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Abstract 2 

Landslides present a geomorphological hazard in Alpine regions, threatening life, infrastructure and property.  Here 3 

we present the development of a new regional landslide inventory (RI) for the European Alps.  This database 4 

provides a substantial temporal and spatial picture of landsliding in the Alps; with particular focus on the Swiss and 5 

French Alps.  We use segmented models to evaluate recording bias in the temporal record.  Scaling relationships are 6 

used to calculate landslide area based on a given volume for similar types of landslide; 9.5% (n=752 of a total of 7 

7919) of landslides in the RI have area data recorded; this figure is based on both the source data and areas 8 

calculated from the scaling relationship.  Using a power-law we demonstrate that the log-linear trend, which exists 9 

between landslide area and frequency in inventories, is present for this historical dataset, however, none of the 10 

individual databases, nor a unification of these, contains a complete record.  We conclude by discussing applications 11 

of this dataset for the detection and attribution of climate change to the frequency and magnitude of landslides in 12 

this region however, stress the implications for this based on the completeness of such datasets.   13 
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Highlights: 15 

 We present a newly collated landslide inventory for the European Alps 16 

 We study the volume-area and frequency-magnitude statistics of landslides recorded 17 

 We examine the recording of landslides through time to identify gaps and breaks 18 

 The inventory follows a robust power-law distribution 19 

 We discuss applicability to climate change studies and hazard assessment 20 

1  21 

                                                
Abbreviations 
BRGM  French National Database of the Bureau de Recherches Géologiques et Minières 
EPSG  European Petroleum Survey Group 
GB  Geologische Bundesanstalt 
LSS  Combination of “Slides” and RTL 
QGIS  Quantum Geographic Information System 
RI   Regional Inventory 
RTL  Rotational/Translational Landslide 
RTM  Service de Restauration des terrains en Montagne de l’Isere, Grenoble, France 
WSL  Swiss Flood and Landslide Damage Database of the Swiss Federal Institute for Forest, Snow and Landscape Research 
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1 Introduction 22 

In the European Alps mean annual air temperatures have risen ~2°C during the 20th Century and since the end of the 23 

Little Ice Age (Hæberli and Beniston, 1998) leading to widespread deglaciation and an increase in the frequency and 24 

magnitude of certain natural hazards such as glacial lake outburst floods, flooding, avalanches and landsliding (Katz 25 

and Brown, 1992; Keiler et al., 2010).  While deglaciation in this area can be directly linked with this increase in 26 

temperature (Hæberli, et al., 1999; Reichert et al., 2002), recording of the intensity and frequency of mass 27 

movements in the region has been inconsistent over time, inhibiting our ability to test their relationship to changes 28 

in the climate.  However, rising regional population and the growth of infrastructure in the Alps over past decades 29 

has necessitated a better understanding of the relationship between climate change and landsliding to enable 30 

planners and insurance groups to mitigate and manage landslide risks. 31 

In the European Alps, landslides constitute a natural hazard.  Understanding their distribution is important to the 32 

insurance industry and planners due to the damage they cause to infrastructure, property and life (e.g. Hilker et al., 33 

2009; Mallet et al., 2010).  This provides one of the key drivers for our research and there is considerable interest 34 

from the insurance industry in understanding how landslide risk may change in the European Alps.  While most 35 

research tends to centre on basin scale landsliding, focussing on modelling and understanding the mechanisms and 36 

precursors that lead to landslide initiation, for planners, interests lay with the potential hazards associated with 37 

landslides and for the insurance industry, with the financial implications from damage caused by landsliding 38 

(Jaboyedoff et al., 2003).  This highlights the need for regional-scale approaches to understanding landslide risk.   39 

Understanding landslide risk and hazard is a complex issue for heavily populated regions such as the Alps.  For 40 

example, population density varies seasonally (Guzzetti, 2005) and property values fluctuate, changing the values of 41 

assets (Lee and Jones, 2004).  In addition to this, varying landslide magnitude, velocity and the type of movement 42 

(hence trigger) will also have implications for potential losses (Lee and Jones, 2004) therefore, establishing patterns 43 

between the spatial and temporal distribution of landslides and their triggers can facilitate modelling future risk (e.g. 44 

Crozier and Glade, 2004; Van Beek and Van Asch 2004).  Uncertainty in risk prediction is a fundamental problem with 45 

when dealing with complex and chaotic systems (e.g. Keiler et al., 2010), this can however, be overcome through 46 

obtaining large databases and inventories (e.g. Dai et al, 2002); thus statistically constraining the uncertainty.  47 
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This paper describes the development of a new landslide inventory collated for the Alps based on the compilation of 48 

existing datasets in this region.  The aim of this inventory is to include, where possible, the date of landslide 49 

occurrence, location and an indication of size in order to gain both a regional-scale picture of landsliding across the 50 

Alps and a perspective of the frequency and magnitude of these over time.  This regional-scale inventory (RI) allows 51 

for the interrogation of landslide risk over a wide range of geologies and topographies.  The temporal distribution of 52 

landslide recording will firstly be assessed, with gaps and breaks in the RI being highlighted and discussed.  We then 53 

assess landslide frequency-size distributions, for both the RI and individual databases, testing the hypothesis that the 54 

log-linear relationship between landside size and frequency is present for this dataset and robust over time.  We 55 

posit that these historical inventories can offer time-sensitive insights into how changes in the climate may affect the 56 

frequency and magnitude of landslides.  Finally we discuss the representativeness of historical landslide inventories 57 

in Europe and prospects for future research. 58 

2 Study region 59 

  60 

Figure 1:  A:  Map indicating the study site within the European Alps (grey shaded area), which includes Switzerland and 61 

South-East France.  B:  Showing the area covered by the north-west (NW) and south-west (SW) CRS (after Auer et al., 2007, 62 

personal communication Böhm and Haslinger).   63 

The European Alps (Figure 1) have been chosen for this study as they are amongst the most heavily developed 64 

mountain regions in the world and are affected by a range of natural hazards.  Both these and the regional climate 65 

have been extensively researched (Huggel et al., 2002; Schmocker-Fackel and Naef, 2010; Huggel et al., 2012).  This 66 
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area therefore has high potential for investigating the relationship between changing climate and natural hazards.  67 

Climatically, the Alps have been partitioned in several different ways and at different scales; for example by the 68 

influence of the North Atlantic Oscillation (Bartolini et al., 2009) and by differences in key climate indicators (e.g. 69 

temperature, precipitation, air pressure, etc.).  Auer et al. (2007) distinguish four distinct climatic regions based on 70 

differences in these climatic indicators (Figure 1, insert B).  These  climate regimes can potentially be used by 71 

researchers to study the influence of climate on natural hazards in this region.  In partitioning data by its spatial 72 

extent in this way, it is possible to negate a lack of temporal data by making links between different climate regimes 73 

in space, rather than over time.   74 

3 Landslides 75 

3.1.1 Classification 76 

Classification provides a framework from which comparisons between different types of landslide at different 77 

locations can be made in order to understand common trigger mechanisms and processes involved.  From a risk 78 

perspective, it is important to classify landslides by process and trigger in order to evaluate differing rates of 79 

movement which will affect mitigation and remediation works carried out to lessen potential damage caused.  80 

Precursors and trigger mechanisms vary between location and landslide class, and have been shown to increase the 81 

frequency of landsliding in certain areas due to differences in geology, lithology, topography, and terrain (Dapples et 82 

al., 2002; Soldati et al., 2004; Dai and Lee, 2001); thus making classification across a range of geologies and 83 

topographies paramount for the development of hazard mapping and landslide predictions.   84 

Landslide location and velocity are the most important factors in determining landslide risk; with the two most 85 

commonly used methods of landslide classification taking specifically the latter into consideration.  The first, by 86 

Varnes (1978), is the most widely-used landslide classification and is based on process, morphology, geometry, 87 

movement, rate of displacement and the type of material.  These factors included in this classification allow for 88 

interrogation of the trigger mechanisms and antecedent conditions associated with the different landslide classes; 89 

particularly the inclusion of process, movement and rate of displacement.  The second and more recent classification 90 

builds on the Varnes (1978) classification and additionally considers the size and rate of failure (Cruden and Varnes, 91 

1996; Fell, 1994; Jakob, 2005).  The Cruden and Varnes (1996) classification distinguishes landslides by velocity class, 92 
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while also referring to the effects of mitigation works on slow-moving slides (e.g. Velocity class 1) up to an 93 

expectation for the loss of life (e.g. Velocity class 7).  Both of these methods of classification are thus important for 94 

risk assessment and hazard evaluation.   95 

3.1.2 Landslides and climate 96 

Recent climate change in the  European Alps is manifested in fluctuations in precipitation (Casty et al., 2005) and 97 

increases in temperature (Böhm, 2001; Büntgen et al., 2006) leading to the loss of permafrost (Harris et al., 2003) 98 

and a shift to negative glacier mass balance  (e.g. WGMS, 2013).  It has also been argued that the recent warming 99 

trend has influenced the “operation of all landscape elements” (Keiler et al., 2010, p. 2462) resulting in an increase in 100 

geomorphological hazards.  Alongside this, land use and vegetation change (e.g. Theurillat and Guisan, 2004), 101 

population increase and the addition of infrastructure in the European Alps (Fuchs and Bründl, 2005) has impacted 102 

geomorphological processes, leading to increased slope instability and increased risk from natural hazards such as 103 

landsliding.  In order to assess which areas are affected by this increased risk, it is important to understand the role 104 

that landslides have played in the area over long periods of time, the nature of landslides, trigger mechanisms and 105 

the inclusion of regional climate predictions.   106 

There is a considerable amount of literature on the role of temperature and precipitation change (Buma and Dehn, 107 

1998; Collinson et al., 2000; Soldati et al., 2004), climate and weather variability, seasonality and storminess (Szabó, 108 

2003; Guthrie, et al., 2010) and the effects of climate extremes in driving landslides.  On shorter timescales, heavy 109 

precipitation leads to the initiation of shallow landslides, whilst longer-term trends in precipitation, from weeks to 110 

months, act as precursors to deep-seated landslides (Iverson, 2000; Marques et al., 2008).  On seasonal timescales, 111 

both freeze-thaw action and the transition between wet and dry phases vary, exaggerating mechanical weathering 112 

(Abele, 1997; Chigira, 2002).  Variability and increasing temperature trends have a two-fold effect on slopes and rock 113 

walls in alpine environments; firstly by reducing the tensile and cohesive strength of rock masses resulting in a loss 114 

of stability (Chemanda et al., 2005), and secondly, through permafrost degradation (Gruber et al., 2004; Schär et al., 115 

2004; Harris et al., 2009) increasing the potential for slope failure.  Permafrost is widespread in Alpine mountains 116 

and has been affected by recent warming in the Alps (Hæberli and Beniston, 1998).  The hot summer of 2003 was 117 

characterised by a 3°C rise in temperature in Switzerland, which led to both a warming of the permafrost and an 118 

increase in the depth of thaw (Gruber et al., 2004).  As a result, there was widespread destabilisation of rock walls 119 
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leading to increased rockfall in the region; illustrating how a short-term (seasonal) increase in temperature can have 120 

a large affect in sensitive alpine environments (Gruber et al., 2004).  Despite this wealth of literature discussing these 121 

factors at a large-scale, these studies cannot be up-scaled for regional hazard assessments as there is little research 122 

taking this regional-scale approach to encompass multiple landslide-affecting variables.   123 

3.1.3 Space, time and scale 124 

The precursors for landslides include:  sediment availability, appropriate slope gradient, failure plane and 125 

appropriate antecedent conditions.  The spatial distribution of landslide risk is determined both by the susceptibility 126 

of the slope and the proximity of these areas to subjects of value (such as property or infrastructure).  In addition to 127 

this, antecedent conditions, trigger mechanism and topography of the region have implications for the potential 128 

runout and risk, thus scale is an important factor to consider when modelling landslide risk.  A decision must be 129 

made pertaining to the scale at which these afore-mentioned factors can be realistically modelled, in order that the 130 

outputs can be deemed informative with respect to landslide predictions (e.g. Mercogliano et al., 2010; Hervas et al, 131 

2010).  Another important consideration is the scale at which it is feasible to predict landscape response to transient 132 

triggers, such as climate or weather.  This in turn must be applicable to those industries for which an understanding 133 

of landslide risk is critical.  The quantification of future risk lays in the consideration of these factors as an ensemble, 134 

as well as an understanding of the temporal and spatial patterns of landsliding in a region, in order to identify 135 

susceptible areas and likely triggers (e.g. Grove, 1972).   136 

Landslides are affected by climate over a wide range of timescales, with long-term climate change (i.e. the periods 137 

between the Late glacial and the Holocene, or between the Atlantic and the Subboreal) correlating with higher 138 

frequencies of landslide activity, referred to as landslide clusters (Soldati et al., 2004).  A long-term perspective of the 139 

temporal variability of transient climatic triggers (i.e. changes in temperature and precipitation indices) is required to 140 

test hypotheses made between climate and landsliding (Van Beek and Van Asch, 2004).  As an example, increasing 141 

temperature and a change in its spatial pattern across the European Alps may affect the distribution of landslides 142 

through space, time and magnitude; making understanding the influence of temperature, together with 143 

precipitation, important in determining future risks posed by landslides (e.g. Marques et al., 2008).  To fully 144 

understand and assess the time-scales at which triggers result in landslide initiation, combinations of historical and 145 

modern landslide inventories are essential.   146 
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3.1.4 Landslide inventories in Europe and their accessibility 147 

The European Alps have been extensively studied with many academic publications investigating both individual and 148 

clusters of landslides (e.g. Nieuwenhuijezen et al., 1990; Couture et al., 1997; Bertran, 2003; Giardino et al. 2004; 149 

Casson et al., 2003; Meric et al., 2005; Squarzoni et al., 2005; Deline, 2009).  More recently (in the past 20 years) 150 

landslides have been increasingly documented in European-wide inventories and databases, giving us a picture of 151 

the spatial distribution (Van Den Eeckhaut and Hervas, 2012) while also highlighting regions with high levels of 152 

landslide susceptibility.  The temporal range covered by individual landslide inventories is highly variable.  Historical 153 

inventories look at landsliding over a range of time periods including millennia to centuries (e.g. Soldati et al., 2004), 154 

whereas modern inventories tend to centre on basin-scale clusters occurring over short-periods of time, often 155 

relating to a single trigger event (e.g. Malamud et al., 2004).  Modern inventories are collated in the hours, days or 156 

weeks after the triggering event, while historical inventories are collated over years and decades to offer a 157 

representation of the nature of landsliding in an area over time.  Despite the extensive scientific research on 158 

landslides in the European Alps, data access is limited and the extraction of data from journals, printed and online 159 

media can be time-consuming, exacerbated in by a lack of detailed location data for landslides, often given at the 160 

regional level or from small-scale maps.   161 

3.1.5 Statistics of landslide inventories 162 

Landslides show a form of self-organised criticality whereby there is a commonality in form and process across a 163 

wide range of scales (Bak et al., 1987).  This self-organised criticality presents itself as a log-linear trend between the 164 

frequency of landsliding and landslide area (Hergarten and Neugebauer, 1998); small landslides are represented at 165 

the high-frequency, low-magnitude portion of the distribution and large landslides by the linear, low-frequency tail 166 

(Figure 2).  This relationship is commonly evaluated using modern landslide inventories and can be used to provide 167 

estimates for the potential of landslide occurrence in a given area, allowing assessments of statistical relationships 168 

using modern and historical landslide inventories (e.g. Stark and Hovius, 2001; Malamud et al., 2004).  This 169 

frequency-area relationship appears to be robust and consistent across space and time (Stark and Hovius, 2001; 170 

Guzzetti et al., 2002; Malamud et al., 2004) however, recent work has shown that this is not always the case.  An 171 

example of this comes from the Maily-Say region of the Tien-Shan where, between 1962 and 2007 there was an 172 

increase in the recorded frequency of large landslides, which translated to an upward shift in the tail of the 173 
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distribution (Schögel et al., 2011); this was attributed to the growth of existing landslides or the coalescence of 174 

smaller landslides in the region (Torgoev et al., 2010).  This apparent divergence from the expected distribution 175 

makes it vital to collate and update comprehensive landslide inventories for further investigations. 176 

 177 

Figure 2:  Theoretical landslide frequency distributions based on a three-parameter inverse-gamma distribution over a range 178 

of magnitudes (adapted from Malamud et al., 2004; p. 704). 179 

Whilst landslide processes and mechanisms are understood in terms of individual landslides, recently this knowledge 180 

has been tuned to susceptibility mapping across wider areas and regions in order to better understand landslide risk 181 

(Van Den Eeckhaut et al., 2010; Mallet et al., 2010).  An example of this is the Safeland Project which uses landslide 182 

inventories for a number of specific landslide hotspots as model validation for short-term landslide forecasting 183 

(Callerio et al., 2010; Mercogliano et al., 2010).  Full exploitation of the risk management and assessment capabilities 184 

of landslide inventories requires data appropriate to the application of inventory statistics and susceptibility 185 

mapping.  For wider analysis, date, location, size and the type of landslide must be routinely recorded, while failure 186 

to discriminate between different landslide classes restricts investigations into trigger mechanisms and long-term 187 

trends (Figure 3).  This is easy for modern landslide inventories however, historical inventories cover wider areas and 188 

regions and these indicators are highly variable through space and time.  This wide range of landslide-influencing 189 

factors (which also include topography and geology) need to be organised and recorded in a standardised format to 190 

ensure that all relevant data are included (see Figure 3).    191 
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 192 

Figure 3:  Flow diagram showing the required components for a complete landslide inventory as a tool by which to both 193 

standardise inventories compiled from different sources and for susceptibility, hazard and risk investigations. 194 

4 Material and methods 195 

4.1.1 Landslide Databases and Inventories in Europe 196 

A unified database, the RI, was created in order to address the afore-mentioned issues (section 3.1.5) with landslide 197 

inventories.  It was compiled from 6 existing databases together with academic publications (Table 1) with an aim to  198 

consistently record important information (from Figure 3), maintained in a unified language from the individual 199 

databases.  The identification number (ID) for each landslide was maintained from the original source, and 200 

additionally assigned a new ID for the RI.  The locations of all landslides within the individual databases were 201 

converted from the countries own coordinate reference system to latitude and longitude coordinates (EPSG: 4326) 202 

using a Python script in Linux.  The spatial distribution of the RI is highlighted in Figure 4, with recorded 203 

characteristics shown in Table 2.  Some databases included an information column which was explored, translated 204 

and information extracted, (particularly the size of the landslide) to the appropriate columns within the RI.  In 205 

addition to this a literature search was carried out for academic sources, and Google Earth used as a mapping tool 206 

for this academic portion of the RI; these were exported from Google Earth as Keyhole Markup Language (.kml) files 207 

to Quantum Geographic Information Systems (QGIS) whereby the location was imported into the RI.  208 
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Table 1:  The sources used to create the RI were from online databases, research institutes and academic literature.  Those 209 

used in the RI predominantly covered the Swiss and French Alps.  This table highlights the sources, country of origin, and their 210 

contribution to the RI (% and n). 211 

 
Source Country 

Contribution to 
inventory (%) 

n 

National 
database 
(Online) 

French National Database of the Bureau de Recherches Géologiques et 
Minières (2013a; henceforth BRGM).  

France 48.4 3836 

Geologische Bundesanstalt (2013; henceforth GB). Austria 1.1 85 

Research 
institutes 

Swiss Flood and Landslide Damage Database of the Swiss Federal Institute 
for Forest, Snow and Landscape Research (henceforth WSL; Hilker, N., 
personal communication) 

Switzerland 41.5 3288 

Service de Restauration des terrains en Montagne de l’Isere, Grenoble, 
France (henceforth RTM; Helmstetter, A., personal communication) 

France 1.4 113 

Academic 
sources 

Barcelonnette database (part of the Safeland Project; Mallet, J.-P., 
personal communication) 

France 4.1 324 

Abele (1974, henceforth Abele; Korup, O., personal communication) Europe 3.3 264 

Bertran (2003) France 

0.2 

1 

Casson et al. (2003) France 1 

Couture et al. (1997) France 4 

Deline (2009) France 3 

Meric et al. (2005) France 1 

Nieuwenhuijezen et al. (1990) France 1 

Squarzoni et al. (2005) France 1 

 

   212 

Figure 4:  Locations of landslides recorded in the RI and distinguished by the contributing source (as detailed in Table 1).  The 213 

insert shows the south-east region of France (excluding the BRGM, GB and WSL datasets) to show the locations of the 214 

Literature and Barcelonette datasets.   215 
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Table 2:  The following table shows the attributes recorded within the RI.  Those featured are considered to be key 216 

components for a complete landslide inventory (as detailed in Figure 3) with the addition of complimentary attributes which 217 

were available from the source datasets.   218 

Attribute title used 
in the RI 

Description 

mvmt_cd Code describing the classification of landslide 

lat/lon Latitude and longitude coordinates (EPSG: 4326) 

crs Course Resolution Subregion (Auer et al., 2007) 

ID ID from original source 

ID2 ID relating to the RI 

Country Country 

Day/Month/Year Date of occurrence 

dep_ar Area of deposit as recorded in the databases (m²) 

dep_vol Volume of deposit as recorded in the databases (m³) 

mvmt/mvmt_cd Description of the movement type from source / associated code 

mvmt_2/mvmt2_cd Broad classification of movement type (based on the 9 classifications) / associated code 

ref Reference for the data (academic, online reference, etc.) 

slope Angle of slope calculated in QGIS from 90m SRTM data 

aspect Slope aspect calculated in QGIS from 90m SRTM data 

elevation Elevation calculated in QGIS from 90m SRTM data 

urn_litho1/2/3/4/5 Based on the BRGM geology data 

L_ID/1/2/3/4 Based on Swiss Topo geology data 

geology1/2 
Classification of main geology type (loose sediment / sedimentary / metamorphic / igneous), based on BRGM / 
Swiss Topo geology data 

4.1.2 Categorisation of landslides 219 

Landslides are categorised in the RI into nine different classes (Table 3).  Each individual database had its own 220 

classification system for different types of landslide and in order to distinguish these for analysis within the RI, 221 

unified definitions were created.  These classifications and descriptions are based on a combination of the Varnes 222 

(1978) classification system (see also section 3.1.1), those specified within the contributing databases and are also 223 

based on the information and notes columns from each.  For the purposes of the analysis of large datasets, such as 224 

the RI, a number of authors have discussed how similarity in process is necessary for asserting statistical assumptions 225 

across datasets, i.e. for the application of power-law statistics (Malamud et al., 2004; Larsen et al., 2010); it is for this 226 

reason that unified definitions were required (this will later be discussed in detail in sections 4.1.3 and 4.1.5).    227 
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Table 3:  The following table details the different landslide classes as well as a description for each class; these were based on 228 

the Varnes (1978) classification as well as descriptions drawn from the RI sources.  Finally a name is given describing the 229 

terms used in the RI (mvmt; Table 2), and the number of landslides in each category (n). 230 

ID 
Classification (translated 
from source) 

Description 
Name (material-based 
classification for RI) 

n 

1 Landslide Rotational or translational landslide RTL 5239 

2 Rockfall landslide Falling rocks & blocks / Sliding rock mass 

Rock 

1388 

3 Rockfall / Topple Falling/toppling rocks & blocks 163 

4 Rockslide Sliding rocks & blocks 37 

5 Debris slide 
Moderate to low water content / Some large particles & 
blocks entrained Material slides downslope 

Slides 

14 

6 Mud slide 
Moderate to low water content / Small unconsolidated 
material slides downslope 

535 

7 Debris flow 
High water content & very liquid in movement 
Some large particles & blocks entrained  

Flows 

236 

8 Mud flow 
High water content & very liquid in movement 
Entrained material is fine grained (soil based) 

34 

9 
Complex / Subsidence & 
collapse / Bank erosion / 
Creep 

Combination of 2 or more classifications / Rupture of 
underground cavity / Erosion of banks resulting in slide / 
Slow gravitational creep 

Complex 217 

0 Unknown Unspecified in the literature / database Unknown 56 

 231 

4.1.3 Volume-Area scaling 232 

From the complete RI of 5239 Rotational or Translational Landslides (henceforth RTL; c.f. Table 3) recorded, only 233 

~10% had volume data, and ~4% had area data.  Larsen et al. (2010) show that a log-linear scaling relationship exists 234 

between area and volume for similar mass movements; this relationship was analysed for all landslide classes in the 235 

RI.  For this analysis the classification of landslides (as discussed in section 3.1.1) was very important as only 236 

landslides of similar process are comparable.  The scaling relationship was analysed for all classes of landslide 237 

individually, with an additional investigation which grouped the RTL and Slide classes (henceforth LSS; c.f. Table 3) 238 

being of similar process.  Landslides with both area and volume data were plotted and linear models fitted (Figure 6).  239 

The scaling exponent (γ) and intercept (α) from the linear models were substituted into Equation 1 and applied to 240 

the respective classifications in the remainder of the RI (for further discussion see section 5.1.2; Figure 7).  241 

Equation 1:  Describing the volume-area scaling relationship, from Larsen et al. (2010, p. 247). 242 

       

where     = volume 243 

   = area 244 

α  = intercept  245 
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γ  = scaling exponent 246 

4.1.4 Temporal recording of landslides in the RI 247 

The temporal range of the RI was investigated in order to understand how the frequency of recording has changed 248 

over time.  The cumulative frequency of landslide occurrence, for each database, was calculated at annual resolution 249 

and both linear and segmented models (Muggeo 2003, 2008) were applied to the data to test for breaks in linear 250 

trends.  These distributions were additionally partitioned by landslide classification (c.f. Table 3) to determine 251 

whether the different classes have been consistently recorded through time and between the source datasets.  252 

Breaks in the segmented models are taken to represent periods in time at which there has been a change in the 253 

recording frequency of the different landslide classes.   254 

4.1.5 Power-law distribution 255 

The frequency-area distribution is often used to quantify the completeness of a modern inventory and has been 256 

shown to follow a number of different empirical distributions including double Pareto (Stark and Hovius, 2001) and 257 

an inverse Gamma distribution (Malamud et al., 2004; Figure 2); all exhibit a negative power-law relationship in the 258 

tail of the distribution.  Given the robustness of this empirical distribution and its applicability across a range of 259 

triggers and geologies a series of theoretical three-parameter inverse gamma distributions (Figure 2; Equation 2) 260 

were created across a range of magnitudes (after Malamud et al., 2004) to assess the completeness of the RI (based 261 

on the areas summarised in Table 5.  The frequency density for LSS were then calculated from Equation 3 and 262 

plotted against the theoretical distributions; if we assume that the theoretical distribution is valid for the given 263 

datasets in the RI then we can calculate the total landslide area (Equation 4). 264 

Equation 2:  The three-parameter inverse-gamma distribution for landslide inventories (Malamud et al., 2004, p. 694). 265 

              
 

     
 

 

    
 
   

      
 

    
  

where    = location of maximum probability  266 

       = gamma function of   which controls the power-law decay 267 

    = parameter controlling exponential rollover for low area values 268 

     = landslide area 269 



Page 15 of 33 
 
Equation 3:  From Malamud et al., (2004, p. 703), calculating the frequency density of landslide area for incomplete 270 

inventories. 271 

       
   

   
           

where        = frequency density of landslide area 272 

   

   
  =     being the number of landslides between    and        273 

     = number of landslides in inventory 274 

     = Probability density for landslides of size    275 

Equation 4: Adapted from Malamud et al. (2004) to calculate the total area affected by landslides based on the maximum 276 

magnitude recorded in an incomplete inventory. 277 

      
 

   
         

where       = total area affected by landslides 278 

     = maximum landslide magnitude 279 

5 Results 280 

5.1.1 The Regional Inventory 281 

The databases collated for this inventory include, where possible, all of the elements specified in Figure 3.  The RI 282 

contains a total of 7919 landslides, of which 56 remain unclassified, 5239 are RTL, 1588 are rockfalls, rock slides and 283 

rock topples, 549 are debris- or mud-slides, 270 are classified as debris or mud flows, and 217 are complex landslides 284 

(see Table 3 for details).  For area and volume data the main addition to the RI came predominantly through 285 

extracting data from the information sections of the source datasets; leading to the addition of 525 area/volume 286 

estimates for the WSL database, 15 from the GB (through the available online literature), 10 for the Barcelonnette 287 

database, 10 were extracted from the academic publications, while 265 were digitised from Abele (1974). 288 
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 289 

Figure 5:  Flow diagram showing the completeness of the required fields within the RI (based on Figure 3). 290 

5.1.2 Volume-area scaling 291 

The relationship between area and volume was investigated for all classes of landslide in the RI; this was carried out 292 

to define the scaling exponents (after Larsen et al. 2010) to calculate area for the landslides in the RI which only had 293 

a given volume.  The separate landslide classes were analysed individually as they represent different types of 294 

movement with potentially different scaling relationships.  Due to the low number of recorded values for Rock, Slide, 295 

Flow and Complex failures (Figure 6), the exponents from the fitted linear models are inappropriate for application 296 

to the remainder of the database, conversely, there were 83 RTL with both area and volume data.  The analysis of 297 

RTL showed an expected strong positive correlation between area and volume with R2=0.922, γ=1.386±0.045 and 298 

log10(α)=-0.985±0.248 (Figure 6).  A total of 3 Slides with area and volume data were considered in addition to RTL  299 

(LSS) as these classes represent similar physical mechanisms and so, constitute a sensible comparison; with R2=0.923, 300 

γ=1.378±0.043 and log10(α)=-0.941±0.239 (see Table 4 and Figure 6). 301 
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 302 

Figure 6:  Showing the log-linear relationship between area and volume which exists for RTL and LSS (R² = 0.92 for both).  The 303 

scaling exponents (γ and α) are given in Table 4.  Also shown are Rock, Slides, Flows and Complex movements for which both 304 

area and volume data were available; due to the limited number of points in these classes, no linear model was fitted to 305 

these. 306 

Table 4:  This shows the estimates of γ and log10(α) (± the standard error for each) attained from each source for RTL and LSS.  307 

The R² statistic for the fit of the linear models and the number of landslides used (n) are also shown.  These are displayed 308 

along with the Larsen et al. (2010) results of the scaling exponents from investigations of combined datasets; see Larsen et 309 

al., 2010, supplementary information for full details. 310 

 Source γ log10(α) R² n 

R
I 

Abele (RTL) 1.359±0.100 -0.776±0.625 0.80 50 

WSL (RTL) 1.233±0.116 -0.394±0.506 0.78 34 

All (RTL) 1.386±0.045 -0.985±0.248 0.92 84 

All  (LSS) 1.378±0.043 -0.941±0.239 0.92 87 

La
rs

en
 e

t 
a

l. 

(2
0

1
0

) 

Global landslides (all) 1.332±0.005 -0.836±0.015 0.95 4231 

Soil landslides 1.09 to 1.40±0.02 -1.48 to -0.37±0.06 0.81 to 0.95 11 to 956 

Mixed soil & bedrock inventories 1.36±0.03 to 1.450 -1.131 to -0.59±0.03 0.88 to 0.98 201 to 677 

Bedrock landslides 1.34±0.02 to 1.92±0.48 -4.09±3.24 to -0.49±0.08 0.58 to 0.98 11 to 140 

Bedrock landslides (Alps & Apennines) 1.60±0.07 -2.36±0.45 0.82 87 

The values attained for RTL and LSS are comparable to the range of values obtained by Larsen et al. (2010; Table 4 311 

and Figure 7).  As the RTL in the RI are undifferentiated (in terms of the material transported) it follows that the 312 

linear model obtained in this study would fall within the bounds of both mixed and soil inventories reported by 313 

Larsen et al. (2010).  The RI linear model is closest to the lower bound of the mixed inventories, suggesting that soil 314 

RTL may be the dominant type for which area and volume data are more frequently recorded in the RI.  315 
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  316 

Figure 7:  The power-law statistics (see section 4.1.5) require area data for a given landslide and in order to achieve this for 317 

the RI, the scaling relationship between area and volume was investigated for LSS with both area and volume data.  This 318 

figure shows the relationship (solid line), with the points representing both calculated and given area and volume data within 319 

the RI; more than doubling the number of areas available.  The scaling relationship, shown here, is compared to data derived 320 

from Larsen et al. (2010) for global, soil and mixed inventories; this shows that the estimations of scaling exponents derived 321 

for the RI are reasonable in relation to other studies.  The light grey shading highlights the range of “soil”, the darker grey 322 

highlights the range of “mixed”, with the darkest grey showing the overlap between the two (after Larsen et al., 2010). 323 

Table 5:  The number of LSS (n) given in each source dataset and the associated range of areas (m²) for each; both before (pre 324 

AV scaling) and after (post AV scaling) the application of the scaling relationship. 325 

 Pre AV scaling Post AV scaling  

Source 
Given 
areas (n) 

Calculated 
areas (n) 

Min area 
(m²) 

Max area 
(m²) 

Min area 
(m²) 

Max area 
(m²) 

Temporal 
range 

Abele 132 16 55,000 50,000,000 55,000 50,000,000 - 

Barcelonette 0 5 - - 20,502.24 493,301.99 1898 to 1989 

BRGM 0 70 - - 2.91 493301.99 1948 to 2002 

Literature 2 0 500,000 1,100,000 500,000 1,100,000 - 

GB 0 9 - - 500.18 2381477.72 1804 to 2010 

WSL 74 380 100 1,000,000 7.96 1,000,000 1972 to 2010 

Total 208 480 
 

  
 

 

 326 

5.1.3 Temporal range and landslide recording 327 

The temporal resolution of the RI as a whole is highly variable, with some of the oldest landslides being dated to 328 

1248 A.D. (in the BRGM and RTM databases) and 1451 A.D. (Barcelonnette).  Despite this long record, the frequency 329 

of recording prior to the 1970s is relatively low, with a sharp increase at this time.  For example in the BRGM 330 

database there were 589 landslides recorded between 1248 and 1969, and 2511 for the period 1970 to 2010 (Figure 331 
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8).  Segmented linear models fitted to cumulative landslide frequency data for the BRGM and Barcelonette datasets 332 

show how recording frequency has not increased linearly through time (Figure 8).  Conversely, the RTL and complex 333 

classes in the relatively short WSL dataset (from 1972) best fit a simple linear model, suggesting this database has 334 

been consistently recorded over time (Figure 8; see also Table 6).   335 

Table 6:  Results from the segmented models highlighting the timing of the model breaks; shown by source dataset, for each 336 

classification of landslide.  Highlighted breaks are those indicated by dashed lines in Figure 8.  RTL exc.* gives the output of 337 

the segmented models in which anomalously high frequency landslide years were excluded (in the case of the BRGM these 338 

were 1990, 1994 and 2000, and for the WSL these were 1999, 2002 and 2005; see Figure 8). 339 

Name (cf. Table 3) BRGM breaks 
Barcelonnette 
breaks 

WSL breaks 

RTL 1772 1929 1971 1988 1937 1972 1999 

RTL exc.* 1922 1972 - 1993 

Rock 1782 1922 1973 1986 1849 - 

Slide 1938 1981 - - 

Flow - 1828 1982 1988 2004 

Complex 1898 1972 1989 - 1995 

In all cases the segmented models provide a better fit than the linear models as changes in recording frequency are 340 

clearly detected (Table 6 and Figure 8).  A number of years with anomalously high frequencies of landsliding occur in 341 

the latter portion of the record in the BRGM (1990, 1994, and 2000) and WSL datasets (1999, 2002 and 2005); these 342 

were removed to test their influence on the segmented models.  Following the removal, the BRGM dataset showed 343 

an earlier linearity and consistency in recording, from 1972 onwards as opposed to 1988, for RTL.  In the case of the 344 

WSL dataset, although the removal of these high frequency years resulted in an earlier break year of 1993, the linear 345 

model provides a good fit to the data suggesting consistent landslide recording from the outset (Table 6).  The 346 

changes observed in these years require further analysis to determine the cause of such a sharp increase in the 347 

numbers of observed landslides.  Considering the landslide classes individually, there is a disparity in the recording 348 

both within and across the respective source datasets; with differences in the frequency of recording between the 349 

different classes of landslide within each dataset.  In the case of the BRGM dataset, landslide recording was low prior 350 

to the 1940/50’s and this is consistent across all classes, with the exception of complex which did not see an increase 351 

until 1989.  Slide and complex classes are not well documented in this dataset however, this is possibly due to 352 

discrepancies between terminology used at different times.  For the Barcelonette dataset flows are the most 353 

commonly recorded class which is evident particularly when compared with the number of RTL and rock classes in 354 

this dataset (Figure 8).  Rock landslides in this dataset show a linearity in recording from 1849, which is much lower 355 
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than the other classes in this dataset; being 1972 for RTL and 1982 for flows.  The WSL is maintained for the purpose 356 

of insurance and could be biased towards certain landslide classes which are more damaging, fast-flowing or less 357 

easy to predict or mitigate; these may naturally be more prevalent in this type of database.  For this dataset, RTL are 358 

the most common class, with complex and flows making a small proportion of the data, only being recorded from 359 

1980 and 1978 respectively.  It is clear from this that the different classes are not being recorded simultaneously 360 

within the datasets, and this is potentially an issue for analyses attempting to understand changes in these over 361 

time.   362 

 363 

Figure 8:  Temporal distribution of the three main contributors to the RI at annual resolution.  (Top) Histograms of each 364 

dataset, for all landslide classes.  (Middle & bottom) Cumulative distributions of different landslide classes; each fitted with a 365 

linear segmented model (Muggeo 2003, 2008) to highlight breaks in data recording.  All show the timing of the last break for 366 

each landslide class (given in Table 6; dashed black line).  The segmented model for the BRGM and WSL landslide classes were 367 

recalculated, omitting anomalous years (as per discussion in this section), the last break from these are also included (RTL 368 

exc.*; grey lines).   369 
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5.1.4 Power-law distribution 370 

The area-frequency distributions were created following the volume-area scaling using data set out in Table 5.  RTL 371 

and slides (LSS) were combined as they represent similar physical mechanisms; Malamud et al. (2004) noted that 372 

differences in process associated with different landslide classes affect the area-frequency statistics, for example, 373 

they have shown the distribution of rockfalls has a simple log-linear trend without an exponential rollover, as is 374 

observed for RTL distributions.  The analysis shows that the data collated for the RI fit a range of theoretical 375 

magnitudes from 2 to 7 (Figure 9), potentially due to the use of a number of different datasets in the compilation.  376 

Analysis of the main contributors to this distribution (Figure 10) show that the Abele dataset, which includes the 377 

largest LSS recorded in the database, is causing the upwards shift in the tail from around 100 km2.  The WSL dataset 378 

only crosses two magnitudes (from 2 through to 4) and best fits the log-linear tail of the theoretical relationship, 379 

although the slope of the line is less than that of the theoretical distribution (Figure 10).  All datasets exhibit an 380 

exponential-type rollover between 10-4.5 and 10-4 km2, which is lower than that of the theoretical distribution, 381 

occurring at ~10-3 km2 (Figure 9 and Figure 10).  The distributions for the RI, BRGM and WSL, while exhibiting an 382 

exponential rollover and a log-linear tail, are underrepresented by medium-sized LSS (between 10-4 and 10-2 km2).  383 

Conversely, the Abele dataset is centred on recording large landslides in the Alps and expectedly underrepresents 384 

small- to medium-sized LSS. 385 

 386 

Figure 9:  Showing the theoretical three-parameter inverse-gamma distribution across a range of magnitudes (Equation 2) 387 

with calculated LSS frequency density (n = 688; Equation 3).     388 
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 389 

Figure 10:  Three-parameter inverse-gamma distributions for calculated LSS frequency densities for the Abele (n=148), BRGM 390 

(n=70) and WSL (n=454) datasets. 391 

Table 7:  Table showing the total LSS area recorded in the RI for each of the individual sources.  Maximum magnitude was 392 

used to estimate the total area affected by LSS (based on Equation 4) as the area-frequency distribution is shown to be robust 393 

for the RI and therefore LSS area is unlikely to be over-recorded.  The percentage of data estimated as missing is calculated 394 

from the discrepancy between recorded and estimated areas.   395 

 Source 
Total area recorded 
in RI (km

2
) 

Minimum 
magnitude 

Maximum 
magnitude (ML) 

Mean 
magnitude 

Total estimated area 
(km

2
); Equation 4 

Data missed 
from RI (%)  

A
ll 

ye
ar

s 
&

 

u
n

d
at

ed
 

RI (all) 480.95 2.26 6.74 4.34 16948.18 97.16 

Abele 461.60 2.87 6.74 5.36 16948.18 97.28 

BRGM 1.75 1.33 4.52 2.72 102.00 98.29 

WSL 9.57 2.21 4.41 3.42 79.28 87.93 

P
o

st
 

1
9

7
2

 RI (all) 15.11 2.25 4.56 3.56 112.50 86.57 

BRGM 1.42 1.27 4.56 2.45 112.50 98.74 

Only considering data in the complete portion of the RI (i.e. post 1972 for LSS) improves the consistency of the RI data across 396 

the magnitudes compared with all RI data (Figure 10 and Table 7).  The Abele dataset is automatically excluded as this portion 397 

of the RI is part of the undated ~15% (Figure 5), while the WSL dataset is not affected as this it was recorded from 1972.  The 398 

analysis of this portion of the RI therefore consists of mainly the WSL and BRGM datasets.  Including only dated LSS results in 399 

an increase in estimates of completeness for the RI; partly influenced by the reduction of the estimate of magnitude (Table 7).  400 

The low magnitude range shown for the post-1972 RI (Table 7 401 

Table 7) implies that this portion of time fits most consistently with the theoretical distribution however, while this 402 

portion of the RI more closely fits the theoretical distribution, there is an under-recording of LSS in the range 10-4 to 403 



Page 23 of 33 
 
10-1 km2 (Figure 11).  Along with the WSL data, the post-1972 RI data show the lowest ranges in magnitude while 404 

there is little change between the two estimates of magnitude for the BRGM (Table 7). 405 

 406 

Figure 11:  Showing the area frequency distribution for the post-1972 RI, BRGM and WSL datasets (for LSS).  We estimate for 407 

LSS in the RI that between 86% (post-1972) and 97% (for all dates) of the area data are missing (Table 7). 408 

6 Discussion      409 

6.1.1 The Regional Inventory 410 

We compiled an inventory (RI) of 7919 landslides in the European Alps; encompassing a range of landslide classes.  411 

Several of the databases used omitted a large proportion of important landslide elements such as magnitude, 412 

velocity and timing of failure, which are commonly recorded in modern databases (Sorriso-Valvo, 2002).  We 413 

included these metrics where possible however, recording of such data is inconsistent.  For example the BRGM 414 

include a category for landslide volume (m³), yet only 7.5% of 3836 (a total of 289) landslides downloaded for the RI 415 

included volume data.  Despite these discrepancies, the post-1972 portion of the RI follows the theoretical frequency 416 

distribution (Figure 11) and is arguably representative of the region. 417 

There is little consistency in recording different types of landslide across the RI through time (Figure 8).  If we assume 418 

that a linear fit to the cumulative frequency of different landslide classes over time means that there is uniformity in 419 

recording, then we might expect to see the different datasets recording similar proportions of each class at similar 420 

times.  This would result in consistent breaks across all landslide classes in the segmented models (Table 6 and Figure 421 
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8) however, this does not happen across all databases.  Reasons for this may include that over the long temporal 422 

record of the RI, definitions have changed or there have been changes in how landslides are recorded.  This premise 423 

cannot be fully tested at this stage as only the relatively short WSL dataset allows for this further interpretation of 424 

landslide classes (mvmt2/mvmt2_cd; Table 2) due to there being additional notes which include descriptions of the 425 

event.  To align the RI with the classes defined in Table 3, a number of the landslides in the WSL were re-defined 426 

however, from this, a recording bias due to a change in definitions was not apparent over time.   427 

A self-similar scaling relationship exists between landslide area and frequency, which manifests a log-linear trend in 428 

the tail of the power-law distribution; we have demonstrated that this relationship is present for RTL in the RI 429 

dataset (Figure 9) however, contrasting approaches to database collation result in a bimodal frequency distribution 430 

for the RI (Figure 10).  A post-1972 analysis shows that this portion of the RI provides the best fit to the theoretical 431 

distribution and the lowest range of magnitudes (Figure 11 and Table 7).  The main contributors to this post-1972 432 

portion of the analysis were the WSL and BRGM datasets (Figure 10).  At this point the Abele dataset is omitted from 433 

analyses as landslides included in this dataset remain undated, whilst also being biased towards larger landslides 434 

(Figure 10).  We highlight that a result of “no landslides” means that no landslide has been recorded, not that no 435 

landslide has occurred.  This again potentially introduces a bias towards very large landslides (as is common in 436 

historical datasets) and towards those which have resulted in damage to life, infrastructure and property.  The WSL, 437 

being an insurance inventory, only records landslides when a claim is made however, RTL recorded in this portion of 438 

the RI best represent the theoretical three-parameter inverse-gamma distribution (Table 7).  In all cases, for the 439 

post-1972 portion of the RI, RTL between 10-4 and 10—1 km2 are under-recorded (Figure 11) however, the 440 

compilation of different datasets still provide a robust and comprehensive inventory, closely matching the 441 

theoretical; we deduce that this portion of the RI is therefore applicable for use in susceptibility studies and hazard 442 

assessments.   443 

6.1.2 Consistency between inventories 444 

The format of each of the available online databases differs as each is maintained by different organisations.  For 445 

instance, the interface of the online GB database involves using links to both academic and internet-based 446 

publications; requiring methods of extraction similar to that of the literature search (c.f. section 4.1.1).  Conversely, 447 

the BRGM has a user-friendly interface, whereby data can be downloaded individually or by region to a Comma 448 
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Separated Value (.csv) or Microsoft Excel format.  Differences in language and classification schemes between 449 

inventories also reduce comparability, specifically the terms used in each to describe different classes of landslide.  450 

The WSL dataset for example, does not discriminate between RTL and saturated or hyper-concentrated flows, 451 

although the trigger mechanisms differ; this lack of discrimination reduces the applicability of the dataset for climate 452 

change research as distinctions between these are vital in understanding relationships between cause and effect.  453 

This reinforces the need for a unified classification system such as that developed for the RI.  Construction of a 454 

regional scale inventory is difficult due to these differences in language, terminology and data access across the Alps, 455 

supporting the need for interdisciplinary and international collaboration to develop and maintain such datasets in a 456 

unified language amongst different agents across the Alps and Europe. 457 

In the past it has been difficult to attribute changes in the frequency of landsliding to climate change as the 458 

recording of landslides through time has been inconsistent (Figure 8).  This lack of consistency in recording of the 459 

data restricts attempts to attain a long-term perspective on the frequency of an event, as it can be difficult to 460 

distinguish a real increase in frequency from an increase in recording frequency.  The temporal range of the RI is 461 

relatively short in terms of the well-documented (i.e. post-1972) portion of the dataset (Figure 8).  Breaks in the 462 

temporal record were identified for the RI by the application of the segmented model (Table 6 and Figure 8).  These 463 

breaks could arise due to a number of factors including land-use change, mitigation works, inconsistencies in 464 

recording, and changes in people’s perception of risk.  The BRGM dataset began development in 1994 (BRGM, 465 

2013b) and one might expect to see an increase in the frequency of recording after this time as a result however, 466 

this is not reflected in the breaks seen in the dataset, suggesting that the dataset is affected by other unidentified 467 

influences.  These all serve to obscure relationships between landslides and climate change however, we have 468 

shown that creating a unified database (RI) can increase the reliability of identification of these breaks and 469 

consistency in recording. 470 

7 Conclusion 471 

Landslide inventories and databases have the potential to enable us to develop a better understanding of landslide 472 

patterns across regions and through space and time.  These preliminary analyses of a newly collated database for the 473 

European Alps demonstrate the potential information which can be drawn from a variety of sources.  As the RI is by 474 
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no means exhaustive, we hope that this highlights the need for collaboration between researchers and agencies 475 

across the European Alps.  With increased input and research into these collations, a greater understanding of the 476 

observed spatial and temporal patterns of landsliding can be gained.  A number of publications (e.g. Soldati et al., 477 

2001) have distinguished changes in the climate as being influential in determining the occurrence of landslide 478 

clusters.  Therefore, greater emphasis on extending records back through time and improving historical datasets in 479 

the European Alps is important for attributing changes in landslide frequency and size to changes in the climate of 480 

the region.  Historical databases can offer insights into understanding changes in landslide size and spatial 481 

distribution through time, facilitating future research and predictions in regions such as the Alps for the insurance 482 

market and for policy makers. 483 

The primary aim of this research was to construct a unified database for the European Alps to include both long-484 

term records and all relevant metrics (Figure 3) to enable a clear indication of the spatial and temporal patterns of 485 

landsliding over the 20th Century.  Our results show that we were successful in this for the post-1972 portion of the 486 

data; firstly through the evidence from the power-law distributions (Figure 9 and Figure 10) and secondly from the 487 

use of segmented models (Figure 8).  This shows that it is possible to improve records by collating and analysing 488 

existing datasets; which can be greatly facilitated through interdisciplinary and international collaboration.  The date 489 

of initiation, landslide size and its classification are all important metrics to be included.  Current increases in 490 

temperature (e.g. Böhm, 2001; Büntgen et al., 2006) and precipitation variability (e.g. Casty et al., 2005) across the 491 

European Alps, combined with future climate projections, necessitate an understanding of the relationships between 492 

climate change and landsliding for policy makers and planners therefore, the construction of this database is an 493 

important step towards analysing this relationship and offering future predictions.  494 
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RI

Landslide

ID number

Date of 

initiation
Size

Type of 

movement
ReferenceLocation

Area (m2)
Volume

(m3)

All 7919 mass 

movements have an

ID associated with

the RI and the

original database

from which they

7524 have

lat/long

coordinates

(or available

xy data)

There are 5239

landslides recorded in

the RI (66%)

Other known mass
movement categories

(from rock to complex)

number 2624 (33%)

Fewer than 1% remain

unclassified

All 7919 

mass

movements

are

referenced

within the RI

5124 are dated

to the day with

an additional

1562 to annual

or sub-annual

resolution

1104 have

volume data

752 have

area data
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