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Abstract

Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial
populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the
possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best
modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between
single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to
enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully
considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling
of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens
are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments,
population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is
freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI) recognized MIT license.
Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java
version 1.6 or higher.
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Introduction

Systems and synthetic biology rely on mathematical modeling

and computational simulation to predict the behavior of biological

systems and facilitate the design of novel systems [1]. As it is

unfeasible to test every possible hypothesis experimentally,

modeling and simulation can reduce time consuming lab work,

investigate functional properties and limits and analyze system

robustness [2,3]. So far, much of the modeling in systems and

synthetic biology has focused on intracellular dynamics; describing

how the concentrations of key chemicals, mRNAs and proteins

vary over time within a single cell. These sorts of model are

essential to understand the actions of individual cells. However,

many interesting behaviors occur at the population level e.g.,

bacterial coordination [4], communication [5] and cooperative

growth [6] are often important during infection [7]. To better

understand how these mechanisms work it is necessary to consider

not only the intracellular dynamics, but also the interactions

between individual cells in the population and those between cells

and their shared environments.

A common method to capture how low-level interactions

between cells give rise to population level behaviors is to use agent-

based or individual-based models (AbMs, IbMs). These consider

populations of autonomous agents, each following a set of internal

rules and interacting with each other within a shared virtual

environment. Unlike modeling approaches that consider only a

single level of representation, agent-based models enable an

understanding of the relationship between microscopic rules of the

agents and macroscopic behaviors of the population. A further

benefit of agent-based models is that they are able to incorporate

heterogeneity due to both spatial features of an environment and

differences between individual agents. This is particularly relevant

in biology, where cellular and environmental heterogeneity is

unavoidable due to the intrinsic noise of biochemical processes and

the complexity of natural environments.

A wide variety of agent-based frameworks are currently

available. Each of these provides a different set of features and

make alternative tradeoffs in order to allow for the efficient

simulation of particular types of system. Highly extendable

frameworks such as NetLogo [8] and FLAME [9] provide a bare
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minimum of functions with the intention that a user can easily add

the functionality they require. In principle this helps to simplify

using the framework and broadens the possible applications.

However, in the context of bacterial systems this general approach

is often not well suited. Firstly, standard bacterial traits are often

common to many models (e.g. chemotaxis), however, a user may

not necessarily wish to think about the intricacies of these processes

directly or have the time and desire to implement them from

scratch. Secondly, these frameworks do not consider the realistic

environmental physics necessary for capturing bacterial movement

and the interactions that can take place within complex small-scale

environments. Simulating these features is far removed from many

of the biological questions being asked and by not providing them

as core tested features the use of these tools is hampered. More

specialized approaches have been proposed such as CompuCell3D

[10] and Chaste [11]. While these partially fulfill some of these

shortcomings, e.g., accurately modeling cellular dynamics and

environmental physics, because their attention is instead directed

towards the simulation of dense tissue like systems, the computa-

tional representations used do not allow for the efficient simulation

of bacterial populations that become spare or migrate large

distances over time.

The focus of agent-based approaches for studying bacterial

populations has so far been to develop models that can accurately

replicate known results and to understand how these are affected

by heterogeneity within a bacterial population. One of the first

studies in this area was by Kreft et al. looking at biofilm formation

and growth [12,13]. This work resulted in the development of

BacSim [12], an agent-based model which considered substrate

uptake, metabolism, maintenance, division and growth of individ-

ual cells, and a simple two-dimensional lattice model for substrate

diffusion within the shared environment. Comparisons were made

with an established biomass-based model [14] and it was shown

that the agent-based approach was in good agreement with overall

growth characteristics. This approach has since been extended to

consider a simple three-dimensional environment and model the

effect of various physical and biological factors on biofilm

formation [15–17]. Furthermore, Fozard et al. have used agent-

based models of bio-films to test possible treatments based on

quorum-sensing inhibition [18].

More recently, agent-based models have been employed to

study bacterial chemotaxis. Emonet et al. developed AgentCell [19]

to analyze how stochastic intracellular events affected cellular

motility. An accurate stochastic model of the biochemical reactions

taking place within each cell was used. By coupling the cell models

to environmental properties, such as chemoattractant gradients,

the resulting agent-based model was able to reproduce many of the

features seen in experimental results, both at the single cell and

population levels.

Whilst these models have been successful in replicating

experimental results, they are also of great use in synthetic biology

where the ability to manipulate a population of bacteria opens up

many new opportunities [20,21]. Tamsir et al. [20] illustrated this

by showing that spatially arranged populations of engineered

bacteria could act as logic gates, and when wired together using

chemical signaling were able to compute the solution of a logic

function. By using populations instead of individual cells, errors

due to environmental noise or faulty cells could be managed

effectively. This is common in nature where processes that are

unreliable and error prone for individual cells are transformed to

become highly accurate and resilient by a population working in

unison e.g., joint responses through quorum sensing [4] and the

synchronization of rhythmic processes [22].

A major obstacle when using existing modeling frameworks to

describe other features of bacterial populations is their specificity.

Previous approaches have focused on aspects of behavior most

relevant to the problem being studied e.g., bio-mass production or

the chemotaxis biochemical regulatory network. These specific

descriptions do not permit the necessary customization for

studying variances due to diseased cell states, allow for the

consideration of purely synthetic regulatory networks driving

dynamics, or new types of entity that might play an important role

e.g., outer membrane vesicles. This has resulted in tools that are

inflexible to new requirements, hampering the sharing of

knowledge and reuse of work across communities. Furthermore,

whilst spatial aspects have been partially considered, no existing

framework allows for a full description of complex spatial

structures, including their influence on other features of a model

such as chemical diffusion or bacterial motility. Therefore, any

effects these might have are neglected.

With the aim of meeting these shortcomings we present BSim, a

modeling tool designed to act as a common framework for

building and characterizing agent based models of bacterial

populations. BSim builds on previous work to: (i) save time and

effort by allowing for the reuse of many built-in bacterial traits; (ii)

enable an accurate description of complex micro structures and

environments through user defined meshes; (iii) allow for multiple

levels of detail through coarse graining from individual agents to

continuous fields; (iv) provide realistic bacterial dynamics through

simulated gene regulatory networks in the form of ordinary

differential equations (ODEs); (v) enable its functionality to be

easily customized or extended through the use of object-orientated

programming techniques, and (vi) be easy to learn and use through

a wide range of example simulations. Unlike the general

frameworks of NetLogo [8] and FLAME [9] we support the user

with a suite of targeted core functionality that reduces the time and

effort necessary to create working bacterial simulations and allow

for the inclusion of common mathematical models that describe

the internal dynamics of individual cells. Furthermore, an

underlying particle based representation allows for efficient

simulation of bacterial interactions in complex environments,

alleviating the problems experienced by tools such as Compu-

Cell3D [10].

Design and Implementation

BSim is a highly customizable agent-based modeling tool that

allows for the study of how population level behaviors arise from

the dynamics of individual cells. BSim has been designed with the

principle that, while important biological functions should have

accurate built-in reference implementations, all aspects of a model

should be able to be updated, extended or replaced by user defined

versions. This approach permits the rapid development of

simulations that capture the main characteristics of a system,

while allowing for these to be refined as further experimental data

becomes available.

Models in BSim take the form of Java programs and can be

developed using any standard text editor or software development

suite. To allow for the modeling and simulation of physical

processes in complex spatial environments, data structures such as

octrees have been used to efficiently store multi-level representa-

tions (Figures S1, S2 and Text S1). Additional libraries have also

been used to assist with the creation and rendering of three-

dimensional objects during simulation (Text S1).

BSim began life as part of the BCCS-Bristol team entry into the

2008–10 iGEM competition (Text S1), but has since been

developed to provide a wide array of functionality for modeling

BSim: Bacterial Agent-Based Modeling Tool
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bacterial populations. The main features of a BSim model are

shown in Figure 1 and detailed in what follows. Key features are

illustrated by case-studies highlighting the potential of the

modeling platform.

Results

Spatial Interactions and Processes
Simulations in BSim take place within a three-dimensional fluid

filled environment. The extent of this environment is defined by a

rectangular cuboid and aspects of the fluid such as viscosity and

temperature can be altered to match experimental conditions.

Environmental boundaries can be defined as solid (reflecting),

physically constraining movement, or wrapping (periodic), to allow

for the approximation of a larger space where little heterogeneity is

observed. Wrapping boundaries cause any objects moving through

an edge to be placed at the same relative location on the opposite

side of the environment. It is assumed all objects are small enough

that their momentum within the fluid is negligible [23,24] i.e., the

system has a very small Reynolds number. This is a realistic

assumption to make for bacterial systems and allows the use of

Stokes’ law when calculating the movement of an object

experiencing a force.

The importance of including spatial features in models has

previously been highlighted by Durrett et al. [25] and Tilman et al.

[26] and is clear to see in the work of Tamsir et al. [20], where

several spatially separated populations of engineered bacteria were

used to calculate a logic function. Each population comprised of

bacteria containing the same genetic construct, encoding a basic

logic gate. The specific type of gate varied between populations,

dependent on the overall function that needed to be calculated. To

connect these simple gates together and perform more complex

calculations, bacteria were also designed to sense and emit

different types of chemical which acted as ‘‘chemical wires’’ by

diffusing through the environment and enabling communication

between specific populations.

To illustrate BSim’s virtual environment and spatial processes

such as chemical diffusion, we modeled the experimental results

from [20] in-silico (Text S1, Figure S3 and Video S1). To capture

the bacterial dynamics a delayed Boolean rule was implemented in

each agent, representing the logic gate construct present.

Heterogeneity between bacteria was incorporated through varying

delays that represented (i) the time to reach a fully active state

when activated (related to protein production), and (ii) the time to

become inactive when an active state becomes repressed (related

to protein degradation). Realistic delays were chosen for the

majority of simulations (Text S1). However, we also assessed the

robustness of the system by varying the mean delay times to

include non-physical values. In all cases, simulations generated the

correct steady-state output (Figures 2, S4, S5, S6, S7 and Text S1),

illustrating that simple bacterium dynamics, population averaging

and spatial separation are viable approaches for improving system

robustness.

Gene Regulatory Networks Driving Agent Dynamics
Much research effort in systems and synthetic biology has been

devoted to understanding and designing gene regulatory networks

(GRNs). Due to their widespread use and ability to drive bacterial

dynamics we allow for GRNs to be modeled within BSim as

systems of coupled ordinary differential equations (ODEs). GRNs

can be incorporated in any existing agent and can interact with the

local environment through the excretion or sensing of chemicals,

or direct contact with other agents or objects.

To simulate the dynamics of these ODE systems each agent is

provided with an independent built-in fourth order Runge-Kutta

solver, allowing for accurate and robust integration over the time

scales present in the majority of GRNs. Solvers associated with

different agents can run independently, enabling efficient separa-

tion of time scales where required i.e., solvers can have different

time steps reducing the need for bacteria exhibiting slow dynamics

(large time step) to be updated at the same frequency as those

experiencing fast dynamics (short time step). Furthermore, the

open manner in which ODEs are represented enables the future

inclusion of more advanced solver types e.g., to simulate noisy

processes possibly represented by stochastic ODEs or rule based

dynamics [27].

Most existing work related to GRNs has focused on intracellular

dynamics. Much less is known about how such networks might

Figure 1. Schematic of a BSim model. BSim models consist of two main levels: 1. the individual agent (top) and 2. the shared environment
(bottom). Individual agents are used to model any autonomous entity, such as a bacterium, outer membrane vesicle, etc, and contain an internal
state vector which can change over time. BSim provides support for ordinary differential equations or user defined rules when specifying agent
dynamics. Agents can sense various environmental factors as inputs and generate outputs within the local environment. The environment provides a
shared medium in which agents can move, communicate (using chemical signaling), interact (through physical contact) with other agents or objects,
and can be detailed and heterogeneous.
doi:10.1371/journal.pone.0042790.g001
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interact and behave across a population. BSim opens up the

opportunity to investigate this question, helping to understand the

effects spatial positioning, the diffusion of intracellular signals, and

bacterial heterogeneity might have. To illustrate how these

capabilities can be used in BSim, the study of Garcia-Ojalvo et

al. [28] was used as a case study. Specifically, a population of

bacteria containing an oscillatory GRN was considered. This

GRN was a coupled version of the repressilator first introduced in

[29], and contains three genes in an inhibitory feedback loop with

each gene repressing the next in sequence (Figure 3A). To allow

for coupling between cells, autoinducer (AI) signaling molecules

are generated by the GRN and influence its dynamics. Unlike

other gene products, the AI is allowed to diffuse out of the cell and

into the wider environment. A high-dimensional system of

nonlinear ODEs was used to model this system without

considering the possible effects of spatial heterogeneity [28]. This

analysis showed that communication via the AI enabled a diverse

population to become robustly self-synchronized.

By using a diffusive AI as a form of communication, it is likely

spatial features will affect the GRN dynamics exhibited by any

physical implementation of this system. To explore this possibility

a BSim model was developed where bacterial agents were

equipped with the GRN previously described (Text S1). We

assessed how the cell wall diffusion constant and chemical

diffusivity of the AI affected synchronization of the population.

Simulation results showed that for a chemical field diffusivity of

100 mm2=sec and a cell wall diffusion constant of 1 mm2=sec
(physically realistic parameters), clear population level synchroni-

zation was obtained (Figure 3 and Video S2). Furthermore,

moving from low to high cell wall diffusion constants saw a phase

transition as a value of 0.9 mm2=sec was exceeded (Figure 3E), a

feature also seen previously in [28]. To assess the robustness of this

phase transition to other model parameters, several supplementary

simulations were run varying the diffusivity of the chemical field

and mRNA decay rates. In all cases, a similar transition was

present.

One difference between the previous model and BSim was the

overall maximum synchronization achieved. We found a reduced

fraction of synchronized bacteria, with an order parameter

r&0:72 (Figure 3E) as opposed to r&0:8 previously reported in

[28]. This difference is likely attributable to the spatial aspects of

our simulations which add varying delays when communicating

via a diffusive medium to randomly moving bacteria. While

further investigation is required to verify this conjecture, it does

highlight a possible constraint neglected by previous approaches

and suggest possible limitations in the size and shape of a

population that can exhibit high synchrony. This is supported by

recent experimental results that show the emergence of traveling

waves for populations of coupled genetic oscillators in microfludic

chambers with particular geometries [30].

Complex Micro-Scale Structures
In many situations bacteria encounter and interact with

complex structures at scales of a similar order of magnitude. For

example, bacteria growing on heart valves are surrounded by

collagenous fibrils 1–3 mm across [31]. Unlike many existing

models that ignore the effect these interactions might have, BSim

allows for micro-scale structures to be represented as generic

meshes. These can be generated by code or imported from files

stored in the popular and standardized Wavefront OBJ format.

Meshes define an arbitrarily shaped region in space and can be

used in many different ways. Collision detection can be used to

define intricate boundary geometries and spatially varying

environmental or behavioral parameters. Meshes can be used at

varying levels of detail to minimize computation during simula-

tion.

In synthetic biology, modeling complex structures at the micro-

scale level is becoming more important as techniques such as

microfluidics gain popularity. Although most existing microfluidic

chambers have fairly simple geometries, it has been shown that

alternative designs can lead to differing population level dynamics.

For example, Danino et al. in [30] showed the existence of both

population level synchronization and traveling wave dynamics

depending on chamber size and design. Furthermore, systems

biology faces the need to model intricate structures such as spatial

features of the natural environment in which a bacterial

population lives.

Figure 2. Computing with synthetic bacterial populations. Recreation of experimental results from [20] that implement the EQUAL boolean
function. Each population implements a logic gate with activation of bacteria shown by color intensity and different colors being used for each
population. The environment consists of a flat surface 150|150|12 microns in size with each population containing 20000 bacteria. Inputs are in
the form of constant chemical fields throughout the environment, specifically arabinose (Ara) and anhydrotetracycline (aTc). A) Truth table of the
EQUAL function. B) Circuit used to implement the EQUAL function. C) Left to right, simulation output when both Ara and aTc are not present. The
logic gates implemented by each population and the chemical fields used to connect these together have been highlighted. Notice the several
stages of activation and inactivation that occur before the system reaches the correct steady-state value, shown by activation of the rightmost
population. Also see Video S1.
doi:10.1371/journal.pone.0042790.g002

BSim: Bacterial Agent-Based Modeling Tool

PLOS ONE | www.plosone.org 4 August 2012 | Volume 7 | Issue 8 | e42790



To show how micro-scale structures can be used within BSim,

we constructed several example meshes to constrain motility and

influence the behavior of bacterial agents (Figure 4, Text S1 and

Video S3). The first of these represents a fibrous material that

could be used to approximate an environment that may arise in

areas such as wound healing (Figures 4A and 4B). Simulations of

random bacterial movement both unconstrained and when

interacting with this mesh showed significant difference in the

overall motility achieved. Finally, a simpler structure in the form of

a torus was chosen to show how meshes can be used to modify

behavioral characteristics (Figure 4C), helpful for defining spatially

varying inputs e.g., light sources.

While here we have manually generated the mesh structures, we

envisage that more realistic approximations can be produced

directly from real data. For example, by using micrographs and

image recognition software it would be possible to automatically

extract structural details of an experiment and build a realistic

mesh to represent these features.

Modeling Effects at Multiple Levels
BSim has been designed to allow users to take multiple levels of

detail and scale into account throughout modeling and simulation.

To illustrate this feature we consider the process of chemical

diffusion. For very low concentrations of chemicals, agents can be

used to represent the individual chemical molecules that diffuse

randomly due to Brownian forces. Modeling at this level enables

the stochastic nature of the process to be fully captured, but

requires large computational resources if the number of molecules

grows. For larger numbers of molecules a continuous approxima-

tion can be made, modeling diffusion at the level of concentration.

Less intensive numerical methods, such as finite-difference, can

then be used to capture the more deterministic nature of the

process, removing the need to simulate individual agents. Both of

these schemes are available in BSim and the ability to tune the

level of representation of specific aspects of a model is a powerful

way of ensuring essential characteristics of a process are captured,

while reducing the computational burden during simulation. Due

to possible interdependencies between various types of agent and

physical process, the choice of level of representation for various

aspects of a model must be defined by the user when specifying a

simulation and remains fixed during execution.

Another important area where multiple levels naturally arise is

when the dynamics of individual agents lead to emergent features

of the population as a whole. This is clearly shown in studies of

induction of the E.coli lac operon [32,33]. Addition of low

Figure 3. Synchronized genetic oscillators. Results from studying the synchronization of a population of 200 bacteria, each containing a
repressilator GRN model [28]. A) Repressilator GRN with external coupling. B–D) Simulations performed with a chemical field diffusivity of
100 mm2=sec and a cell wall diffusion constant of 1 mm2=sec. B) Left to right, simulation output for times 0, 5.5T and 40T , where T&13:76 mins is
the GRN period of oscillation. The color of the bacteria corresponds to their internal level of lacI mRNA, yellow for low and red for high. External
autoinducer level is represented by the intensity of the blue field surrounding the bacteria. Initial mRNA and protein levels for each bacterium were
chosen at random. However, synchronization quickly increases over time. Also see Video S2. C) Phase portraits for 3 pairs of bacteria. For clarity the
first 2.5 hours of data, where the bacteria were extremely asynchronous, are omitted. Over time, each pair becomes more synchronized. D) Amplitude
spectra for all bacteria with colors representing log(amplitude) in arbitrary units (a.u.). The clear peaks correspond to the fundamental frequencies of
the GRN where phase locked synchronization has occurred. E) Phase transition to synchronization as the cell wall diffusion constant is increased.
doi:10.1371/journal.pone.0042790.g003

Figure 4. Describing complex spatial environments with
meshes. A) User generated mesh that could be used to approximate
a fibrous matrix, similar to that found in cotton wool. B) The same mesh
loaded into a BSim environment. C) Torus shaped mesh used to
influence behavioral characteristics of the bacteria. In this case, altering
the output color they emit (blue outside and green inside the mesh).
Also see Video S3.
doi:10.1371/journal.pone.0042790.g004
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concentrations of inducer causes a smooth increase in the level of

lac operon expression when measured at a population level.

However, more detailed analysis reveals that this induction results

not from a uniform increase in lac operon expression in all

members of the population, but from changes in an underlying

bimodal distribution of individual bacterial states, with each

bacterium being classed as either ‘‘induced’’ or ‘‘uninduced’’. The

importance of bistable behavior at the level of individual bacteria,

but an overall smooth population output, makes this real-world

system an ideal candidate for BSim’s agent-based approach. We

developed a BSim model where each bacterium implemented an

ODE model representing the lac operon GRN from [34] (Text S1

and Table S2). Effects of external inducer on the system were

incorporated via a diffusing chemical field, with interaction

between this and each individual bacterium fed as an input to

its internal GRN. Because of the comparatively large time scale of

the process, in the order of hours, an additional factor in the form

of probabilistic bacterial replication was included. Our key results

are summarized in Figure 5.

We investigated two crucial aspects of the lac operon’s behavior

that have been observed experimentally, but are difficult to model

using existing techniques such as ODEs due to the requirement for

multiple levels of description, from individual bacterium to

populations, and the need to include other biological processes

such as cell replication. Specifically, we considered the bimodal

distribution of the bacterial induction states [32], and changes in

the ability of the two bacterial states to coexist resulting from

induction affecting growth rate [33]. As expected, our model

exhibited an increase in the average level of lac operon expression

as inducer concentration increased. In agreement with experi-

mental data [32], the gradual induction observed at the population

level was due to a change in a bimodal distribution of uninduced

and induced individuals, rather than to a gradual and uniform

increase in the expression levels in all individuals (Figure 5A). This

highlights the potential importance of measuring induction at the

microscopic (bacterium) level as opposed to a macroscopic

(population) average.

Finally, we tested the ability of our model to correctly predict

the consequences of competition between the induced and

uninduced sub-populations of bacteria. Gratuitous induction of

the lac operon i.e., induction when there is no lactose available to

support growth, causes induced cells to grow more slowly than

uninduced cells, biasing the bimodal distribution of the population

and leading to a drop in the average lac operon expression [33].

We compared BSim simulations in which induction carried a

growth rate penalty with simulations in which the two populations

had the same growth rate. In agreement with experimental

observations [33], higher inducer concentrations lead to a lower

population average lac operon expression when induction

decreased growth rate (Figure 5B). This was again the result of

an underlying bimodal distribution, but with an increased

proportion of the population in an uninduced state.

Extendible Agents Through a Modular Design
As our understanding of biology continually improves, it is

important to be able to readily incorporate new insights into

existing modeling tools. To meet this requirement, BSim has been

designed so that, where possible, each independent element of a

model is captured within a fully separable module (Table S1).

Modules can be extended to include additional required

Figure 5. Multi-level effects of the lac operon. Results from a model of the lac operon that considers the states of individual cells as well as the
population as a whole. A) Bimodal state distributions including the external inducer concentration and level of lac permease, ½Y �. Since the model
does not explicitly include an indicator, ½Y � was used as a proxy measure. Low and high external inducer concentrations bias the population toward
an uninduced or induced state respectively, and all concentrations see coexistence of states in the form of a bimodal distribution of ½Y �. Dashed line
indicates the overall population induction (average) that would be measured by purely observing at the population level, i.e., not taking into account
the bimodal distribution of individual states. B) Effect of growth rate on coexistence of induced and uninduced states within the population. Line
color indicates external inducer concentration, ½IEX �, (yellow = 30 mM, green = 80 mM, blue = 110 mM,), solid and dashed lines indicate simulations
where induction did and did not inhibit growth respectively. C) Bifurcation diagram showing bistability in the intracellular inducer concentration, ½I �.
Red line illustrates the equilibrium state of ½I � in the deterministic GRN equations for a single cell as a function of external inducer, ½IEX �, computed
via numerical continuation (solid and dashed lines indicate stable and unstable equilibrium respectively); blue line illustrates ensemble average ½I �
concentration in a BSim simulation which incorporates this deterministic GRN and stochastic agent creation and removal in which ½IEX � was slowly
varied (dashed lines indicate population minimum and maximum).
doi:10.1371/journal.pone.0042790.g005
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functionality, or replaced with alternative implementations. This

enables BSim to be easily customized and allows for historic

models to readily make use of improved knowledge, through new

modules, as they become available.

This modular design also extends to the agents that are used to

represent all forms of autonomous entities e.g., bacteria, vesicles,

proteins or even individual molecules. Rather than creating fully

independent definitions for every type of agent, the concept of a

‘particle’ is used to capture the common properties shared by them

all. Particles are assumed to be spherical in shape and have an

associated size, position and orientation. Particles form the most

basic type of agent, with new agents being created by inheriting

these common attributes and extending specific functionality as

necessary. This means that BSim can be extended by including

new types of agent. These may implement features previously

unseen in BSim but, because of a shared underlying particle

representation, these agents can be incorporated and their physical

behavior modeled correctly.

A further benefit of this approach is that families of agents can

be created with increasingly specific characteristics. This allows for

a standard bacterium agent to capture normal control-like

behaviors, while engineered or mutated versions can be produced

by extending and altering the dynamics of this agent appropriately

(Text S1). This not only saves time during the development of new

models, but also helps to increase quality through the reuse of

previously tested functionality.

Availability and Future Directions

BSim is open source software requiring Java version 1.6 or

higher and is available for download from http://bsim-bccs.sf.net

or as supporting material accompanying this paper (Software S1).

Developer documentation and a wide range of example

simulations are available from the website. BSim is distributed

under the Open Source Initiative (OSI) recognized MIT license. It

should be noted that while source code is freely available, access to

the main repository is managed by a team of administrators. This

allows for new submissions to the library are validated before being

incorporated as part of the official BSim distribution. Further-

more, code versioning is performed to allow for changes to be

tracked over time and the efficient rollback of errors that may be

introduced between releases.

To summarize, BSim enables the quick development of models

from built-in bacterial traits or through existing GRN models. A

core set of functionality has been specifically implemented that is

essential to modeling all types of bacterial system. This focused

approach helps to reduce the effort required by users to create a

working bacterial-based simulation and enables the incremental

development of models with increasing levels of detail as additional

core functionality is enabled. Furthermore, BSim allows for full

consideration of spatial factors and opens the opportunity to

examine multi-level phenomenon in-silico where physical single cell

measurements are either difficult or infeasible. This is made

possible by the agent-based architecture underlying the frame-

work, that allows for virtual measurements to be taken at varying

levels of detail.

While great progress has been made understanding the

behavior of individual bacteria in isolation, it is still unclear how

these results might be predictably scaled for larger multicellular

systems. BSim enables the exploration of links between intracel-

lular dynamics and population level features in a framework that

simplifies the modeling of complex biological systems, and

supports the design of synthetic biological circuits.

Supporting Information

Text S1 Further information about the development of
the BSim software and models.

(PDF)

Figure S1 Schematic of an octree spatial representa-
tion. (a) An octree allows for the representation of a three-

dimensional volume with regions of varying resolution and is used

to store the underlying structure over which chemical diffusion in

BSim is calculated. Nodes in the data structure represent regions

of space and children a further subdivision of the same region. (b)

Boundaries are approximated using a recursive subdivision

method. First, the lattice is divided into two regions by a mesh,

represented as a dotted curve. Each square that contains a

segment of the mesh is subdivided into four equal parts. This

process continues recursively until a user specified number of

subdivisions is reached, halting the process.

(TIF)

Figure S2 Scaling characteristics of simulation time to
number of bacterial agents. Each data point represents the

execution time of 10 minutes of simulation time for the

synchronized genetic oscillators model with varying numbers of

bacteria and model complexity. We see a linear growth rate with

gradient approximately 0.03 secs/bacterium.

(TIF)

Figure S3 BSim environmental geometry and popula-
tion placement for the multicellular computing model.
Central positions of each population are shown in the form (x, y,

z).

(TIF)

Figure S4 Results for the EQUAL simulations. (a)

EQUAL truth table. (b) Circuit used to implement EQUAL in

BSim. Each gate is represented as a population of bacteria. F1 and

F2 are diffusive chemical fields used for communication between

bacterial populations. Ara and aTc act as inputs to the circuit. (c)

Circuit simulation results for all possible inputs. Each plot relates

to a particular population from 1–4 (top–bottom) with colors

related to the circuit diagram.

(TIF)

Figure S5 Results for the XOR simulations. (a) XOR

truth table. (b) Circuit used to implement XOR in BSim. Each

gate is represented as a population of bacteria. F1 and F2 are

diffusive chemical fields used for communication between bacterial

populations. Ara and aTc act as inputs to the circuit. (c) Circuit

simulation results for all possible inputs. Each plot relates to a

particular population from 1–4 (top–bottom) with colors related to

the circuit diagram.

(TIF)

Figure S6 Results for the NAND simulations. (a) NAND

truth table. (b) Circuit used to implement NAND in BSim. Each

gate is represented as a population of bacteria. F2 is a diffusive

chemical field used for communication between bacterial

populations. Ara and aTc act as inputs to the circuit. (c) Circuit

simulation results for all possible inputs. Each plot relates to a

particular population from 1–3 (top–bottom) with colors related to

the circuit diagram.

(TIF)

Figure S7 Results for the AND simulations. (a) AND truth

table. (b) Circuit used to implement AND in BSim. Each gate is

represented as a population of bacteria. F2 is a diffusive chemical

field used for communication between bacterial populations. Ara
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and aTc act as inputs to the circuit. (c) Circuit simulation results

for all possible inputs. Each plot relates to a particular population

from 1–3 (top–bottom) with colors related to the circuit diagram.

(TIF)

Table S1 Main classes and interfaces of BSim. These

have been split into the packages in which they are found and

includes a brief description of their purpose.

(PDF)

Table S2 Parameter values for the lac operon simula-
tions.

(PDF)

Video S1 Multicellular computing with chemical wires.
Simulation of four populations of bacteria (20000 bacteria per

population) communicating via chemical signals to calculate the

EQUAL logic function. Inputs take the form of chemicals within

the medium that remain constant throughout the simulation,

specifically, arabinose (Ara) and anhydrotetracycline (aTc).

Communication between populations is via two diffusive chemical

fields (3OC12-HSL in red and C4-HSL in blue), and activation of

individual bacteria is shown by their color with grey being inactive.

For this simulation Ara and aTc are not present with the final

resting state of population 4 being active, shown by the green

color.

(MOV)

Video S2 Synchronized genetic oscillators. Simulation of

200 bacteria swimming randomly in a 10061006100 micron

volume with wrapping boundary conditions. Each bacterium uses

a system of ODEs to model the essential dynamics of the

repressilator gene regulatory network. All bacteria are initialized

with random initial conditions, but quickly become synchronized

due to AHL communication. The color of the bacteria

corresponds to their internal level of lacI mRNA, with yellow

representing a low and red a high level. AHL concentration within

the environment is shown in blue.

(MOV)

Video S3 Modeling complex spatial environments.
Examples of how complex meshes can be used in BSim. Part 1

illustrates a complex fibrous-like mesh acting as a hard surface to

restrict bacterial movement. Part 2 shows a mesh defining a

spatially varying parameter, that could be used to alter the

behavior of any bacteria. In this simulation the internal state of the

bacteria, governed by being inside or outside the torus, is

represented by the green and blue colors respectively.

(MOV)

Software S1 Snapshot of the BSim software from 18th
July 2012. For the latest version see: http://bsim-bccs.sf.net. The

BSim software requires Java version 1.6 or higher.

(ZIP)
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