in Le Qu�er�e et al. (2012), ESMs

generally agree remarkably well with the observation-

based oceanic uptake for the last five decades (Fig. 1b),

again with the exception of INM-CM4.0, which over-

estimates the sink from the 1970s onward. CanESM2’s

lower-than-average oceanic uptake mainly occurs in the

first half of the twentieth century.

The net atmosphere–land CO2 flux (FL) cannot be

directly measured; it can only be estimated by mass

balance difference (Fossil fuel emissions minus atmo-

spheric and oceanic storage). Based on this mass bal-

ance, Arora et al. (2011) estimate that cumulated over

the 1850–2005 period,FL amounts to2116 47 PgC.Out

of the eight models that interactively model LUC

emissions, three models—GFDL-ESM2G, NorESM1-

ME, and CESM1-BGC—significantly underestimate

FL; these models simulate a larger land source (negative

cumulative FL of 247, 268, and 256 PgC, respectively,

over the 1850–2005 period) than the observation-based

land source (negative cumulative FL of 211 6 47 PgC).

For these three models, the simulated land residual sink

(FLn) does not compensate the simulated LUC source.

This is clearly visible in Fig. 1c, where these threemodels

simulate a near-zero FLn over the 1990s and 2000s, while

the observation-based estimate is 1 and 1.5 PgC yr21,

respectively.

Both NorESM1-ME and CESM1-BGC share the

same land surface scheme, the Community Land Model

(CLM), and therefore produce similar results in terms of

land carbon fluxes. The lower-than-average land sink

simulated by these two models is due to the limited re-

sponse to increasing atmospheric CO2 concentration, as

previously reported (Arora et al. 2013; Gillet et al.

2013). CLM accounts for a terrestrial nitrogen cycle

(Thornton et al. 2009), a feature not included in any of

the other ESMs. Inclusion of the nitrogen cycle generally

TABLE 2. Historical atmospheric CO2 (2005), cumulative land and ocean uptake (1850–2005) and average land and ocean uptake (1990–

99) simulated by the 11 ESMs compared with the observation-based estimates (with ranges being 68% confidence intervals). Also shown

are the multimodel mean and range (1s).

CO2 (ppm)

Cumulative land C

uptake (PgC)

Cumulative ocean C

uptake (PgC)

Land C uptake

(PgCyr21)

Ocean C uptake

(PgCyr21)

CanESM2 386 28 91 1.2 1.7

GFDL-ESM2G 391 247 135 0.8 2.2

HadGEM2-ES 403 233 148 1.2 2.4

IPSL-CM5A-LR 368 5.1 121 1.5 2.0

MIROC-ESM 390 236 128 0.3 2.3

MPI-ESM-LR 377 27 119 1.5 1.9

CESM1-BGC 398 256 124 20.2 2.2

NorESM1-ME 379 268 149 20.3 2.5

BCC-CSM-1.1* 383 146* 91 2.3* 1.8

INM-CM4.0* 378 55 189 0.6 3.3

MRI-ESM1* 358 88* 78 2.6* 1.5

Models’ average 382 6 12 226 6 32** 124 6 30 0.8 6 0.7** 2.2 6 0.5

Observation-based

estimates

379
Ð
FL: 2 11647 141 6 27 FL: 1:160:5 2.2 6 0.4Ð
FLn: 139690 FLn: 2:760:7

* FLn estimated as no simulated LUC carbon flux in these ESMs.

** Multimodel average for land carbon is only based on the eight ESMs simulating FL. Note that HadGEM2-ES and GFDL-ESM2G

simulations start in 1860 and 1861, respectively;FL refers to the net atmosphere–landCO2 flux, andFLn is the residual atmosphere–land

CO2 flux in the absence of land use change.
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leads to weaker land carbon uptake estimates (e.g.,

Zaehle et al. 2010), partly explaining the CLM model

behavior. However, the main reason for failing to sim-

ulate a significant land sink is the very short residence

time of litter and soil carbon in CLM, reducing the lag

between the net primary productivity (NPP) increase

and the heterotrophic respiration increase—that is, re-

ducing the strength of the land sink (Taylor and Lloyd

1992; Friedlingstein et al. 1995; Thompson et al. 1996).

The short soil carbon residence time of CLM was di-

agnosed through comparison against litterbag mea-

surements (Bonan et al. 2013) as well as comparison of

soil carbon spatial distribution against observations

(Todd-Brown et al. 2013; Anav et al. 2013), leading to

a weak land carbon sink (Keppel-Aleks et al. 2013).

Globally, CLM total soil carbon content is less than half

of the observations (Todd-Brown et al. 2013; Anav et al.

2013). GFDL-ESM2G also simulates a lower-than-

observed FL but for different reasons. Its vegetation and

soil carbon storage (and hence turnover time) are com-

parable to observations, hence not responsible for the

models’ underestimation of FL (Dunne et al. 2013; Anav

et al. 2013). As noted in Dunne et al. (2013), the GFDL

ESM tends to underestimate the atmospheric CO2 sea-

sonal cycle, potentially also leading to a relatively weak

land uptake. We also note that GFDL-ESM2G has a

more comprehensive treatment of land cover change

than otherESMs (Shevliakova et al. 2009), accounting for

transitions between primary forests, crops, pastures, and

secondary forests as well as wood harvesting, which in-

creases the simulated LUC emissions.

In summary, CESM1-BGC and to a lesser extend

GFDL-ESM2G overestimate the atmospheric CO2

growth rate because of a lower-than-observed FL. We

do not have a clear explanation for the overestimation of

atmospheric CO2 simulated by HadGEM2-ES. As

noted before, HadGEM2-ES accounts for LCC in its

calculated FL; however, it used the prescribed LUC

emissions combined with a diagnostic of the model FLn

to update the atmospheric CO2. A bias in this hybrid

method cannot be excluded at this stage, underesti-

mation of the diagnosed LUC emissions in the model,

subsequently replaced by higher prescribed LUC would

lead to greater CO2 growth rate. MRI-ESM1 is at the

lower end of the simulated historical CO2. This model

has a lower-than-observed ocean CO2 flux, combined

with a land CO2 flux at the lower end of the observation

based range of FLn (Table 2). Having weak land and

ocean carbon sinks should lead to a larger-than-

observed atmospheric CO2, opposite of whatMRI-ESM1

simulates here. Hence, the very large underestimation of

the atmospheric CO2 remains unexplained. From a car-

bon budget point of view (sum of carbon stored in

atmosphere, land, and ocean; estimated in Table 2), it

seems that MRI-ESM1 has much lower anthropogenic

emissions than BCC-CSM-1 and INM-CM4, the other

two models that externally prescribed the land use

change CO2 emissions.

4. Twenty-first-century atmospheric CO2 and
global temperature change

When forced by CO2 emissions, the 11 ESMs simulate

a CO2 concentration trajectory that does not necessarily

follow the default CO2 concentration pathway, as pro-

vided for CMIP5 by MAGICC6 (Fig. 2a). This is ex-

pected since the response of the carbon cycle in CMIP5

ESMs to changes in CO2 and climate need not be same

as the one simulated by MAGICC6 in its CMIP5 setting

(median CMIP3 AOGCMs for its climate response and

Bern-CC for its carbon cycle response) (Meinshausen

et al. 2011c). Figure 2a shows the twenty-first-century

time evolution of atmospheric CO2 for the 11 ESMs that

performed the E-driven RCP8.5 simulations. By 2100,

five CMIP5 ESMs (BCC-CSM-1, INM-CM4.0, IPSL-

CM5A-LR, MPI-ESM-LR, and NorESM1-ME) simu-

late CO2 concentrations relatively close (within 5% of

the change relative to preindustrial) to the default RCP

concentrations that reach 941 ppm by 2100. Five models

(CanESM2, CESM1-BGC, GFDL-ESM2G, HadGEM2-

ES, MIROC-ESM) simulate much higher CO2 than the

default RCP8.5 CO2 concentrations by 2100 and only

one—MRI-ESM1—simulates a much lower atmo-

spheric CO2 (Table 3). By 2100, the multimodel average

CO2 concentration is 985 6 97 ppm, with a median of

about 970 ppm. Most of the CMIP5 ESMs simulate

a larger CO2when driven by CO2 emissions than the one

provided for the concentration-driven scenarios.

It is worth noting that by 2005, these five models

already overestimated the CO2 concentration, while

MRI-ESM1 already severely underestimated it, thus

potentially pointing to a persistent bias in these six ESMs.

By 2100, the largest CO2 concentration is obtained

withMIROC-ESM, reaching 1149 ppmv by 2100—more

than 200 ppm higher than the amount of CO2 from

MAGICC6 used in the concentration-driven simula-

tions (see Table 2). MRI-ESM1 simulates a CO2 of

794 ppm by 2100—150ppm lower than the RCP8.5 de-

fault value. This model severely underestimates the

present-dayCO2, with a 2005 concentration of 358 ppm—

more than 20 ppm below the observed value, potentially

indicating an issue in the protocol followed by this

model.

In general there is a clear correlation between the

models’ bias in atmospheric CO2 by 2005 and the

models’ departure from the MAGICC6 CO2 by 2100
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(Fig. 3). However, it should be noted that a model match

with the present-day atmospheric CO2 does not imply

that the model correctly simulates the land and the

ocean carbon uptake. Indeed, INM-CM4.0 perfectly

simulates the atmospheric CO2 concentration by 2005,

but because of a stronger-than-observed ocean sink

combined with a weaker-than-observed land sink. The

same applies to BCC-CSM-1 with, in that case, a weak

ocean sink combined with a strong land sink.

The largerCO2 concentration simulated in the emission-

driven simulations induces an additional radiative forc-

ing (multimodel average is 0.25 6 0.5Wm22). The

simulated warming in the E-driven run is therefore

generally larger than the one simulated in the C-driven

runs of the same ESMs (Fig. 2b). For the C-driven sim-

ulations, the global surface temperature change (2081–

2100 average relative to the 1986–2005 average) ranges

between 2.68 and 4.78C, with a multimodel average of

3.78 6 0.78C (Table 2). The E-driven simulations give

a range of 2.58–5.68C,with amultimodel average of 3.98 6
0.98C—that is, 0.28C larger than for the concentration-driven

simulations. Three models—CanESM2, CESM1-BGC,

andMIROC-ESM—have a strongwarming amplification

in the E-driven simulations, with an additional warming

of 0.58, 0.58 and 0.98C, respectively. HadGEM2-ES and

MRI-ESM1 are the exceptions, both with a warming

0.48C lower in the E-driven run than in the C-driven run.

For MRI-ESM1, this is directly due to the lower simu-

lated atmospheric CO2 in the emission-driven run. We

note that HadGEM2-ES already overestimates present-

day CO2 by about 25 ppm, partly explaining this un-

expected behavior, as the warming shown here is only the

increase above current warming levels (1986–2005), not

since preindustrial times.

To put the CMIP5model range into perspective of the

IPCC AR4 range (Meehl et al. 2007), we used a large

ensemble of MAGICC6 runs to emulate the CO2 and

global temperature response one would get for the

RCP8.5 scenario if generated by the IPCCAR4models’

runs (Figs. 2c and 2d). MAGICC6 was run by a uniform

sampling of the climate sensitivity uncertainty taken

from 19 CMIP3 models and the carbon cycle feedbacks

uncertainty taken from 10 C4MIP models, generating

190 model simulations (Meinshausen et al. 2011a). At

FIG. 2. Range of (a) simulated atmospheric CO2 (ppm) and (b) global surface temperature change (K) from the 11 ESMsE-driven (blue

lines) and C-driven (red lines) simulations. Also shown is the full range of (c) simulated atmospheric CO2 (ppm) and (d) global surface

temperature change (K) simulated by MAGICC6 when emulating all 19 CMIP3 climate models and 10 C4MIP climate–carbon cycle

models. The red-line curve in (a) and (c) is the baseline estimate from MAGICC6.
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first glance, the range of atmospheric CO2 from the

CMIP5 ESMs and from theMAGICC6 emulation of the

CMIP3/C4MIP models is quite similar (Figs. 2a and

2c)—in particular, both sets give a comparable upper

estimate of the atmospheric CO2 concentration, about

1150 ppm by 2100. However, the comparison is not

straightforward for the lower end of the projections. As

already noted above, most ESMs simulate larger CO2

concentrations than the MAGICC baseline estimate

(red line in Figs. 2a and 2c). For 2100, the range of CO2

concentrations is 794–1149 ppm for the 11 CMIP5 ESMs

analyzed here, while the range (90% probability) for the

TABLE 3. Twenty-first-century atmospheric CO2 (2100), global surface warming (2081–99 relative to 1986–2005), cumulative land and

ocean uptake (1850–2100) for the E-driven simulations and global surface warming (2081–99 relative to 1986–2005) for the C-driven

simulations (where atmospheric CO2 reaches 941 ppm by 2100). Also shown are the multimodel mean and range (1s) as well as the same

quantities simulated by MAGICC6 in its reference setting.

E-driven CO2

(ppm)

E-driven

delta T (8C)

E-driven

cumulative

land C uptake

(PgC)

E-driven

cumulative

ocean C uptake

(PgC)

C-driven delta

T (8C)

CanESM2 1048 5.0 161 455 4.5

GFDL-ESM2G 997 2.9 167 550 2.8

HadGEM2-ES 998 4.3 352 543 4.7

IPSL-CM5A-LR 926 4.5 300 555 4.5

MIROC-ESM 1149 5.6 2165 544 4.7

MPI-ESM-LR 969 3.7 231 412 3.6

CESM1-BGC 1142 4.1 2145 541 3.6

NorESM1-M 934 3.8 2173 649 3.4

BCC-CSM-1* 967 3.5 471* 490 3.3

INM-CM4.0* 914 2.5 201 861 2.6

MRI-ESM1* 794 2.9 758 528 3.3

Models average 985 6 97 3.9 6 0.9 91 6 218** 557 6 112 3.7 6 0.7

MAGICC6 941 4.0 204 617 4.0

* FLn estimated as no simulated LUC carbon flux in these ESMs.

** Multimodel average for land carbon is only based on the eight ESMs simulating FL. HadGEM2-ES and GFDL-ESM2G simulations

start in 1860 and 1861, respectively. Note that BCC-CSM-1 simulations end in 2099; the 20992 2098 atmospheric CO2 difference was

used to infer atmospheric CO2 by 2100.

FIG. 3. Relationship between model bias in simulating present-day (2005) atmospheric CO2,

and the difference between 2100 simulated CO2 and baseline estimate from MAGICC6

(941 ppm). Color code for model types is as in Fig. 1. Also shown is the linear regression along

with correlation and regression coefficients.

520 JOURNAL OF CL IMATE VOLUME 27



CMIP3/C4MIP emulation with MAGICC6 is 811–

1170ppm. As discussed above, the lower range of the

CMIP5 ESMs is due to one single model, MRI-ESM1,

which already severely underestimates the present-day

atmospheric CO2 concentration. Not including this model

would mean that the lower end of the MAGICC6 range is

significantly lower than the lower end of theCMIP5ESMs.

The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite

similar (Figs. 2b and 2d). The first set of models displays

a full range of 2.58–5.68C, while the latter set has a 90%

probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated

atmospheric CO2 over the twenty-first century, we

analyzed the carbon budget simulated by the models, as

already done for the historical period. In the E-driven

runs, the ESMs simulate the atmospheric CO2 concen-

tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon

uptakes—these latter two fluxes being interactively

computed by the land and ocean biogeochemical com-

ponents of the ESMs. Figure 4 shows the cumulative

land and ocean carbon uptakes simulated by the CMIP5

ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.

The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and

4b). However, for the ocean, 10 out of the 11 models

have a cumulative oceanic uptake ranging between 412

and 649PgC by 2100, the exception being INM-CM4.0

with an oceanic uptake of 861PgC. As discussed in the

historical section, the reasons for this large simulated

uptake are unknown. The simulated land carbon fluxes

show a much larger range, from a cumulative source of

165PgC to a cumulative sink of 758PgC. Eight models

simulate that the land acts as a carbon sink over the full

period. Land is simulated to be a carbon source by two

models, CESM1-BGC and NorESM1-ME, both sharing

the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux

(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air

to land carbon flux. Color code for model types is as in Fig. 1.
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The large uncertainty in the atmosphere–land CO2

fluxes is partly due to not all models including land

use changes in their calculations of their net land–

atmosphere carbon flux. Indeed, MRI-ESM1 and to

a lesser extent BCC-CSM1 do not include land use

change. Hence, these models only simulate FLn—that is,

the residual land sink term—and not surprisingly they

simulate a larger-than-average land carbon sink. Nev-

ertheless, even excluding the models that do not simu-

late FL, but only FLn, and keeping the remaining eight

models that do account for land use change (and hence,

should simulate comparable net flux) only reduces the

range to 2173 to 352PgC—that is, a 500-PgC range,

about twice as large as the range in ocean carbon uptake

from these eight models (Table 3). This was also found

in an analysis of the carbon cycle feedbacks in the pre-

scribed 1%yr21 CO2 increase in CMIP5 simulations

(Arora et al. 2013), where the simulated range in the

response of the land carbon cycle components was found

to be about 4 times larger than that for the ocean carbon

cycle. As the E-driven simulations are fully coupled, it is

not possible to separately estimate the uncertainty

arising from the carbon–concentration feedback (car-

bon cycle response to CO2) and the uncertainty arising

from the carbon–climate feedback (carbon cycle re-

sponse to climate). However, such separation is done for

the CMIP5 1%yr21 simulations in Arora et al. (2013),

who found that both feedbacks contribute significantly

to the overall land carbon uptake uncertainty. Jones

et al. (2013) analyzed the concentration-driven CMIP5

models and found very similar results; that is, the land

carbon sinks are very uncertain in the CMIP5 models

across all four RCP scenarios, with the intermodel

spread being much larger than the interscenario spread

for land carbon uptake.

The MAGICC6 emulations of the wide range of

CMIP3 and C4MIP model simulations show a similar

response, with a much larger spread for the land carbon

fluxes than for the ocean carbon fluxes, with a 90%

probability range of 446–897PgC for the ocean carbon

sink and 2373 to 657 for the land carbon sink. In the

MAGICC6 simulations, land use change fluxes are al-

ways accounted for, in a consistent manner across all

models, further indicating that the large spread of the

land carbon cycle is due to the representation of the

natural biogeochemical cycle, not the implementation of

the land use perturbation.

Annual fluxes obviously show a similar behavior

(Figs. 4c and 4d), with CMIP5 ESMs simulating the land

being by the end of the twenty-first century either a net

sink of up to 4 PgCyr21 (although of decreasing ampli-

tude for all models) or a net source of 6 PgC yr21 for the

MIROC-ESM model. On the ocean side, all models

simulate a continuous sink across the twenty-first cen-

tury, reaching 4.5–6PgC yr21 by the end of the century.

6. Discussion

CMIP5 earth system models still simulate a large un-

certainty in CO2 projection, with more than 350-ppm

uncertainty of projected CO2 concentrations by 2100 for

the RCP8.5 scenario. This large range is mainly due to

the uncertainty in the land carbon cycle projections,

where models do not even agree on the sign of the

atmosphere–land CO2 flux by the end of the century.

Whether the land would be a source or a sink of carbon

by 2100 under the RCP8.5 is unclear. A similar conclu-

sion was reached in the C4MIP analysis at the time of the

IPCC AR4, with different models and a different emis-

sions scenario (Friedlingstein et al. 2006).

However, here we are able to attribute some of the

large spread to differences in model setup and their

complexity. First, we show that out of the 11 models

considered, 8 include the impact of land cover changes

on simulated atmosphere–land CO2 fluxes, while the

remaining 3 use prescribed LUC emissions as an exter-

nal forcing. This artificially creates a large spread in the

simulated atmosphere–land CO2 flux. Leaving out the

models that prescribe LUC emissions externally, such

that the effect of land use changes is neglected in their

modeled atmosphere–land CO2 flux, the range is re-

duced from [2173 to 758] to [2173 to 352]. Further, two

of the three models that simulate a land source—

CESM1-BGC and NorESM1-ME—share the same land

surface scheme (CLM). As mentioned before, CLM has

a very weak land response to CO2, because of a too-fast

litter and soil carbon turnover time, combined with

a nitrogen cycle that dampens the response to CO2

(Thornton et al. 2009; Zaehle et al. 2010). Hence, carbon

loss from LUC and warming are expected to be larger

than carbon gains because of CO2 fertilization for

CESM1-BGC and NorESM1-ME. MIROC-ESM, the

third model that simulates a land source by 2100, has

a relatively weak land carbon cycle response to CO2, but

a very large land carbon cycle response to climate as

reported before (Hajima et al. 2012; Arora et al. 2013).

Arora et al. (2013) found that in the 1%yr21 increasing

CO2 simulations, MIROC-ESM has the strongest land

carbon–climate feedback among the nine ESMs com-

pared in that study.

It is worth noting that as every ESM simulates its own

climate, the model spread in land carbon response to

climate is also partly due to the model-specific spatial

patterns of changes in key climate drivers such as

temperature and precipitation (Knutti and Sedl�a�cek

2012).
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We analyzed the performance of the CMIP5 ESMs

over the historical period in terms of simulated atmo-

spheric CO2, land, and carbon uptakes (Table 2).

Although this cannot directly be used as a constraint,

there is a clear correlation between CO2 simulated by

2005 and by 2100. The models with a lower-than-

observed present-day CO2 have a lower-than-average

CO2 by 2100, and likewise, the models with higher-than-

observedCO2 by 2005 have highCO2 by 2100, indicating

that present-day observations are key constraints for the

carbon cycle of ESMs. However, the models’ order

within these two groups is not conserved across time. Fur-

thermore, when looking at the present-day carbon budget

as simulated by the ESMs (Table 2), there is no clear

relationship between the realism of the present-day

land or ocean global uptake and the twenty-first-century

projections, meaning that the correlation observed for

CO2 might be accidental (e.g., compensation of errors

between land and ocean sinks). Several model evalua-

tion activities have been initiated over the last couple

of years (e.g., Randerson et al. 2009; Cadule et al. 2010;

Blyth et al. 2011; Anav et al. 2013; Cox et al. 2013),

helping to gain confidence in some aspects of the simu-

lated carbon cycle, but not yet leading to a significant

reduction in uncertainty for the CMIP5 exercise. From

the analysis here, it seems clear that most of the ESMs

were not fully evaluated in terms of their carbon cycle

response before performing and submitting the CMIP5

simulations. This might also be a side effect of the

CMIP5 protocol (Taylor et al. 2012), where the core of

the simulations was with prescribed CO2 concentration,

leaving the carbon cycle as a nonessential element for

climate simulations.

Our analyses suggest that, for the RCP8.5 scenario,

the CMIP5 ESMs produce, on average, a slightly higher

CO2 concentration compared to the default RCP8.5

CO2 concentrations and hence a slightly larger warming.

This is similar to the outcome of the CMIP3 exercise

where the Bern-CC CO2 concentrations were chosen as

a default for most CMIP3 models in the concentration-

driven runs, but the C4MIP intercomparison suggested

that this choice was producing slightly below-average

CO2 concentrations. This is somewhat replicated this

time for CMIP5, given that the carbon cycle of

MAGICC6 was calibrated to BERN-CC in order to pro-

duce theGHGconcentrations of theRCPs (Meinshausen

et al. 2011c). In other words, the default dataset im-

plied again slightly lower CO2 concentrations for the

concentration-driven runs than what CMIP5 ESMs sug-

gest for emission-driven runs.

However, we also find that most of the models that

simulate high-end CO2 in 2100 overestimate the present-

dayCO2 concentration, suggesting that either thesemodels

underestimate the land and/or ocean carbon sinks or

that the emissions used to drive the ESMs are slightly

overestimated, casting some doubts on the added re-

alism of emission-driven simulations when compared to

concentration-driven simulations.

Temperature projected by the 11 ESMs driven byCO2

emissions is on the average higher than when driven by

CO2 concentration (Fig. 5). When compared to the

temperature change simulated by all RCP8.5 C-driven

simulations available (not just the ones from the 11

ESMs used here), we find that the C-driven runs from

the ESMs analyzed here produce a very similar warming

than the full CMIP5 database (Knutti and Sedl�a�cek

2012). When attempting to estimate the projected

warming and uncertainty, from a given emission path-

way, our study suggests that, for the RCP8.5 emission

scenario, the best estimates of warming could be about

0.28C higher than the estimate based solely on CMIP5

concentration-driven simulations. Whether this would

also apply to the other RCP scenarios is unclear. Jones

et al. (2013) found that, for both the RCP6.0 and

RCP8.5, the ESMs derived compatible emissions were,

on the average, lower than the one estimated by the

integrated assessment models, consistent with our esti-

mate that the ESMs simulate larger CO2 when using

these prescribed emissions. However, this was not the

case for the RCP2.6 and RCP4.5, where Jones et al.

(2013) found no significant difference in terms of de-

rived emissions.

Finally, while for the SRES scenarios the concentration-

driven experimental setup was often seen as a compro-

mise (as most models could then, as today, not be driven

by CO2 emissions), the CMIP5 exercise embraced the

philosophyof concentrations-driven runsmore consistently,

starting with representative ‘‘concentration’’ pathways.

FIG. 5. Model estimate of 2100 warming relative to present day

(average, standard deviation, and full range) for the C-driven runs

from theCMIP5models (full database available), for the 11CMIP5

ESMs in C-driven-run mode, for the same 11 models, but in

E-driven-run model, and from the CMIP3/C4MIP emulation using

MAGICC6.
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Thus, as long as the CMIP5 climate projections are

clearly communicated as referring to a specific evolution

of atmospheric CO2 concentrations, non-CO2 concen-

trations, and aerosol abundances, there is no necessity to

apply any adjustments because of more developed in-

sights in regard to concentration–carbon cycle or cli-

mate–carbon cycle feedbacks. There is, however, the

new opportunity arising from these CMIP5 ESM simu-

lations to quantify the ‘‘allowable’’ carbon space—that

is, the cumulative emissions that are in line with one or

the other concentration pathway.
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