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ABSTRACT

An important question for atmospheric modeling is the viability of semi-implicit time integration schemes on

massively parallel computing architectures. Semi-implicit schemes can provide increased stability and accuracy.

However, they require the solution of an elliptic problem at each time step, creating concerns about their

parallel efficiency and scalability. Here, a semi-implicit (SI) version of the Model for Prediction Across Scales

(MPAS) is developed and compared with the original model version, which uses a split Runge–Kutta (SRK3)

time integration scheme. The SI scheme is based on a quasi-Newton iteration toward aCrank–Nicolson scheme.

Each Newton iteration requires the solution of a Helmholtz problem; here, the Helmholtz problem is derived,

and its solution using a geometric multigrid method is described. On two standard test cases, a midlatitude

baroclinic wave and a small-planet nonhydrostatic gravity wave, the SI and SRK3 versions produce almost

identical results. On the baroclinic wave test, the SI version can use somewhat larger time steps (about 60%)

than the SRK3 version before losing stability. The SI version costs 10%–20% more per step than the SRK3

version, and the weak and strong scalability characteristics of the two versions are very similar for the processor

configurations the authors have been able to test (up to 1920 processors). Because of the spatial discretization of

the pressure gradient in the lowest model layer, the SI version becomes unstable in the presence of realistic

orography. Some further work will be needed to demonstrate the viability of the SI scheme in this case.

1. Introduction

The use of a semi-implicit time integration scheme

to handle the fast waves in atmospheric models was

first introduced to enable large time steps to be taken

without loss of stability (Robert 1969; Robert et al.

1972; Bourke 1974; Hoskins and Simmons 1975).

Semi-implicit schemes require the solution of a

Helmholtz problem at least once per time step, but,

provided this can be done efficiently, the longer time

steps allowed can lead to an overall gain in model

efficiency compared to an explicit time integration

scheme. Early applications of semi-implicit schemes

treated only certain linearized dynamical terms im-

plicitly. Later, it was shown (Cullen 2001; Cullen and

Salmond 2003) that a predictor–corrector scheme that it-

erates toward a more fully implicit scheme, including im-

plicit treatment of nonlinear dynamical terms and even

physical parameterizations, could lead to improved accu-

racy and better representation of balances between dif-

ferent processes. Preoperational testing of the new Met

Office dynamical core Even Newer Dynamics for General

AtmosphericModelling of the Environment (ENDGame;

Woodet al. 2014) showed that amore fully implicit scheme

conferred greater stability and robustness, thereby

allowing a reduction in the artificial damping and dif-

fusion used to stabilize the model, further improving

accuracy (Walters et al. 2014).

Recently, the desire for parallel scalability on mas-

sively parallel computing architectures has reinvigo-

rated interest in the use of quasi-uniform spherical grids

for atmospheric modeling, in order to avoid the com-

munications bottleneck that arises from the polar
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resolution clustering on the longitude–latitude grid.

Several global atmospheric models have recently been

developed on quasi-uniform grids specifically for such

computer architectures (Satoh et al. 2008; Walko and

Avissar 2008; Qaddouri and Lee 2011; Ullrich and

Jablonowski 2012a; Skamarock et al. 2012; Zängl et al.
2015). However, because of concerns about whether a

three-dimensional Helmholtz problem could be solved

in an efficient and scalable way, almost all of these

models retain an implicit time integration scheme only

for the vertical propagation of information, combined

with some form of explicit time integration scheme for

the horizontal propagation of information. Such schemes

are known as horizontally explicit vertically implicit

(HEVI). Although such schemes are certainly viable,

they do typically require some damping of acoustic waves

to ensure numerical stability over the desired parameter

range: for example, in the form of divergence damping or

off-centering (e.g., Satoh et al. 2008; Walko and Avissar

2008; Skamarock et al. 2012; Zängl et al. 2015, and ref-

erences therein). It would be valuable to know whether

parallel scalability issues do indeed make semi-implicit

time stepping schemes uncompetitive or whether they

might, in fact, remain viable or even advantageous given a

suitable Helmholtz solver.

Evenmore recently, it has been shown thatHelmholtz

problems and Poisson problems of the sort arising in

atmospheric modeling can be solved efficiently and with

good parallel scalability using geometric multigrid

methods (Heikes et al. 2013; Müller and Scheichl 2014;

Dedner et al. 2015, manuscript submitted to Int.

J. Numer. Methods Fluids). See, for example, Fulton

et al. (1986) for a clear introduction to multigrid

methods in the context of atmospheric modeling. Such

methods require only local (rather than global) data

communication at each smoother iteration. Moreover,

the conditioning of the Helmholtz problem depends on

the horizontal acoustic wave Courant number csDt/Dx,
where cs is the sound speed, Dt is the time step, and Dx is
the horizontal grid spacing. In practice, on a quasi-

uniform grid, the time step is reduced in proportion to

Dx as resolution is increased, so the horizontal acoustic

wave Courant number remains bounded (typically less

than 10), and the Helmholtz problem does not become

worse conditioned at higher resolution. Consequently,

(i) a shallowmultigrid hierarchy is sufficient (see section

4), and (ii) the number of V-cycles and smoother itera-

tions required does not depend strongly on resolution.

These considerations motivate us to develop a semi-

implicit version of an existing atmospheric model de-

signed for massively parallel computing architectures

and to compare its performance and parallel scalability

to the original HEVI time stepping version.

The model in question is the Model for Prediction

Across Scales-Atmosphere (MPAS-Atmosphere). It is

described in detail by Skamarock et al. (2012) and ref-

erences therein. Its main features are the following. It

solves the compressible nonhydrostatic equations. The

horizontal grid is a spherical centroidal Voronoi tesse-

lation with a C-grid placement of variables. A general

terrain-following vertical coordinate is used with a

Lorenz-grid staggering of the vertical velocity relative to

other variables. The spatial discretization uses a com-

bination of finite difference and finite volume ideas; it

conserves mass, mass-weighted potential temperature,

and tracers and respects hydrostatic and geostrophic

balance. The original time integration scheme is the

three-stage Runge–Kutta split explicit (or, more pre-

cisely, split HEVI) scheme (SRK3) described byWicker

and Skamarock (2002). Each stage of the Runge–Kutta

scheme is broken down into a number of substeps in

which the time tendencies are updated using the fast

acoustic and gravity wave terms in the equations. The

substeps use a forward–backward time integration

scheme in which the vertical coupling terms are treated

implicitly.

In this paper, we replace the original time integration

scheme by a semi-implicit (SI) one. Various factors were

considered in the choice of SI scheme. It is desirable to

keep the spatial discretization unchanged and to retain a

single-step time integration scheme, both to facilitate a

clean comparison between the SI and SRK3 schemes

and to avoid major structural changes to the code (see

Fig. 3 below). As noted above, early semi-implicit

schemes for atmospheric models treated only certain

linear terms implicitly. Linearly implicit schemes, such

as Runge–Kutta–Rosenbrock (RKR) schemes, origi-

nally described in the ODE literature, are becoming

more widely applied in complex models for the solution

of PDEs (e.g., Kar 2006; John et al. 2006; Ullrich and

Jablonowski 2012b). However, John et al. (2006) found

RKR schemes to be 3–4 times more expensive than a

Crank–Nicolson scheme for their test cases, because the

RKR linear problem must be solved accurately to en-

sure accuracy of the scheme overall. Also, we carried out

some initial experiments with a Strang carryover scheme

(Ullrich and Jablonowski 2012b), a simple variant of

RKR, but found that adding ‘‘slow’’ and ‘‘fast’’ time step

contributions separately led to unacceptably large im-

balances. Finally, we were motivated by the results of

Cullen (2001) and Cullen and Salmond (2003) men-

tioned above, along with a belief that the (weakly)

nonlinear problem arising from a Crank–Nicolson time

step could be solved for a cost comparable to that of the

corresponding linearized problem (see section 2b be-

low). Thus, we chose to implement and test a scheme
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based on an iteration toward a Crank–Nicolson scheme.

It is similar, in some respects, to the time scheme used in

the Canadian Meteorological Centre’s Global Envi-

ronment Multiscale (GEM) model (Yeh et al. 2002) and

in ENDGame (Wood et al. 2014), though with Eulerian

rather than semi-Lagrangian time derivatives.

The developments described in this paper are based on

version 2.0 of the MPAS-Atmosphere code. The main

releases of the MPAS code are available online (https://

github.com/MPAS-Dev/MPAS-Release/releases). The

semi-implicit version described here is not yet part of a

main release, but interested readers can obtain the code

and some additional instructions for use online as well

(https://github.com/mgduda/MPAS-Release/releases/tag/

v2.0-semi-implicit).

Section 2 describes the formulation of the new time

integration scheme and how this leads to a Helmholtz

problem.A geometricmultigrid solver is used to solve the

Helmholtz problem; the multigrid structure and related

operators are described in section 3, and the Helmholtz

solver itself is described in section 4. The structure and

communications costs of the SRK3 and SI algorithms are

compared in section 5. Some sample results and discus-

sion of performance and parallel scalability are presented

in section 6.

2. Formulation

a. Continuous equations

The continuous governing equations for the MPAS-

Atmosphere are given by Skamarock et al. (2012). Here,

we summarize them briefly [see Skamarock et al. (2012)

for a full discussion].

A general terrain-following vertical coordinate z is

used such that height z is given by

z5 z1A(z)hs(xH , z) , (1)

where xH is the horizontal position, and hs(xH , 0) is the

surface height. Let $z5 (zH , zz), where zH 5$Hz is the

horizontal gradient of z at constant height. Also, define

zH 52zH /zz, the slope of the coordinate surfaces; these

quantities are used in computing the divergence and the

pressure gradient terms below.

The prognostic equations are written in terms of flux

variables:

(V,Qm,Qj)5 ~rd(v, um, qj) . (2)

Here, ~rd 5 rd/zz where rd is the density of dry air, and

v5 (vH , w) is the velocity vector with horizontal and

vertical components vH and w. The qj are the mixing

ratios of various water species. A modified moist po-

tential temperature

um 5 u(11 qyRy/Rd) (3)

is used, where qy is the water vapor mixing ratio, and Ry

and Rd are the gas constants for water vapor and dry air,

respectively.

Define V5V � $z to be the component of the mass

flux normal to z surfaces, and let k be the vertical unit

vector. Then the governing equations may be written as

follows:

›VH

›t
52

rd
rm

1

zz

�
$zp2 zH

›p

›z

�
2hk3VH

2 vH$z �V2
›VvH
›z

2 ~rd$zK

1Wk3Ve2
vHW

re
1FV

H
, (4)

›W

›t
1 rW52

rd
rm

�
›p

›z
1 g~rm

�
2 ($ � vW)z

1
uU1 yV

re
2V � (k3Ve)1FW , (5)

›Qm

›t
52($ �Vum)z 1FQ

m
, (6)

›~rd
›t

52($ �V)z, and (7)

›Qj

›t
52($ �Vqj)z 1FQ

j

. (8)

The pressure p is obtained via the equation of state:

p5 p0

�
RdzzQm

p0

�g

, (9)

where p0 is a constant reference pressure, and g is the

ratio of specific heat capacities at constant pressure and

constant volume g5 cp/cy. The density of moist air rm is

given by

rm
rd

5 11 qy 1 qc 1qr 1
. . . , (10)

with qy , qc, qr, et cetera, the mixing ratios of water vapor,

cloud water, rainwater, and so on. Following Klemp et al.

(2008), a linear damping term rW, with r a function of

altitude, is included in the W equation to provide a

mechanism for damping waves near the model top.

The other variables not yet defined are the gravitational

acceleration g; absolute vertical vorticity h; horizontal

kinetic energy K5 jvH j2/2; Earth’s rotation vector Ve;

Earth’s radius re; and FvH , FW , FQm
, and FQj

, which rep-

resent source terms. Finally, $z is the horizontal gradient

along z surfaces, and it is convenient to express the three-

dimensional divergence of the flux of any scalar b as
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1

zz
$ � (rdvb)5 ($ �Vb)z [$z � (VHb)1

›Vb

›z
, (11)

where $z� is the horizontal divergence operator along a

z surface.

Note that the horizontal pressure gradient term in

(4) is written in an equivalent but slightly different form

from Skamarock et al. (2012). The form used here more

closely reflects how the term is discretized in the MPAS

code and also facilitates the derivation of the Helmholtz

problem below. Note, also, that the pressure gradient

terms and buoyancy term in (4) and (5) are actually eval-

uated in terms of departures fromhydrostatically balanced

reference thermodynamic profiles that are functions only

of z, as in Klemp et al. (2007); this reduces truncation er-

rors in the calculation of the horizontal pressure gradient,

where coordinate surfaces are sloping.

b. Time discretization

The overarching idea is to use a Crank–Nicolson time

discretization for the dynamical equations, which should

give excellent stability even for long time steps. However,

the Crank–Nicolson scheme is only second-order accurate

and so might lead to dispersion errors for advected

quantities, such as the moisture variables. Therefore, we

retain the third-order Runge–Kutta time integration

schemeofWicker andSkamarock (2002) for the advection

of moisture variables; this, however, necessitates a mild

approximation in the evaluation of rm (see section 2e).

Introduce the notation TvH , TW , TQm
, and Tr (the

tendencies) as shorthand for the right-hand sides of (4),

(5), (6), and (7), respectively. A Crank–Nicolson time

discretization of (4)–(7) is then

Vn11
H 2Vn

H

Dt
5 hTv

H
i , (12)

Wn11 2Wn

Dt
1 rWn115 hTWi , (13)

Qn11
m 2Qn

m

Dt
5 hTQi, and (14)

~rn11
d 2 ~rnd

Dt
5 hTri , (15)

where Dt is the time step, superscripts n and n1 1 in-

dicate fields at the current and future time levels, and

hTi5aTn111bTn . (16)

Following Klemp et al. (2008), the W damping term

uses a backward-in-time discretization. For consistency

a1b5 1, and for stability a$ 0:5. The usual Crank–

Nicolson scheme has a5 0:5, and we use this value for

all results presented below, except where stated in

sections 6b and 6c. A choice of a. 0:5 may be used

in situations where it is desirable to damp fast waves.

Equations (12)–(15) represent our target time dis-

cretization. However, the unknown fields at time level

n1 1 appear on both sides of each equation, with

spatial coupling through derivative terms (and some

interpolation/averaging) and, inmost cases, nonlinearly.

Thus, we have a coupled nonlinear system of equations

to solve at each time step.

The system is solved iteratively using an approximate

Newton method. There are numerous variants of ap-

proximate Newton methods (Knoll and Keyes 2004), in-

cluding quasi-Newton methods, in which the Jacobian

matrix is approximated (Martínez 2000); inexact Newton

methods, in which the linear system for the Newton up-

date is solved only approximately (Dembo et al. 1982; Jay

2000); and simplified Newton methods, in which the

Jacobian is not updated during theNewton iterations.Our

scheme involves all of these approximations, but for

brevity we will refer to it as a quasi-Newton method. The

terms retained in the Jacobian [the left-hand sides of (26)–

(29) below] are those that describe acoustic and gravity

waves for linear perturbations about some reference

thermodynamic profiles. These are the stiffest terms and

are the ones that are crucial for the convergence of the

Newton iterations.

Let superscript (l) indicate the best available estimate

for each field at step n1 1 after l iterations. After l it-

erations (12)–(15) will not be satisfied exactly, but will

have some residuals defined by

V
(l)
H 2Vn

H 2DthTv
H
i(l) 52Rv

H
, (17)

(11 rDt)W(l) 2Wn 2DthTWi(l) 52RW , (18)

Q(l)
m 2Qn

m 2DthTQi(l) 52RQ, and (19)

~r
(l)
d 2 ~rnd2DthTri(l) 52Rr , (20)

where

hTi(l) 5aT(l) 1bTn . (21)

Now seek increments V0
H , W

0, Q0
m, ~r

0
d to the prognostic

fields

V
(l11)
H 5V

(l)
H 1V0

H , (22)

W(l11) 5W(l) 1W0 , (23)

Q(l11)
m 5Q(l)

m 1Q0
m, and (24)

~r
(l11)
d 5 ~r

(l)
d 1 ~r0d , (25)

designed to reduce the residuals:
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V0
H 1aDt

1

zz
$zp

0 5Rv
H
, (26)

W0 1aDt

�
›p0

›z
1 g~r0d

�
5RW , (27)

Q0
m 1aDt

�
u*($̂ �V0)z 1W 0zz

›u*

›z

�
5RQ, and (28)

~r0d1aDt($̂ �V0)z 5Rr . (29)

Here, p0 is related to Q0
m by the linearized equation of

state:

1

g

p0

p*
5
Q0

m

Q*
. (30)

Asterisks indicate reference thermodynamic fields. In

general, they may be functions of all three spatial co-

ordinates as well as time and should not be confused

with the reference profiles introduced by Klemp et al.

(2007). They are assumed to satisfy the equation of state

but are not required to be in hydrostatic balance. In the

current implementation, they are set equal to the cor-

responding time level n fields. An approximate di-

vergence operator has been introduced, defined by

($̂ �V0)z 5$z � (V0
H)1

›(zzW
0)

›z
. (31)

The choice of retained terms in (28) merits further

comment. It is motivated by a desire for a potential

temperature increment satisfying

u0m 1aDtw0›u*
›z

5Ru , (32)

in order to make the static stability N2 5 (g/u*)›u*/›z

appear and hence to capture the gravity wave restoring

mechanism in the approximate Jacobian. The resulting

Helmholtz equation is then analogous to that for the

ENDGame scheme of Wood et al. (2014). Combining

(32) with (29) gives an equation for the increment to the

density-weighted potential temperature [(28)].

The neglected terms on the left-hand sides of (26)–

(29) include Coriolis terms, nonlinear advection terms,

and the effect of the slope of the coordinate surfaces in

the horizontal pressure gradient and in converting be-

tween W and V. Scaling analysis confirms that the first

two should indeed be negligible, because the relevant

dimensionless parameters aDtjVej and aDtj$vj will be
small in practice. However, the effect of the slope of the

coordinate surfaces can become important when the

vertical resolution is much finer than the horizontal (see

section 6d). Note that, at convergence, all the residuals

go to zero, and we do solve the full system [(12)–(15)],

whatever approximations are made on the left-hand

sides of (26)–(29).

To keep the notation concise, we have not made the

spatial discretization explicit, except in one specific as-

pect: the overline indicates two terms that must be ver-

tically averaged or interpolated because of the use of the

Lorenz vertical grid staggering. This averaging has

consequences for the form of the Helmholtz problem

derived in the next section.

c. Helmholtz problem

We now have a linear system [(26)–(30)] to be solved

at each quasi-Newton iteration, but it is still spatially

coupled and still involves several unknown fields. In this

section, the system is reduced to a Helmholtz equation

for the single unknown field p0.
First use (30) to eliminate Q0

m:

1

g

~rd*u*

p*
p01aDt

�
u*($̂ �V0)z 1W0zz

›u*
›z

�
5RQ , (33)

or

1

g

~rd*

p*
p0 1aDt

�
($̂ �V0)z 1

N2

g
W0
�
5

RQ

u*
, (34)

where

N25
g

u*
zz
›u*

›z
. (35)

If we define the vertical operator D2 by

D2(X)5
›(zzX)

›z
1

N2

g
X , (36)

then (34) may be written

1

g

~rd*

p*
p0 1aDt[$z � (V0

H)1D2(W
0)]5

RQ

u*
. (37)

Next eliminate the divergence term by taking (34)

minus (29):

1

g

~rd*

p*
p02 ~r0d 1aDtW0N

2

g
5
RQ

u*
2Rr . (38)

Then use (38) to eliminate ~r0d from (27):

(11 rDt)W0 1a2Dt2W 0N2 1aDt

�
›p0

›z
1

g

g

~rd*

p*
p0
�

5RW 1 gaDt
�RQ

u*
2Rr

�
, (39)
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or, more compactly,

N (W 0)1aDtD1(p
0)5RWP , (40)

where

N (Y)5 (11 rDt)Y1a2Dt2N2Y , (41)

D1(Z)5
›Z

›z
1

g

g

~rd*

p*
Z , (42)

and

RWP5RW 1 gaDt

�
RQ

u*
2Rr

�
. (43)

Finally, use (26) and (40) to eliminateV0
H andW 0 from

(37) to obtain the Helmholtz equation:

H(p0)5RH , (44)

where

H(p0)5
1

zzc
2
s

p0 2a2Dt2
(
$z �

"
1

zz
$z(p

0)

#

1D2N21[D1(p
0)]

)
(45)

and

RH 5
RQ

u*
2aDtD2N21(RWP)2aDt$z � (Rv

H
) . (46)

We have used c2s 5 gRT* and the fact that reference ther-

modynamic fields satisfy the equation of state to write the

coefficient of p0 in terms of the reference sound speed cs.

Boundary conditions are needed to close the Helmholtz

problem. The appropriate conditions are thatW 0 should
vanish at the bottom and top boundaries. To take these

into account, the coefficients for theD2 andN operators

are set so as to ignore contributions from the bottom and

top boundaries. The Helmholtz problem for p0 then
comprises the same number of discrete equations as

unknowns, with the appropriate boundary conditions on

p0 accounted for implicitly.

An interesting feature of this Helmholtz problem,

which arises from the use of the Lorenz vertical grid

staggering, is the appearance of N21
on both the left-

and right-hand sides of (44). Its appearance on the right-

hand side means that a tridiagonal system of equations

must be solved in each grid column in order to compute

the right-hand side. Its appearance on the left-hand side

slightly complicates the application of the smoother (see

section 4). A tridiagonal system must also be solved at

the back-substitution stage (see section 2d). In contrast,

for a Charney–Phillips vertical staggering, the analog of N
is simply a multiplicative factor, and N21

is trivial to eval-

uate; then no tridiagonal systems need to be solved to

evaluate the right-hand side of theHelmholtz problemor in

the back substitution, and the smoother is slightly simpler.

d. Back substitution

Having solved (44) to find p0, the increments to the

prognostic variables Q0
m, V

0
H , and W 0 are found by back

substitution into (30), (26), and (40), respectively. Back

substitution forW 0 requires the solution of a tridiagonal

system to invertN . The density increment ~r0d is obtained
from

~r0d1aDt($ �V0)z 5Rr , (47)

using the full divergence operator rather than the approxi-

mate version in (29). The advantage of doing this, rather

than using (29) or the alternative (38), is that the mass

continuity [(15)] is then satisfied exactly, ensuring localmass

conservation andmass-tracer consistency (section 2e), even

if the quasi-Newton iterations have not converged.

Having obtained the increments by back substitution,

the estimates for the time level n1 1 fields are updated

[(22)–(25)].

The first-guess values for the time level n1 1 fields are

given by the time level n fields:

V
(0)
H 5Vn

H , (48)

W(0) 5Wn , (49)

Q(0)
m 5Qn

m, and (50)

~r
(0)
d 5 ~rnd . (51)

e. Time discretization of moisture advection
equations

Advection of moisture variables uses the third-order

Runge–Kutta time scheme, as inWicker and Skamarock

(2002):

~rd* 5 ~rnd 2
Dt

3
($ � hVi)z,

~rd* q*5 ~rndq
n 2

Dt

3
($ � Fn)z,

~rd**5 ~rnd 2
Dt

2
($ � hVi)z,

~rd**q**5 ~rndq
n 2

Dt

2
($ � F*)z,

~rn11
d 5 ~rnd 2Dt($ � hVi)z, and

~rn11
d qn11 5 ~rndq

n 2Dt($ � F**)z , (52)
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where the tracer fluxes Fn, F*, and F** are evaluated

using the latest available mixing ratios qn, q*, and q**,

respectively, but in each case using the time-averaged

mass fluxes hVi.
For the results presented below, the quasi-Newton it-

erations to updateVH ,W,Qm, and ~rd are carried out first

and then the advection of moisture variables. This results

in an approximation to the Crank–Nicolson time in-

tegration scheme: namely, that Tn11
vH

and Tn11
W are eval-

uated using moisture values from time level n rather than

n1 1. This approximation may be expected to have

only a very small effect on the results, because the ten-

dencies depend only weakly on the moisture values, and

the moisture values will usually not vary dramatically

over one time step. The code has, in fact, been written to

allow amoisture advection update at every quasi-Newton

interation [with the last two lines in (52) replaced by

~r
(l11)
d 5 ~rnd 2Dt($ � hVi(l11))z;

~r
(l11)
d q(l11) 5 ~rndq

n 2Dt($ � F**)z (53)

and using the latest available estimate of the time av-

eragemass flux hVi(l11)]. This has allowed us to compare

the approximate Crank–Nicolson scheme with the full

Crank–Nicolson scheme and confirm that the differ-

ences are indeed negligible. Since the full scheme is

significantly more expensive, because the evaluation of

the advective fluxes is relatively expensive, the approx-

imate scheme is used for all the results shown below.

An important property for a scalar transport scheme is

mass-tracer consistency: the mass fluxes used to advect

scalars should be identical to those used to update the

density; otherwise it is not possible to ensure that ad-

vection conserves tracer mass and, at the same time,

preserves a constant tracer mixing ratio (e.g., Jöckel et al.
2001; Wong et al. 2013, and references therein). The

scalar advection scheme implemented in MPAS has the

mass-tracer consistency property, provided the density

and mass fluxes satisfy the equation on the penultimate

line of (52). Since only a small number of quasi-Newton

iterations will be taken in practice, we therefore require

~r
(l)
d 5 ~rnd 2Dt($ � hVi(l))z . (54)

Now, (54) clearly does not hold for the first-guess l5 0,

because ~r
(0)
d 5 ~rnd. However, for subsequent iterations

hVi(l11) 5 hVi(l) 1aV0 , (55)

and

~r0d 52aDt($ �V0)z 1Rr , (56)

where

Rr 52(~r
(l)
d 2 ~rnd)2Dt($ � hVi(l))z . (57)

Adding (56) and (57) gives (54), as required, for any

l. 0. Note that the mass-tracer consistency prop-

erty is obtained irrespective of how accurately the

Helmholtz problem is solved or how well converged

the quasi-Newton iterations are. But note, also, that it

does depend on using (47) rather than (29) to obtain

density increments consistent with the mass flux

increments.

3. Multigrid grid structure

A suitably nested hierarchy of grids is needed for the

multigrid solver described in section 4. In fact, such a

grid hierarchy is a natural by-product of the grid gen-

eration tool used to generate the MPAS grids, which

uses a recursive subdivision strategy. We simply need

to save the coarser-grid information rather than

discarding it.

Figure 1 illustrates the relationship between the cells

on a fine grid and those on the next coarser grid. A

subset of the fine cells is centered on the coarse cells,

while the remaining fine cells straddle the edges of the

coarse cells.

Restriction and prolongation operators are needed to

transfer fields from a fine grid to the next coarser grid and

from a coarse grid to the next finer grid, respectively. For

the restriction operator, an area-weighted average is

used: for example,

A
(c)
i p

(c)
i 5 �

j
wijA

( f )
j p

( f )
j , (58)

where A
(c)
i is the area of the ith coarse cell, A

( f )
j is the

area of the jth fine cell, and p
(c)
i and p

( f )
j are the corre-

sponding values of the variable to be restricted.We have

found that, on quasi-uniform (i.e., unstretched) grids, a

simple choice of weights is sufficiently accurate: wij 5 1

when fine cell i is centered on coarse cell j,wij 5 1/2 when

fine cell i straddles an edge of coarse cell j, and wij 5 0

otherwise.1 The prolongation operator is given by a

simple sampling/interpolation:

p
( f )
j 5 �

i
wijp

(c)
i , (59)

1MPAS can use more general grids in which the density of grid

cells varies, providing local refinement (Skamarock et al. 2012). In

this case, the definition of the grid hierarchy and the restriction and

prolongation operators for the implicit version becomes more

complicated; this extension will be discussed elsewhere.
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with the same wij as above. Note that restriction and

prolongation operators are needed only for cell-based

quantities, not for edge-based quantities.

To run the model on multiple processors the domain

is decomposed into a number of subdomains. The

domain decomposition is precomputed and stored in a

graph file. The same graph file may be used for the

finest grid in the multigrid hierarchy as is used for the

single (fine) grid in the SRK3model version. However,

in the multigrid case, we must also decide which grid

subdomain owns coarser grid cells. We make the

simple choice that a coarse cell belongs to the same

subdomain as the fine cell at its center. This choice is

applied recursively down the hierarchy. Figure 1 shows

that both restriction and prolongation operations re-

quire information from neighboring subdomains;

a one-cell-deep layer, or ‘‘halo,’’ of data surrounding

each subdomain must be exchanged before each re-

striction or prolongation. (This is a disadvantage of the

hexagonal grid; on a quadrilateral or triangular grid, it

is possible to choose the grid hierarchy and de-

composition such that restriction and prolongation

operations do not need a halo exchange.)

The MPAS-Atmosphere software uses Fortran-

derived data types, called blocks, each block contain-

ing all the data pertaining to its region of the domain,

and using pointers to the next or previous block to

form a linked list. This linked list concept provides a

convenient framework that can be extended to include

multiple resolution grids using pointers to the next

coarser and finer grids (Fig. 2).

4. Helmholtz solver

The Helmholtz problem [(44)] is solved using a geo-

metric multigrid method (e.g., Fulton et al. 1986). The

grid is coarsened only in the horizontal direction. The

geometrical relation between fine and coarse grids

and the restriction and prolongation operators for

mapping between them are described in section 3

above. A single V-cycle is used. On the finest grid, a

number of iterations of some relaxation scheme (see

below) are taken to relax p0 toward the solution of

the Helmholtz problem. Then the residual in the

Helmholtz problem is calculated and restricted to the next

coarser grid, where it serves as the right-hand side in a

Helmholtz problem for a correction to p0. A number

of relaxation iterations are taken on this grid, and

the coarsening process is repeated down to some de-

sired depth. After some relaxation iterations on the

coarsest grid, the solution is prolonged to the next

finer grid and added as a correction to the solution

previously obtained on that grid. The relaxation and

prolongation process is repeated until the finest grid is

reached, and some final relaxation iterations are

taken on the finest grid.

The smoother involves a Jacobi iteration in the hori-

zontal and a line solve in the vertical. To be explicit,

write the horizontal Laplacian part of the Helmholtz

operator at level k in column i as

(
$z �

"
1

zz
$z(p

0)

#)
k,i

5
1

Ai

�
e

le
dezzk,e

(p0k,i0 2 p0k,i) , (60)

where the sum is over the edges e of column i, column i0

is the neighbor of column i across edge e, le is the length

of edge e, de is the distance between the centers of col-

umns i and i0, zzk,e is the value of zz at level k averaged

from cells i and i0 to edge e, andAi is the horizontal area

of the base of column i (Skamarock et al. 2012). The

Helmholtz problem [(44)] becomes

FIG. 1. Schematic showing the relationship between coarse grid cells (dashed) and fine grid

cells (solid) for two adjacent grids in the grid hierarchy. Both panels show the same region of

cells. The cells are colored according to which subdomain owns (left) the fine cells and (right)

the coarse cells.
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1

zzc
2
s

1a2Dt2
1

Ai

�
e

le
dezzk,e

!
k,i

p0k,i

2a2Dt2fD2N21[D1(p
0)]gk,i

5 (RH)k,i 1a2Dt2
1

Ai

�
e

le
dezzk,e

p0k,i0 . (61)

Then a smoother iteration is defined by simultaneously

updating all p0 in column i to satisfy (61) while holding p0

in neighboring columns at their previous values:

 
1

zzc
2
s

1a2Dt2
1

Ai

�
e

le
dezzk,e

!
k,i

p
(m11)
k,i

2a2Dt2fD2N21[D1(p
(m11))]gk,i

5 (RH)k,i1a2Dt2
1

Ai

�
e

le
dezzk,e

p
(m)
k,i0 , (62)

where p(m) is the estimate for p0 after m smoother

iterations.

The calculation of p(m11) is made more complicated

by the appearance of N21
on the left of (62). It is con-

venient to define q(m11) by

[N (q(m11))]k11/2,i 5 [D1(p
(m11))]k11/2,i (63)

and hence write (62) as

Ck,i p(m11)
k,i 2a2Dt2fD2[q

(m11)]gk,i 5 (Rq)k,i , (64)

where

Ck,i 5
 

1

zzc
2
s

1a2Dt2
1

Ai

�
e

le
dezzk,e

!
k,i

(65)

and

(Rq)k,i 5 (RH)k,i 1a2Dt2
1

Ai

�
e

le
dezzk,e

p
(m)
k,i0 . (66)

Next, eliminate p(m11) to obtain a tridiagonal system for

q(m11):

N [q(m11)]2a2Dt2D1C21D2[q
(m11)]5D1C21(Rq) . (67)

Having solved this system for q(m11), p(m11) is then

found by back substitution in (64).

As an aside, the linear system arising from the verti-

cally implicit acoustic substeps in the SRK3 scheme is

solved by eliminating the pressure to leave a tridiagonal

system for the vertical velocity (Klemp et al. 2007); in

this way, the above complication of inverting N is

avoided. However, for the three-dimensional linear

system of the SI scheme, eliminating pressure to leave an

equation for the vertical velocity would lead to great

complications, because D1 does not commute with the

horizontal Laplacian.

Alternatives to the horizontal Jacobi smoother that

converge faster are possible, such as coloring schemes,

which use the latest available results from neighboring

FIG. 2. Schematic showing how the MPAS data structure has been extended to include the

hierarchy of grids needed for a multigrid method.
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columns (e.g., Zhou and Fulton 2009). We have found

the convergence rate of Jacobi to be adequate. More-

over, it has the advantage that results are independent of

the order in which columns are updated; it thus presents

no barrier to bit reproducibility when runs are repeated,

even on different processor configurations.

On quadrilateral grids, Jacobi smoothers are typically

used with underrelaxation. However, the analysis of

Zhou and Fulton (2009) concludes that an under-

relaxation parameter close to 1 (i.e., little or no under-

relaxation) is optimal on a regular hexagonal grid, and

our own numerical experimentation confirms that this

remains true on a hexagonal–icosahedral spherical grid.

Therefore, no underrelaxation is used with the Jacobi

smoother.

An important characteristic of the Helmholtz operator

is that it has an intrinsic horizontal length scale aDtcs. If
the horizontal grid spacing is comparable to or greater

than aDtcs—in other words, if the horizontal acoustic

Courant number is less than about 1—then theHelmholtz

operator is dominated by the contributions from column i,

and the smoother iterations converge quickly.2 Thus,

once themultigrid solver has coarsened to this scale, few

smoother iterations are needed, and it is not necessary to

coarsen further. For typical flow and model parameters,

we found that three multigrid levels (i.e., the original

finest grid plus two levels of coarsening) were sufficient;

using more levels gave no benefit, but the solver con-

vergence deteriorated with fewer levels.

The fact that only a small number of multigrid levels

are needed simplifies the computational implementa-

tion of the multigrid solver. For a Poisson problem (e.g.,

Heikes et al. 2013), a deeper multigrid hierarchy is

needed. On coarser grids, this could result in very few

grid columns per processor so that processors run out of

work and communication costs dominate. To avoid this

problem, computational subdomains must bemerged on

the coarser grids. For the Helmholtz problem, in

contrast, a shallow hierarchy is sufficient, and no sub-

domain merging is necessary.

Because the Helmholtz problem is embedded within

an outer quasi-Newton iteration, it is not necessary to

solve the Helmholtz problem to a tight tolerance. It is

only necessary to solve it to sufficient accuracy to avoid

harming the convergence of the quasi-Newton iteration.

Solving it to a higher accuracy would increase the

computational cost for no benefit. After some experi-

mentation, our preferred configuration is to take a single

V-cycle, with one smoother iteration on the descending

branch, two smoother iterations on the ascending branch,

and four smoother iterations on the coarsest grid. This is

enough to reduce the residual in the Helmholtz problem

by several orders of magnitude. (We have also experi-

mented with a full multigrid method, which involves a

growing sequence of V-cycles starting at the coarsest grid;

however, this was significantly more expensive, while

giving no noticeable benefit.)

5. Comparison of algorithms and communication
load

An overview of the SRK3 and SI algorithms is shown

in Fig. 3. The work flow and data flow for the two al-

gorithms is remarkably similar, which has greatly facil-

itated the development of the SI version. In particular,

the SI version requires no special treatment at the first

time step [in contrast, for example, to a Strang carryover

scheme; Ullrich and Jablonowski (2012b)], and no extra

fields need to be saved to restart the model.

For the SRK3 scheme, the Runge–Kutta loop is exe-

cuted three times, once per stage. In code segment A,

the dynamical tendencies are calculated and added to

the physical tendencies (excluding fast microphyics) that

were calculated outside the loop. Next, in code segment

B, the acoustic substepping loop is executed (following

Klemp et al. 2007); this involves converting prognostic

variables to perturbations and taking the required

number of acoustic substeps. By default, there are 1, 3,

and 6 acoustic substeps on the first, second, and third

Runge–Kutta stages, respectively, giving 10 acoustic

substeps in total. In code segment C, perturbation vari-

ables are converted back to full model variables, and

some diagnostic quantities are computed. Finally, in the

last two code segments, advective fluxes are computed

and used to update moisture variables (D), and some

further diagnostic quantities are computed (E).

The SI solver follows a similar structure. The number

of outer quasi-Newton iterations may be chosen by the

user; we have used three. Code segments A and E are

the same as in the SRK3 scheme. Code segment C is

largely the same as for SRK3 but performs only a subset

of the calculations. The biggest difference is in code

segment B, where the acoustic substepping is replaced

by theHelmholtz solver. TheHelmholtz solver requires (i)

setting up the coefficients of theHelmholtz equation [(44)]

(at the first iteration only), (ii) building the Helmholtz

right-hand side [(46)], (iii) solving the Helmholtz prob-

lem using the multigrid solver (section 3), and (iv)

back substitution to obtain the updated prognostic

2 Note that, despite this horizontal decoupling, the Helmholtz

problem remains well posed. Even in the limit of complete hori-

zontal decoupling, the solution of the Helmholtz problem is

unique; there is no undetermined ‘‘constant of integration’’ that

could lead to large errors in horizontal gradients of p0.
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fields (section 2d). Code segmentD ismodified to include a

Runge–Kutta loop for the moisture variable advection; by

default, this is only executed on the final quasi-Newton

iteration, though the user can choose other options. Table 1

summarizes these similarities and differences.

For parallel computation, at various stages in the

computation, each subdomain needs information from

its neighbors: a halo region of cells or edges surrounding

the subdomain is filled with data by passing ‘‘messages’’

between processors. The cost of this communication can

be significant or even dominant on large numbers of

processors. Table 1 gives estimates of the size of

messages passed by different code segments during

the dynamical step. Define a message size of one unit

to be the amount of data involved in exchanging a

single layer of halo cells for a cell-based variable, such as

density. In some cases, a double layer of halo cells is

exchanged; this corresponds to approximately two units.

For an edge-based variable such as horizontal velocity,

up to three halo layers may need to be exchanged. The

innermost layer corresponds to one unit of data, and the

second and third correspond to three units of data each.

On the coarser grids used by the multigrid solver, the

message size for a halo exchange decreases by a factor of

about 0.5 per level of grid coarsening. Counting in this

way, the total message size per time step is 178 units for

SRK3 and 202 units for SI (assuming three quasi-

Newton iterations). The communications load for the

TABLE 1. Summary of differences in algorithm and communications between SRK3 and SI. The message size is normalized, taking the

total message size for one SRK3 step to be 100%.

Code segment Message size SRK3 Message size SI Comments

A 0% 0% Same routine

B 27.5% 46.6% Acoustic substeps vs Helmholtz solver

C 0% 0% SI uses a subset of the calculations in SRK3

D 23.6% 24.7% SI does some additional computations compared to SRK3

E 0% 0% Same routine

Other 48.9% 42.1% One halo exchange saved in SI

FIG. 3. Overview of the (left) SRK3 and (right) SI solver algorithms summarizing similarities and differences.
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code segments A–E is given in the table, normalized by

taking the total load for SRK3 to be 100%. Some addi-

tional halo exchanges occur during the time step but

outside these code segments, bringing the total to 100%

for SRK3. Code segment B has different communication

patterns for SRK3 and SI, amounting to an additional

19% for SI. However, we were able to reduce the size of

one halo exchange elsewhere, thereby saving about 7%.

Thus, the SI code involves an overall increase inmessage

size of approximately 12% per time step.

The communications cost of theHelmholtz solver is of

particular interest, since such solvers are widely per-

ceived to be expensive. A set of nine (cell based) co-

efficient fields are defined on the finest grid; these are

then restricted to the required coarser grids, each re-

striction operation requiring a single-layer halo ex-

change. In the current implementation, this coefficient

setup stage is done once per time step, though it could

probably be done less frequently. (A reviewer has sug-

gested an alternative, which is to restrict only the fields

needed to compute the Helmholtz coefficients—u* and

~rd* /p* plus some time-independent grid information that

only needs to be restricted once at the start of the

integration—and to compute the Helmholtz coefficients

directly on the coarser grids; this could be cheaper than

our current algorithm if the saving in communication

outweighs the extra computation.) Then, during the

course of the V-cycle, each restriction or prolongation

operation and each smoother iteration requires a single-

layer halo exchange. As noted above, the message size

for a halo exchange decreases by a factor of about 0.5 per

level of grid coarsening. The total communications cost to

set up the Helmholtz coefficients and solve three times

(once per Newton iteration) is 41 units. For the SI

scheme, 81% of the message size for code segment B is

associated with the finest grid; thus, the coarser-grid halo

exchanges contribute relatively little to the communica-

tions burden.

6. Results

a. Baroclinic instability test

The baroclinic instability test case of Jablonowski and

Williamson (2006) was carried out with the SRK3 and SI

versions of the model. For both versions, a horizontal

resolution of 240km was used (10 242 grid cells) with 41

nonuniformly spaced levels up to a model top at 45 km.

A time step of 1800 s was used.

Figure 4 shows the surface pressure and the temper-

ature at 850hPa at day 9 produced by the SI scheme. The

results from the SRK3 scheme appear identical by eye,

so the figure also shows the differences between the

results for the two schemes. The wave appears to be very

slightly more developed with the SI scheme, but only

by a fraction of a hectopascal in the surface pressure and

about 1:5K in the 850-hPa temperature. The two

schemes also give almost identical results for a passive

tracer initialized with a moisture-like distribution (not

shown). Finally, we verified that a passive tracer ini-

tialized with a constant mixing ratio retains that

constant mixing ratio identically through the integra-

tion, confirming the mass-tracer consistency property

(section 2e).

b. Nonhydrostatic gravity wave test

To test the SI scheme in a nonhydrostatic regime, test

case 3.1 of the Dynamical Core Model Intercomparison

Project (DCMIP) suite (Ullrich et al. 2012) was carried

out. The test comprises a basic state in balanced solid

body rotation with a zonal velocity of 20ms21 on the

equator, to which a horizontally localized but deep po-

tential temperature perturbation is added. Deep gravity

waves are generated, which radiate away from the initial

perturbation with a maximum phase speed of about

30ms21 relative to the background flow. The radius of

the planet is reduced (relative to Earth) by a factor of

125 so that the gravity wave wavelength is short enough

for nonhydrostatic effects to be significant. The domain

is 10 km deep, and uniform 1-km vertical grid spacing

was used. A horizontal grid of 40 962 cells was used,

corresponding to a horizontal grid length of about 1 km.

A time step of 12 s was used, with 8 acoustic substeps for

the SRK3 scheme.

Figure 5 shows the potential temperature perturba-

tion along the equator after 3600 s from the SI scheme

for a5 0:5 and a5 0:55. The results are similar to those

from the SRK3 scheme and from other models for which

results are available. The figure also shows the differ-

ences between results from the SI and SRK3 schemes.

When the SI scheme is centered (a5 0:5) the differences

are extremely small, showing only a very slight phase lag

(of order 3% of a wavelength) for the shortest waves.

Since the SI scheme artificially reduces the frequency of

high-frequency waves, this phase lag is exactly as ex-

pected theoretically. For the off-centered SI scheme

(a5 0:55) the differences show some small but notice-

able damping of the wave. Again, this is expected

theoretically.

c. Stability limit

Given the good stability properties of implicit time

integration schemes, it is reasonable to ask whether the

SI scheme might be able to run stably with longer time

steps or with weaker artificial damping than the SRK3

scheme. The baroclinic wave test case of section 6a was
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repeated for both model versions to determine the

largest time step that permitted a stable 12-day in-

tegration. For these tests, neithermodel version used the

W damping: r5 0 in (5). The SRK3 version used the

default values of the divergence damping coefficient

bd 5 0:1 and the off-centering coefficient bs 5 0:1

(Klemp et al. 2007). The value bs 5 0:1 in the SRK3

version corresponds to a5 0:55 in the SI version, with

the difference that off-centering is applied only to

acoustic wave terms in the SRK3 version but to all terms

in the SI version. For the SI version, we tested both three

and four quasi-Newton iterations; the cost of the extra

Newton iteration might be justified if it provided a suf-

ficient gain in stability.

Table 2 summarizes the empirical stability limits for

the various configurations tested. With no off-centering,

the SI version, evenwith four quasi-Newton iterations, is

somewhat less stable than the default SRK3 configura-

tion. However, with a modest amount of off-centering

the SI version becomes more stable than the default

SRK3 configuration, allowing time steps about 60%

longer for a5 0:55 with three quasi-Newton iterations.

In the centered case a5 0:5, an extra Newton iteration

allows an increase of about 40% in the time step, which

is more than sufficient to justify the additional cost of the

extra iteration (about 26%). However, in the off-

centered cases, the extra iteration produces only a mi-

nor change in stability.

d. Real data test

For time steps of the desired size (1800 s on a 240-km

grid, 900 s on a 120-km grid), we have not yet been able

to integrate the SI model version stably on the real data

test case used by Skamarock et al. (2012); themodel fails

within a few hours, even with the inclusion of W

damping or off-centering. (The model runs with time

steps 10 times smaller, but this is too inefficient to be

useful.) Diagnostics and sensitivity tests show that the

quasi-Newton iterations fail to converge or converge

very slowly, with the problem focused on the lowest

model level over the steepest orography, and indicate

the following explanation.

The evaluation of the horizontal pressure gradient at

constant height requires a contribution from ›p/›z

multiplied by the slope of model levels [see (4)]. In the

interior of the domain, the ›p/›z contribution is

FIG. 4. Results at day 9 from the baroclinic wave test case: (top) surface pressure; (bottom) temperature at 850 hPa; (left) SI time

integration scheme; (right) SI minus SRK3.
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interpolated vertically and horizontally to the required

location. However, at the lowest model level, the ›p/›z

contribution is extrapolated vertically. A consequence of

this extrapolation is that the sensitivity of the pressure

gradient term to a pressure perturbation p0 via the ›p/›z

contribution is comparable to or greater than the sensi-

tivity via the $zp contribution. Scaling analysis suggests

that this is likely to be the case in locations where the

slope ofmodel levels jzH j is comparable to or greater than

the ratio of vertical to horizontal grid spacing Dz/Dx.
Thus, because it neglects the ›p/›z term, the simplifica-

tion in (26) is not a good approximation to the Jacobian of

the system in such locations, and the quasi-Newton iter-

ations do not converge well. (For comparison, the

acoustic substeps of the SRK3 scheme do include the

›p/›z contribution to the horizontal pressure gradient.)

We are considering two approaches that might be

able to resolve this issue. The first is a reformulation of

the ›p/›z contribution to the horizontal pressure gra-

dient near the bottom boundary so as to reduce the

sensitivity noted above. The scheme used in END-

Game (Wood et al. 2014) is one candidate. The second

is to include the ›p/›z contribution in the simplifica-

tion in (26), and hence in the Helmholtz problem it-

self. This would have some cost implications: it would

increase the complexity of the Helmholtz solver, and

it would also increase the number of coefficients that

need to be restricted to coarser grids, though it would

not affect the size of halos that need to be exchanged

during the restriction, prolongation, and smoothing

operations.

e. Performance and scalability

Model integrations of the baroclinic wave test were

carried out for a range of different horizontal resolutions

[from 480km (2562 cells) to 15 km (2 621 442 cells), all

with 41 levels] and using different numbers of parti-

tioned subdomains (24–1920) in order to compare both

weak and strong scalability of the SRK3 and SI model

versions. Graph files were generated using the gpmetis

command of the Metis package (version 5.1.0) with

TABLE 2. Maximum stable time step for various model

configurations.

Scheme

No. of quasi-Newton

iterations Damping

Max stable

Dt (s)

SRK3 — bs 5 0:1, bd 5 0:1 2970

SI 3 a5 0:5 1998

SI 3 a5 0:55 4536

SI 3 a5 0:6 5130

SI 4 a5 0:5 2844

SI 4 a5 0:55 4770

SI 4 a5 0:6 4644

FIG. 5. Results at t5 3600 s from the nonhydrostatic gravity wave test case. All panels show longitude–height sections along the equator.

(top) SI time integration scheme with a5 0:5; (bottom) SI time integration scheme with a5 0:55. (left) Potential temperature pertur-

bation from the reference undisturbed profile; (right) potential temperature difference of SI minus SRK3.
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default options for optimization. The scaling tests were

run on the University of Exeter supercomputer Zen.3

For each model version, resolution, and decomposition,

the model was run once, with the code timers set to

collect data from 10 consecutive periods. Each of these

measured time periods represents 100 time steps, and in

the results presented in this section, the minimum value

from the 10 periods is used.

Figure 6 shows that the cost per time step is very

similar for the SRK3 and SI model versions in all con-

figurations, with the SI version being typically 10%–

20% more expensive. In particular, both the weak and

strong scaling characteristics of the two versions are very

similar, with strong scaling performance falling off when

there are fewer than a few hundred grid columns per

processor. Similar behavior of the SRK3 version is

found on other machines.

To further understand the cost of the algorithms,

timers were implemented for each code segment A–E

within the main loop (including any communication

within those segments) and also for all communications.

Figure 7 compares the costs of the different code seg-

ments for the SRK3 and SI versions at two different

resolutions and on different numbers of processors, ex-

pressed as a percentage of the total SRK3 cost. Al-

though the behavior does not depend smoothly on

processor count, some patterns are clear. The most ex-

pensive code segments are B and D, and these are sig-

nificantly more expensive for the SI version, though

always less than double the SRK3 cost.4 Segment C is

slightly cheaper for the SI version. These differences are

consistent with the comparison of the algorithms in

section 5. Also, as might be expected, the fractional cost

FIG. 6. Weak (dashed) and strong (solid) scaling results for the SRK3 version (red) and SI

version (blue). Black reference lines indicate perfect scaling relative to a reference case with 24

processes.

3 Zen is a Silicon Graphics, Inc., (SGI) Altix Integrated

Compute Environment (ICE) 8200 system. It is a water-cooled

distributed-memory cluster consisting of 160 dual hex-core

2.80-GHz Intel Westmere nodes. There are 12 cores and 24GB of

memory per node, giving 1920 cores and 3.8 TB of memory in

total. The compute nodes are connected with Dual DDR 4x In-

finiband, and the machine uses a Linux operating system (see

http://hpc.ex.ac.uk/techspecs.html).

4 Note that, because of the way the timers were implemented, the

costs for segments B andDwere not cleanly separated; the total for

B plus D, however, is reliable.
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of the communications gradually increases as the num-

ber of processors increases.

7. Conclusions and discussion

Asemi-implicit formulation of theMPAS-Atmosphere

dynamical core has been presented. It is based on a quasi-

Newton iteration toward a Crank–Nicolson scheme. The

Newton update equations lead to a Helmholtz problem

similar to that in other SI models (though the unaverag-

ing operationN21
that arises because of the Lorenz-grid

vertical staggering does not appear to have been noticed

previously). A geometric multigrid method is used to

solve the Helmholtz problem.

On the Jablonowski and Williamson (2006) baroclinic

wave test case and the DCMIP small-planet non-

hydrostatic gravity wave test case, the SI model version

produces almost identical results to the original SRK3

version, suggesting that spatial discretization errors dom-

inate time discretization errors. The SI version costs

around 10%–20% more per step than the SRK3 version.

The key to achieving such efficiency in the SI version is not

to do more work than necessary. Because the Helmholtz

problem is embeddedwithin the quasi-Newton iteration, it

does not need to be solved to a tight tolerance; a single

V-cycle is sufficient. Moreover, the horizontal acoustic

wave Courant number, which determines the horizontal

length scale in the Helmholtz problem, is typically of

order 10 or less; this means that a shallow V-cycle (we

use three multigrid levels) is sufficient, and merging of

computational subdomains is not needed. Finally, by

linearizing about reference thermodynamic profiles

close to the actual predicted profiles, we ensure that the

quasi-Newton iteration converges quickly, and only a

small number of iterations are required.

The additional cost per time step of the SI version

compared to the SRK3 is compensated by the ability to

take somewhat longer time steps without loss of stabil-

ity. The weak and strong parallel scaling characteristics

of the SI and SRK3 versions are very similar. This might

be expected given the structure of the respective algo-

rithms: both the multigrid solver in the SI version and

the acoustic substepping in the SRK3 version involve a

few single-layer halo exchanges per step.

We have not been able to run the SI version stably with

realistic orography. Diagnostics indicate that the form of

the horizontal pressure gradient term in the lowest model

layer is not well captured by the approximations in the

FIG. 7. Relative cost of different code segments for the SRK3 and SI versions vs number of processors, expressed as a percentage of the

total SRK3 cost. Solid curves are for SRK3, and dashed curves are for SI. (a) A 240-km grid (10 242 cells); (b) a 30-km grid (655 362 cells).
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quasi-Newton method of section 2b. Further work will

investigate whether an alternative form for the pressure

gradient term in the lowest layer or a modification of the

quasi-Newton method that makes a more complete ap-

proximation of the pressure gradient term can produce a

stable method.

On locally refined spherical centroidal Voronoi grids,

the relation between neighboring grids in the multigrid

hierarchy becomes more complicated than in the quasi-

uniform case: both the stencil and weight coefficients for

the restriction and prolongation operators must be

modified. We have successfully run the baroclinic wave

test case using the SI model version on a locally refined

grid. The details will be reported elsewhere.

Finally, we note that the code infrastructure changes

implemented to handle the multigrid grid and data

structures, along with the restriction and prolongation

operators, may have other applications besides the SI

time integration scheme; these include data assimilation

and the production of quick-look, low-resolution output.
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