
PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013) 85

lpEdit: an editor to facilitate reproducible analysis via
literate programming

Adam J Richards∗†, Andrzej S. Kosinski‡, Camille Bonneaud§, Delphine Legrand¶, Kouros Owzar‖

http://www.youtube.com/watch?v=1HCeSwMirIA

F

Abstract—There is evidence to suggest that a surprising proportion of pub-
lished experiments in science are difficult if not impossible to reproduce. The
concepts of data sharing, leaving an audit trail and extensive documentation are
fundamental to reproducible research, whether it is in the laboratory or as part
of an analysis. In this work, we introduce a tool for documentation that aims to
make analyses more reproducible in the general scientific community.

The application, lpEdit, is a cross-platform editor, written with PyQt4, that
enables a broad range of scientists to carry out the analytic component of
their work in a reproducible manner—through the use of literate programming.
Literate programming mixes code and prose to produce a final report that reads
like an article or book. lpEdit targets researchers getting started with statistics
or programming, so the hurdles associated with setting up a proper pipeline
are kept to a minimum and the learning burden is reduced through the use of
templates and documentation. The documentation for lpEdit is centered around
learning by example, and accordingly we use several increasingly involved
examples to demonstrate the software’s capabilities.

We first consider applications of lpEdit to process analyses mixing R and
Python code with the LATEX documentation system. Finally, we illustrate the use
of lpEdit to conduct a reproducible functional analysis of high-throughput se-
quencing data, using the transcriptome of the butterfly species Pieris brassicae.

Index Terms—reproducible research, text editor, RNA-seq

Introduction

The ability to independently reproduce published works is cen-
tral to the scientific paradigm. In recent years, there has been
mounting concern over the number of studies that are difficult
if not impossible to reproduce [Ioannidis05], [Prinz11]. The
reasons underlying a lack of reproducibility in science are
numerous and it happens that with regards to funding and
publication preference there is an emphasis on discovery with
little reward for studies that reproduce results [Russell13].

* Corresponding author: adam.richards@stat.duke.edu
† Biostatistics & Bioinformatics, Duke University Medical Center, Durham,
NC, 27710, USA and Station d’Ecologie Experimentale du CNRS, Moulis,
09200, France.
‡ Biostatistics & Bioinformatics, Duke University Medical Center, Durham,
NC, 27710, USA.
§ Station d’Ecologie Experimentale du CNRS, Moulis, 09200, France and
Centre for Ecology and Conservation, University of Exeter Cornwall, Penryn,
UK.
¶ Station d’Ecologie Experimentale du CNRS, Moulis, 09200, France.
‖ Duke Cancer Institute, Duke University Medical Center, Durham, NC,
27710, USA.

Copyright c○ 2013 Adam J Richards et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

The difficulties in reproducing a study can be broadly
categorized as experimental and analytic. Whether it is in
the laboratory or on a computer, problems with replication
can be minimized through the use of three key concepts: (1)
data sharing, (2) leaving an audit trail and (3) documentation.
Data sharing refers to all raw data and appropriate metadata,
provided under a convenient set of standards, ideally through
a free and open repository, like the Gene Expression Omnibus
[Edgar02]. Laying an audit trail in the laboratory can be
done through the careful use of electronic notebooks, and for
code, as is already commonplace in many fields, through the
use of version control systems like Git http://git-scm.com or
Mercurial http://mercurial.selenic.com.

Massive data sharing efforts are underway [Butler12] and
the advantages of electronic systems for documenting changes
are self-evident. The third aspect, documentation, can be
carried out in the laboratory with electronic notebooks easily
enough. However, the analyses that go along with experiments
are far more difficult to properly document, and unsurprisingly
this aspect of reproducible research remains a major obstacle
particularly in the life-sciences.

Apart from data sharing, leaving an audit trail and docu-
mentation, there are other important aspects of reproducible
research to consider such as the over-reliance on p-values
[Ioannidis08], [Gadbury12] and the use of inappropriate sta-
tistical tests. Statistical problems would be drastically eas-
ier for other scientists to identify if the original data and
well-documented code were made readily available. In com-
puter science, extensively documented code is often produced
through the use of literate programming [Knuth84].

In general, literate programming is the mixing of program-
ming code and prose to produce a final report that reads in a
natural way. In this work, we differ from most of the available
resources for literate programming in that our focus is on
producing reports that are intended for non-programmers, yet
still embracing many of the important tenets of literate pro-
gramming. For those with an extensive computing background
there are a number of great tools like Org-mode [Schulte12]
that are available. Often, biologists, chemists and other wet-
lab scientists, however, lack the time to adequately learn
a complicated environment and the prospect of learning is
daunting when it comes to many of the available tools.

The environment we have developed here, literate program-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43096734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.youtube.com/watch?v=1HCeSwMirIA
mailto:adam.richards@stat.duke.edu
http://git-scm.com
http://mercurial.selenic.com


86 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

ming edit (lpEdit), is a cross-platform application that enables
a broad range of scientists to carry out the analytic component
of their work in a reproducible manner. This work is not
intended for those already well-versed in the use of text editors
and literate programming environments, although the sim-
plicity and ability to use either the application programming
interface (API) version or a graphical user interface (GUI)
version has appeal to a variety of researchers.

lpEdit: a literate programming editor

Many of the tools available for literate programming do not
provide a graphical editor, which is a barrier for adoption by
non-specialists. Other tools depend on a particular operating-
system and only a handful of tools can switch freely between
several programming languages. The motivation to build lpEdit
arose because there was no apparent library/tool that fit these
three criteria in a simple and intuitive way.

We have developed here an environment for literate pro-
gramming, based on the model-view-controller (MVC) soft-
ware architecture pattern. The only major difference from
conventional realizations of MVC patterns is that instead of
the user interacting directly with the controller in a non-
GUI mode, we have developed a convenience class called
NoGuiAnalysis for this purpose.

The GUI editor portion of lpEdit is written with PyQt4
http://www.riverbankcomputing.com/software/pyqt, which are
Python bindings to the widget toolkit Qt http://qt.digia.com.
For the basic editing component of the software we use the Qt
port of Scintilla http://www.scintilla. org called QScintilla http:
//www.riverbankcomputing.com/software/qscintilla. The addi-
tional prerequisites are the Python packages for numeric
computing (NumPy) [Oliphant07] and the ubiquitous docu-
mentation tool Sphinx http: //sphinx-doc.org.

The software is available under the GNU General Public Li-
cense version 3.0 or later from http://bitbucket.org/ajrichards/
reproducible-research. The accompanying documentation can
be found at http://ajrichards.bitbucket.org/lpEdit/index.html.

LATEX and reStructuredText

Perhaps the most widely used literate programming tool is
Sweave [Leisch02] which embeds R code into a LATEX docu-
ment. Due to its popularity and because Sweave is now part
of the R project [RCore12], the Sweave environment may be
used from within lpEdit. Another notable projects that mixes R
and LATEX is knitr http://yihui.name/knitr. RStudio [RStudio]
is a graphical editor that supports Sweave and knitr.

R is a standard language for statistics, but for other common
computational tasks, like text processing and web-applications,
it is used less frequently than scripting languages. We opted
to add Python, a scripting language, because it is being
increasingly used in the life-sciences [Bassi07] and because
it has a clean syntax that ultimately aids transparency and
reproducibility. Several well-featured literate programming
tools exist for Python including PyLit http://pylit.berlios.de
and like PyLit our software uses reStructuredText (reST)
http://docutils.sourceforge.net/rst.html, although we addition-
ally allow arbitrary Python code to be included in LATEX source

*.rnw

*.nw

*.rst

PDF

HTML

LaTeX

SphinxPython

R

Fig. 1: Summary of the possible workflows using lpEdit. First, a
language, either R or Python is selected then it is embedded into a
specific document (*.rnw, *.nw or *.rst). Next a LATEX or Sphinx
project is built for the document, which then allows for both HTML
and PDF output formats.

documents. Another powerful tool for reproducible research
using Python is the IPython notebook [Perez07].

There are three types of file extensions currently permitted
for use with lpEdit: the Sweave extension (*.rnw); a Noweb
[Ramsey94] inspired syntax (*.nw); and the reST file exten-
sion (*.rst). By selecting an embedded language and a file
type there are a number of different workflows available as
shown in Figure 1.

lpEdit as a library

lpEdit has a simple API, which facilitates the use of unit
testing and exposes the functions of this library for those who
are not in need of a text editor. In this section, we explain
how to create a project and build reports using the command
line, in order to illustrate the basic mechanics of lpEdit. The
following example script, BasicPython.nw, is bundled with the
package lpEdit. To build a project and compile it into report
form only a few commands are needed.
1 from lpEdit import NoGuiAnalysis
2 nga = NoGuiAnalysis()
3 nga.load_file("BasicPython.nw",fileLang="python")
4 nga.build()
5 nga.compile_pdf()
6 nga.compile_html()

First the class is imported (line 1) from the module lpEdit and
then it is instantiated (line 2). The file is then loaded and the
language may be specified (line 3). The build() method
creates a directory to contain the project in the same folder
as BasicPython.nw. The build-step also creates a *.tex
document. This directory is what lpEdit refers to as a project
and it is where both reST and LATEX projects are managed. The
compile_pdf() command either uses sphinx-build or
pdflatex. The compile_html() command defaults to
sphinx-build or latex2pdf depending on the project
type. In most cases the default paths for pdflatex, python,
R, and sphinx-build are found automatically, however,
they may be customized to a user’s preference. To modify
these variables without the GUI, there is a configuration file
corresponding to the current version of lpEdit located in the
user’s home directory.
import os
os.path.join(os.path.expanduser("~"),".lpEdit")

lpEdit as an editor

The primary purpose of lpEdit as a text editor was to benefit
students and those who are learning to program statistical

http://www.riverbankcomputing.com/software/pyqt
http://qt.digia.com
http://www.scintilla
http://www.riverbankcomputing.com/software/qscintilla
http://www.riverbankcomputing.com/software/qscintilla
http://bitbucket.org/ajrichards/reproducible-research
http://bitbucket.org/ajrichards/reproducible-research
http://ajrichards.bitbucket.org/lpEdit/index.html
http://yihui.name/knitr
http://pylit.berlios.de
http://docutils.sourceforge.net/rst.html


LPEDIT: AN EDITOR TO FACILITATE REPRODUCIBLE ANALYSIS VIA LITERATE PROGRAMMING 87

analyses. In order to make it easier on these user groups,
we provide as part of lpEdit’s documentation a number of
examples that illustrate different statistical tests. We have left
out features found in other editors or literate programming
environments to make it easier to focus on report content.

Documenting by example

Like Sweave, lpEdit uses a Noweb [Ramsey94] inspired
syntax. The advantages are that due to a simplified syntax,
the flow of the document is only minimally interrupted by the
presence of code. Also, to reduce the learning burden on new
users, we suggest they concentrate on learning LATEX, reST
and the embedded programming language of choice instead of
lpEdit-specific tricks to embed plots, tables or other convenient
features. For *.rnw, *.nw and *.rst documents, we embed
code in the following way.

<<label=code-chunk-1>>=
print("Hello World!")
@

Although this particular example may not be executed in lpEdit
because it is not a valid LATEX or reST document, it illustrates
that code, in this case just a print statement, is included by
placing it between "« txt »=" and "@", where txt is any
arbitrary string, preferably something informative. Note that
under Sweave txt is a place where options may be passed.
Refer to the official documentation for more comprehensive
examples.

Documents written in LATEX, or reST are written as they
normally would be although now there is a way to execute
embedded code within the document. There is no limit to
the number of code chunks and lpEdit will execute them in
sequential order, preserving the variable space. The building
step is where code chunks are executed and output gathered.
There is one thing to keep in mind when working with
projects, and that is the idea of scope. Suppose, there are
two documents document1.rst and document2.rst.
If we build document1.rst then document2.rst, the
results from document1.rst will be preserved, which is
convenient when there are code chunks that take significant
time to run.

Involved analyses

Analyses can take the form of long complicated pipelines, that
may not reasonably be reproduced at the click of a button.
This may happen if, for example, a database needs to be
populated before an analysis can be carried out or perhaps
there is a hardware constraint, such as the requirement of
a high-performance computing infrastructure. In these cases,
lpEdit or another documentation software may still be used to
document details that would not normally be present in the
methods section of a published manuscript. For analyses that
are accompanied by substantial code and/or data, we provide
the keyword INCLUDE which simply tells lpEdit that a given
file is part of the current project. For example, files may be
included in a *.nw or *.rnw document by

%INCLUDE MyFunctions.py, MyData.csv

where the INCLUDE statement is preceded by a comment
indicator. For reST documents ".. " is used. At build time
symbolic links are created. For a reST document, INCLUDE
is preceded by the comment indicator. With increasingly
involved analyses, the readability of documentation should
not deteriorate and to this end prose may be simplified by
including code and data as links. Other than INCLUDE and
the syntax to embed code, reST and LATEX, documents are
written as they normally would be, which has the important
benefit of minimizing the learning burden.

Analyzing the Pieris brassicae transcriptome

The analysis of high-throughput sequencing data has the
earmarks of a highly involved analysis pipeline. The appeal
of high-performance sequencing [Margulies05], referred to
as RNA-seq, when applied to messenger RNA, is that a
large number of genes are quickly examined in terms of
both expression and genetic polymorphisms. For RNA-seq
the sheer quantity of data and diversity of analysis pipelines
can be overwhelming, which substantiates all the more a
need for transparent analysis documentation. Here we describe
the transcriptome of the cabbage butterfly (Pieris brassicae)
[Feltwell82], a species prevalent throughout much of Europe,
that is an interesting model for studying species mobility with
respect to different selection pressures [Ducatez12].

cDNA library construction

Messenger RNA was extracted from the thorax, head and
limbs of 12 male and female P. brassicae and pooled to
construct a normalized cDNA library (BioS&T, Montreal,
Canada). This library was subsequently sequenced using a
Roche 454 pyrosequencing platform and because there is no
reference genome for P. brassicae a de novo assembly pipeline
was followed. The sequencing and assembly was carried out
at the sequencing center Genotoul http://bioinfo.genotoul.fr
and made available using the NG6 [Mariette12] software
environment. Prior to assembly, the reads were filtered to
ensure quality-a step that included a correction for replicate
bias [Mariette11]. The assembler Newbler [Margulies05], was
then used to align and order the reads into 16,889 isotigs and
11,891 isogroups.

Analysis database and environment

Because P. brassicae is a species without a reference genome,
the assembled isotigs must be compared to species that
have functional descriptions. In order to make time-efficient
comparisons we first created a database using PostgreSQL
http://postgresql.org (version 9.1.9). The database contained
gene, accession, taxon, and functional ontology information
all of which is available through the National Center for
Biotechnology Infomation (NCBI) FTP site http://www.ncbi.
nlm.nih.gov/Ftp. The database is detailed in Figure 2. The
interaction with tables in the database was simplified through
the use of the object relational mapper available as part of
the python package SQLAlchemy http://www.sqlalchemy.org.
The schema figure was generated using the Python pack-
age sqlalchemy_schemadisplay https://pypi.python.org/pypi/
sqlalchemy_schemadisplay.

http://bioinfo.genotoul.fr
http://postgresql.org
http://www.ncbi.nlm.nih.gov/Ftp
http://www.ncbi.nlm.nih.gov/Ftp
http://www.sqlalchemy.org
https://pypi.python.org/pypi/sqlalchemy_schemadisplay
https://pypi.python.org/pypi/sqlalchemy_schemadisplay


88 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

taxa

- id

- ncbi_id

- name

- common_name_1

- common_name_2

- common_name_3

go_terms

- id

- go_id

- aspect

- description

genes

- id

- ncbi_id

- description

- symbol

- chromosome

- map_location

- synonyms

- taxa_id

+ id

+ taxa_id

accessions

- id

- status

- nucleo_gi

- protein_gi

- genomic_nucleo_gi

- genomic_start

- genomic_stop

- orientation

- assembly

- gene_id

+ id

+ gene_id

go_annotations

- id

- evidence_code

- pubmed_refs

- gene_id

- go_term_id

+ id

+ gene_id

+ id

+ go_term_id

Fig. 2: Database entity diagram. A gene-centric relational database
for data available through NCBI’s FTP website.

Functional characterization of the transcriptome

For each isotig, functional annotations were found by using
the Basic Local Alignment Search Tool (BLAST) [Altschul90]
via NCBI’s BLAST+ command line interface [Camacho09].
Specifically, each isotig was locally aligned to every sequence
in the Swiss-Prot database [UniProtConsortium12] then using
our local database, accession names were mapped to gene
names and corresponding functional annotations were gath-
ered. The handling of sequence data was done using the classes
and functions provided by BioPython [Cock09].

Of the nearly 17,000 isotigs that were examined, 11,846
were considered hits (E-value ≤ 0.04). The isotigs were then
mapped to 6901 unique genes. The appropriate Gene Ontology
[Ashburner00] annotations were then mapped back to the
isotigs. A navigable version of the analyses and results is
available as part of the online supplement http://ajrichards.
bitbucket.org/lpedit-supplement. The supplement is the docu-
mentation produced using lpEdit. All scripts that were used in
this analysis are provided therein and the supplement details
the individual steps in this process in a way that is impossible
to include as part of a manuscript methods section.

Conclusions and future work

The RNA-seq example demonstrates that involved analyses
may be well- documented in a way that is interesting for those
who understand the technical details of the analysis and those
who do not. In the future, more languages, even compiled
ones, may be integrated into the project, which is feasible
because lpEdit uses the Python package subprocess to
make arbitrary system calls. It is not our intention for lpEdit
to evolve to be a replacement for already established tools,
like Org-mode. Rather, it is meant as a simple tool to help
newcomers with programming and statistics. With the API
version of lpEdit there remains the possibility that it may be
adapted as a plug-in or extension to existing text editors.

Given that the target user-base for lpEdit are those with
limited computing background, there are a number of power-
user features left out of the current version for the sake
of a nearly ‘push button approach’. Despite this restricted

approach, lpEdit is free to use, fork and modify as the
community would like and over time more interesting features
will make it into the project without sacrificing the important
idea of simplicity. Being a community-driven effort, we are
open to feature requests and will adapt to the needs of the
general user population.

Acknowledgments

We would like to thank Eric Pante and Michel Baguette for
helpful comments and discussion. The research carried out
here was partially supported by the Duke Cancer Institute
(DCI). Additional support for this work was provided by the
Agence Nationale de la Recherche (ANR; France) MOBIGEN
[ANR- 09-PEXT-003]. The opinions, findings and recommen-
dations expressed in this work are those of the authors and do
not necessarily reflect the views of the DCI, CNRS or other
affiliated organizations.

REFERENCES

[Altschul90] S. F. Altschul, W Gish, W Miller, E W Myers, and D.
J. Lipman. Basic local alignment search tool, Journal
of Molecular Biology, 215:403-410, 1990.

[Ashburner00] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein,
H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S.
S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L.
Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J.
E. Richardson, M. Ringwald, G. M. Rubin, and G.
Sherlock. Gene ontology: tool for the unification of
biology, Nature Genetics, 25(1):25-29, May 2000.

[Bassi07] S. Bassi. A primer on python for life science re-
searchers, PLoS Computational Biology, 3(11):e199,
2007.

[Butler12] D. Butler. Drug firm to share raw trial data, Nature,
490(7420):322, Oct 2012.

[Camacho09] C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Pa-
padopoulos, K. Bealer, and T. L. Madden. BLAST+:
architecture and applications, BMC Bioinformatics,
10:421, 2009.

[Cock09] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman,
C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F.
Kauff, B. Wilczynski, and M. J. L. de Hoon. Biopy-
thon: freely available Python tools for computational
molecular biology and bioinformatics, Bioinformat-
ics, 25(11):1422-1423, Jun 2009.

[Ducatez12] S. Ducatez, M. Baguette, V. M. Stevens, D. Legrand,
and H. Freville. Complex interactions between pater-
nal and maternal effects: parental experience and
age at reproduction affect fecundity and offspring
performance in a butterfly, Evolution, 66(11):3558-
3569, Nov 2012.

[Edgar02] R. Edgar, M Domrachev, and A E Lash. Gene expres-
sion omnibus: NCBI gene expression and hybridiza-
tion array data repository, Nucleic Acids Research,
30(1):207-210, Jan 2002.

[Feltwell82] J. Feltwell. Large white butterfly: The Biology, Bio-
chemistry and Physiology of Pieris brassicae (Lin-
naeus), Springer, 1982.

[Gadbury12] G. L. Gadbury and D. B. Allison. Inappropriate
fiddling with statistical analyses to obtain a desirable
p-value: tests to detect its presence in published
literature, PloS One, 7(10):e46363, 2012.

[Ioannidis05] J. P. A. Ioannidis. Why most published research
findings are false, PLoS Medicine, 2(8):e124, Aug
2005.

[Ioannidis08] J. P. A. Ioannidis. Effect of formal statistical
significance on the credibility of observational
associations, American Journal of Epidemiology,
168(4):374-383; discussion 384-390, Aug 2008.

http://ajrichards.bitbucket.org/lpedit-supplement
http://ajrichards.bitbucket.org/lpedit-supplement


LPEDIT: AN EDITOR TO FACILITATE REPRODUCIBLE ANALYSIS VIA LITERATE PROGRAMMING 89

[Knuth84] D. E. Knuth. Literate programming, The Computer
Journal, 27:97-111, 1984.

[Leisch02] F. Leisch. Sweave: Dynamic generation of statisti-
cal reports using literate data analysis, In Comp-
stat 2002 - Proceedings in Computational Statistics,
pages 575–580. Physica Verlag, Heidelberg, 2002.

[Margulies05] M. Margulies, M. Egholm, W. E. Altman, S. Attiya,
J. S. Bader, L. A. Bemben, J. Berka, M. S. Braver-
man, Y-J. Chen, Z. Chen, S. B. Dewell, L. Du, J.
M. Fierro, X. V. Gomes, B. C. Godwin, W. He, S.
Helgesen, C. H. Ho, G. P. Irzyk, S. C. Jando, M. L.
I. Alenquer, T. P. Jarvie, K. B. Jirage, J-B. Kim, J. R.
Knight, J. R. Lanza, J. H. Leamon, S. M. Lefkowitz,
M. Lei, J. Li, K. L. Lohman, H. Lu, V. B. Makhijani,
K. E. McDade, M. P. McKenna, E. W. Myers, E.
Nickerson, J. R. Nobile, R. Plant, B. P. Puc, M. T.
Ronan, G. T. Roth, G. J. Sarkis, J. F. Simons, J. W.
Simpson, M. Srinivasan, K. R. Tartaro, A. Tomasz,
K. A. Vogt, G. A. Volkmer, S. H. Wang, Y. Wang, M.
P. Weiner, P. Yu, R. F. Begley, and J. M. Rothberg.
Genome sequencing in microfabricated high-density
picolitre reactors, Nature, 437(7057):376-380, Sep
2005.

[Mariette11] J. Mariette, C. Noirot, and C. Klopp. Assessment of
replicate bias in 454 pyrosequencing and a multi-
purpose read-filtering tool, BMC Research Notes,
4:149, 2011.

[Mariette12] J. Mariette, F. Escudie, N. Allias, G. Salin, C.
Noirot, S. Thomas, and C. Klopp. NG6: Integrated
next generation sequencing storage and pro cessing
environment, BMC Genomics, 13:462, 2012.

[Oliphant07] T. E. Oliphant. Python for scientific computing, Com-
puting in Science & Engineering, 9(3):10-20, 2007.

[Perez07] F. Perez and B. E. Granger. IPython: a system
for interactive scientific computing, Computing in
Science & Engineering, 9(3):21-29, May 2007.

[Prinz11] F. Prinz, T. Schlange, and K. Asadullah. Believe it
or not: how much can we rely on published data
on potential drug targets?, Nature Reviews. Drug
Discovery, 10(9):712, Sep 2011.

[RCore12] R Core Team. R: A Language and Environment for
Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2012.

[RStudio] RStudio: Integrated development environment for R,
Boston, MA.

[Ramsey94] N. Ramsey. Literate programming simplified, IEEE
Software, 11(5):97-105, 1994.

[Russell13] J. F. Russell. If a job is worth doing, it is worth doing
twice, Nature, 496(7443):7, Apr 2013.

[Schulte12] E. Schulte, D. Davison, T. Dye, and C. Dominik.
A multi-language computing environment for literate
programming and reproducible research, Journal of
Statistical Software, 46(3):1-24, 1 2012.

[UniProtConsortium12] UniProt Consortium. Reorganizing the protein space
at the universal protein resource (UniProt), Nu-
cleic Acids Research, 40(Database issue):D71-5, Jan
2012.


	Introduction
	lpEdit: a literate programming editor
	LaTeX and reStructuredText
	lpEdit as a library
	lpEdit as an editor

	Documenting by example
	Involved analyses

	Analyzing the Pieris brassicae transcriptome
	cDNA library construction
	Analysis database and environment
	Functional characterization of the transcriptome

	Conclusions and future work
	Acknowledgments
	References

