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Summary.

Traffic and wind excitation has been used to obtain the dynamic characteristics
of the fust Bosporus suspension bddge. Structural symmetry and the absence of
suspended side-spans allowed attettion to be focused on the main span and the Asian
tower. For the main spa4 18 vertical and 20 lateral modes were obtained, including
to$ional modes. For the tower, 12 vertical plane and lateral plane modes were
abstracted, again ircluding torsion. All these modes lie in the range G1.1 Hz.

A detailed comparison is given between tbese modes and corresponding
calculated on€s, obtained by use of a three-dimensional finite element model which
includes a geometdc stiffness matrix. Of particular interest is the validity of the
theoretical model used for tbe box dec\ because of its subsequent use in respotse
studies under aysnchronous seismic input.

Cornparison with a more limited study made in 1973 shows that the bridge
continues to behave as it was designed to behave, partiolarly with regard to the
deck-towe! interface. From ltatuml frequency measurements of two hangers, the load
which they carry was assessed.



Introduction.

The response of long span suspension bridges to earthquake forces is of
particular interest because oftheirflexibility, and because the large distances behveen
towers arld anchorages at opposite ends ofthe rnain span introduces the likelihood of
different ground input motions on these four regions. As w€ll as the effect ofthe soil
and rock on frequency coltent of the ground motioq there is also a time difference
betweel the input motions, which caD be several seconds.

The motivation for the field studies described in this paper arose from an
interest in the seismic response of suspension bridges of the modern B?e to the
asynchronous inputjust described(1,2), carrying with it the need to validate necessary
assumptions made inthe finite element mathematical modelling. physical models can
ofcourse be made and tested in the laboratory, but in such models it is always difficult
to reproduce the exact as-built colditions, and even though natural frequencies and
modal shapes can often be checked by physical models, the important parameter of
dampiDg cannot. The word "modern" is used here to describe suspension bridges
having flexible towers, box-deck and possibly inclined hangers, exemplified by
Sevem, Humber and Bosporus. As far as is known to the authors, the only preuous
studies atfull-scale or suchbridgeswere those byTezcanet al (4) onBosporus between
completion and commissioning. In these studies the eccentric-mass exciters used to
force vibrationwere only effective above about 1Hz and so missed the impo aDtlower
modes, although some ofthese lower modes were identified using ambientvibration
measurements.

Humber(3) and Bosporus were chosen for these tests because, although both
are cartainly of the modem type as defin€d above, they have imponant and potentially
int€resting differences. Humber has concrete towers, a relatively narow but deep
box-deck ofhigh torsional stiffness; both side-spans are carried by the cable but one
is roughly twice as loDg as the other; the main span is the longest in existence, and
near centre span the hang€rs are doubly-hinged. In contrast, Bosporus (Fig. 1) has
steel towers, a wide, shallow box-deck, side-spans ofroughly equal length but which
are supported on columns ruther than being caried by the cable, and singly-hinged
hangers throughout the centre span. A further, non-structuml but very important,
difference between the n o bridges from the testing aspect, is that wbereas traffic at
Humber is very modest, Bosporus is saturated by more than 140,000vehicles per day,
rnany being heary lorries, which means that tbe live load is not an insignificant fraction
of the dead load.

Testing Procedure.

The testing procedure was dictated by the time and equipment available. Ten
days was all that could be allowed, with use of thr€e Schaevitz ISOC force balance



servo-accelerometers having an operating range r 0.259 in the frequency band G30
Hz, and a module containing power supplies, amplification and signal conditioning
facilities for the accelerometers. This module was purpose-built, with a facilitywhich
permitted operation of the accelerometers for measurement of both vertical as well
as horizontal motion. A Racal Store 4DS four chamel tape-recorder was used to
record signals from lhe three accelerometers, and running it at its lowest speed of
0.9375 idsecused a 3300 ft tape in 12 hours. During the recording, the timing oscillator
signal was fed to the fourth channel to allow faithful replay to be assured. Whilst
recording the three accelerometer signals, two of them were displayed on an
oscilloscope and also supplied to a Solartrol 1200 Signal Processor.This functions as
a two-channel spectrum analyser, and was used to compute the auto power spectrum
ofeach of the two signals and the transfer function (modulus, phase and conerence.l
between them. For on-site analysis, this spectrum analyser was normally set to alalyse
in the frequency range 0-2 Hz, with R.M.S. averaging ofrepetitive measuremenn, no
trigge ng, automatic input ranging and Hanning windowing. For 0-2 Hz linear
analysis one average required 187.5 sec.

Because of the attenuations and analogue processing between recording and
replay from the tape recorder, this replayed signal is certain to be of poorer quality
than the signal recorded. The fact of the recorded data being eventually replayed to
the spectrum analyser means that the highest quality of spectral data available from
the tcst is obtained on site, and it is important to store this data digitally directly from
the analyser. For tbis purpose a BBC microcomputer was used with an IEEE-488
interface to do$r oad the spectral data buffers from the Soladron.

The complete testing equipment was air-freighted from Bristol to Istanbul in
three specially strengtheled aluminium boxes, each measuring 1 x 1.5 x 2.0 m.

Testing Programrne,

Included in the equipment was 2000 rn of instrument cable, whose length
determined the precise deployment of the accelerom€teq one ofwhich was kept at a
leference station while the other two were moved together, placing them at opposite
extremes of either width or height in order to gain inlormation about torsional
oscillations. Inspection oftheoretically predicted mode shapes(12) indicated suitable
positions for reference stations, where modal amplitudes were expected to be
relatively large for most modes. Fig. 2 shows a two-dimensional linite element model
and tbe stations at which measurements were taken. These stations were located
inside the box-deck at bulkheads close to the hanger attachment points, and because
of symmetry about centre-span there is a concentration (Nos. 1-11) of these
measurement stations in one half of the bridge, with a few stations in the other half
(Nos, 1216) to actually check for symmetrical behaviour. For the same reason. onlv



theAsiart tower was studied. Station 6was initially chosen as reference, but experience
at the start ofthe test indicated that Station 7 was more suitable and this was used for
almost all measurements. A block diagram of the procedure is given in Fig. 3.

Data Processing.

From the recorded acceleration signals due to wind and traffic it was necessary
to determine

(i) frequency, damping and spectral amplitude at each resonance;

(iD the type ofmode - vertical, lateral or torsional; and

(iiD the ratio of response of travell ing and reference accelerometers.

All the signalswere replayed to the Solartron signal processor, which functions
as a twin-channel Fourier analyser. It analyses each channel separately and also
performs cross-spectral analysis. To obtain resonance frequencies, amplitudes and
damping, each signal was analysed separately, using the auto power facility. The
response signals were recorded for a minimum of45 rninutes for vertical response, or
90 minutes for lat€ral response.

Some of the data was processed on site and presewed in the form of digitally
stored spectral buffers. On returning to Bristol, the tapes were replayed into the
spectrum analyser to complete the set of spectral auto power and transfer fulction
data. That is to say, for the main span auto power spectra for each accelerometer and
transfer functions (magnitude, phase and coherence) between each traveller and the
refererce. For the tower measurements the only difference was that the transfer
functionwas obtained between each of the three pairs ofaccelelometeIs.The spectral
data obtained on-site was for 0-2 Hz, but to speed up the data processing at Bristol,
the replay speed was 32 times recording speed and analysed on a 0-50 Hz bandwidth.
Correcting for the increased speed, these spectral data buffers were generally for a
0-1.5625 Hz bandwidth. Each olthe auto power buffers was examined using a cuwe
fitting routine for fitting ambient response to a single degree of freedom oscillator
resDonse.

A(0 = F(0.(2,02
k\/ I$ - $1 f il")" + (2 Erl t i)" j

where f: frequency variable
fn =undarnped natural frequency

6 = damping ratio (fraction of c tical damping)
k:modal stiffness
F =input force.



To fit this function to the measured data it is assumed that the exciting force
spectrum is flat over the fitted frequency range, and that ther€ is no interference with
other modes. In the absence of any definite knowledge of the input spectrum it is
questionable whether use of this fitting process isjustified, but it is at least as good as
measuring the amplitude and frequency of the biggest peak among the one or more
maxima occurring around the approximate ftequency ofinterest, and it also produces
an estimate of damping with litde extra effort.

A provisional set ofnatural frequencieswas determined for the following B?es
ofmode:

1 rnain span vertical, including torsional,

2 main span lateral,

3 tower vertical plane, including torsional

4 tower lateral plane.

The values of transfer functioo modulus, phase and coherence at these
frequencies, or frequencies close to these showing the maximurn coherence between
the signals, were determined byinterpolation, Thesevalueswere combined and sorted
into four sets ofmode shapes aDd natuml frequencies as follows:

Main Span:
18 vertical, including torsional, modes

20 lateral, including to$ional, modes

Asian Tower:

12 vertical plane, including torsional, rnodes
12 lateral plane modes

0-1.05 Hz
0-0.9 Hz

0-1.1 Hz
0-0.8 Hz

For damping, the values of 6 for each mode were averaged over all
measurements to give the presented values, expressed as a percentage of cdtical
damping. The curve fitting process is expected to give better estimates of damping
thanwould be obtained by the half-power bandwidth method, but it does not reduce
the inierent efior due to broadening of spectral peaks in the signal processing.(6)

Main Span Vertical Measurements.

Fig.4 shows the vertical acceleration response spectrum for station 6 in the
range 0-7.5 Hz. This, and other, spectra are square root auto power values (moduli of
one-sided FFI values) and values at each frequency are amplitudes that would be
measured by analogue filtering out all but a qarrow band equal to the spectrum
analyser resolutiorL which here is 0.003125 Hz. Above 2 Hz in Fig. 4, instantaneous



vertical accelerations approaching 0.2gin magnitude, due to intense traffic load, were
physically unpleasant and caused damage to the spectrum analyser.

The objective ofthese tests was to validate the finite element model, forwhich
the range 0 to approximately 1 Hz is of value. A convenient bandwidth for analysis
was 0-1.5625 Hz, and only response within this range is considered from here onwards.
Because acceleromete$ were placed either side of the box decl the sum of the two
signals gives veiical motion, whereas the difference gives torsion; these are shown
in Fig.5a and 5b, respectively.

Of the 18 modes believed to be present in the 0-1.0 Hz nnge, the first 10 are
given in Fig. 6; the remainder are to be found in reference 5. These mode shapes are
presented as the real projections of the complex modes, normalised with respect to
the reference position at station 7 (Fig. 2). Each data point is represented by a circle
whose diameter is proportional to the value of transfer coherence between the
tmveller and reference accelerometer signals, thus larger circles represent more
reliablevalues. Poor quality data hasbeen ignored, givingthe appearance ofdistorted
mode shapes in some of the modes shown in Fig. 6.

It was not possible to decide on the natural frequencl ofthe first antisynunetric
mode, since it seems to appear weakly at two frequencies, one above and one below
that of the first symmet c mode. It had been predicted by tbe rheoretical studies (1)

that the mode would appear a1 one or other of two frequencies depeoding on the
precise detail at the boundary conditions at the towers, and special attentionwas paid
to the response spect.a between 0.1-0.2 Hz to determine which deck boundary
conditions applied.

Above 0.2 Hz the modes show the familiar pattern of altenatingsymmetry and
antisymmetry up to the resolution limit due to the number ofmeasurement points. A
number of torsional modes matching the frequencies in Fig. 5b show themselves by
their own pattem of symmetry, The appearance of two distinct, but similar, torsional
modes between 0.45-0.50 Hz should be noted.

Main Span Lateral Measurements.

The lateral acceleration response spectra for station 5 are given in Fig. ?. The
first 10 ofthe 20 modes believed to be present in tbe range 0-0.9 Hz are given in Fig.
8; the lateral deflection of the Asian tower is illust.ated in the mode shapes. Torsional
modes,5 and 10, also appear in the lateral modes, as comparison with Fig.5b will
show. The signals were weaker, presumably because the accelerometers were closer
to the centre of rotation than for the vertical measurements.



Tower I-ongitudinal Measuremertts.

Fig.9 shows sum and difference signals from two accelerometers in the east
and west columns of the Asian tower; these signals are much lower in strength than
those obtained from the venical main span measurements. Mode shapes were
obtained ftom scanning coherence values for local maxima around the frequencies
picked up at the tower tip, and these are shown in Fig. 10. No measurable response
was obtained at the base of the tower. With the exceptiot ofa weak mode at 0.8 Hz
(mode 9) all the modes occur at the same frequencies as main span vertical modes.

Tower I-ateral Measurements.

The auto power spectra for lateral acceleration at the tips of the Asian tower
are shown in Fig. Lt. The signals were stronger than for the longitudinal response. Fig.
12 presents the mode shapes. The strongest four peaks in Fig. 11 coffespond to modes
3,4,5 and 8. Cornparison with the lateral span modes (Fig. 8) indicates that most of
the tower modes are participating in span modes. The coherence values show that
some reliance can be placed on these modes. They also show significant foundation
response, and a progression from zero noded cantilever modes, through zero noded
shear type modes, to one-noded cantilever modes.

The relative strength of the lateral modes is not surprising, considering that
motion in the longitudinal direction is considerably restmined by the main cables
connectingwith the anchorage. The fact that these cables do not support the side span
is not significant; as shown previously for Humber(3), suppoded side spans have
mostly independent modes which have no influence on cable deforma on al
frequencies ofthe main span modes.

Comparison ofMeasured and Predicted Vertical Modes.

As mentioned earlier, the spur for these full-scale measurements came from
unce ainties about the necessary assumptions which were made in the finite element
modelling required for wind and earthquake response studies(l'2). In what follows,
tbe theoretical frequencies are taken from the three-dimensional finite element
model, where the represeritation of the deck was a subject ofparticular interest. The
experimental and theoretical mode shapes are compared by scaling the former to
match the latter, using the least squales method; only those having coherence greater
than 0.2 with respect to the tmveller (0.1 for torsional modes) are drawn, as consam
diameter circles.

Table 1 compares the vertical plane ftequencies; column 5 gives the values
obtained by Tezcan et ut(a) in t973. fig. 13 compales the mode shapes of rhe first 4
modes; the remainder are to be found in reference 5.



The design assumption for the deck/tower support is that tbe bearings are
free-sliding atboth ends, and if this is built ioto the calculatiors, the first vertical mode
is antisl'rnmetric.If, on the other hand, one end onlyofthe deckis assumed free-sliding
with the oth€r end hinged about the upstream-downstream axis, the first mode
become symmetric, At Humber (3), the first measured mode was symmetric, and
detailed meaurements around the decldtower support area showed a stick-slip
situation at one tower. At Bosporus the first measured mode is antisymmerrq
although it appears at two slightly different frequencies. The taffic loading here is
more than ten times that at Humber, so tbat the beadngs have been subjected to
appreciable mov€ment. Certainlybothbearings appeared tobe in frequentbutjarring
motion of itches at a time, compared to the less frequent smaller motions of the
bearings at Humber.

One possible explanation ofthe appearance ofthe first antisymmet c mode
at two frequelcies is that the bridge has a'split personality' between two bearing
conditions. While the bearings are temporarily stationary during a relatively light
loading period, the higher frequency mode gains energr, but this is dissipated in
friction when the bearirgs start to move under increasing load, and the lower
frequency mode is established. This dissipation of energy by bea ng friction could
explain the weak signals measured.

In the 19?3 measurements of Tezcan et al(a) only four rnodes were identified
using ambient vibration measurements, and since the lowest symmetric and
antisymmetric modes were not among these, it can be inferred that no appreciable
response was me!6ured in these modes. Thiswould indicate that the bridge behaved
in the same way in 1973 and 1987. The 1973 ambient vibration measurements were
made before the bridge was opened and subjected to lormal traffic loads, so the
vehicular loading doe,not appear to be a factor in the behaviour ofthe bearings. The
traffic load, though numerically great in vehicle tem, is around 3% of the suspended
structureweight, which mayreduce natural frequencies byaround 17o, One recording
ofvertical response between 5pm in the evening and5am the following morning shows
minimum frequencies for modes 1-4 corresponding to the 7-8pm period, steadily
increasing to a maximum at 3-4am, followed by decreasing frequencies to the eod of
the recording. The timing suggests tralfic loading rather than temperature as the cause
of the variations, and the differences between the maximum and minimum
frequencies are betwe en 1.2Vo and 1.4Vo for each mode.

Comparison ofMeasured and Predicted Lateral Modes.

Table 2 compares lateral modes from the three-dimensional finite element
model and the test measurements, whilst Fig. 14 compares the fiIst five mode shapes.



The 1973 studyused force generators to excite three modes above 1Hz, beyond
the range ofthis study. The lower modes would not have been excited due to the force
characteristics of the machines used.

Comparison between experimental and theoretical modes is not simple for

lateral modes. Although 20 possible modes were identified up to 0.9 Hz, only four

theoretical modes in the same range have appreciable motion of the deck structure,
however, these are several 'cable' modes in which the tower moves in phase or in
antiphase with the main cables and the deck structures moves comparatively little.

Comparisor ofMeasured And Predicted Torsional Modes.

The frequency compadson for torsional modes is given in Table 3, including
one 1973 measurement, whilst Fig. 15 compares mode shapes. Here, the
displacements in the two planes are drawr to the same scale with respect to the
theoretical modes, and the ratios of the experimental modal displacements from the
two planes are given for comparison. There is good agreement, except that the
predictions give only one single noded antisymmetric mode, whereas the
measurements clearly show that there are two modes ofthis t)?e at close frequencies.
Additionally, two 3-noded artisFnmetric modes are predicted at close frequencies,
where only one is found in the measurements.

l,ongitudinal Response.

In the main span, the longitudinal response speaks up to 0.5 Hz correspond
closely to vertical modes. Above 0.5 Hz the best correspondence is with lateral
frequencies, which is surprising.

Of particular interest is the longitudinal response of the deck at the tower
supports. For this purpose, accelerometer were placed either side of the A-frame
rockers, one at each end ofthe deck girder and orle on the tower lowerportal, but the
responses obtained were confirsed, and little useful information was obtained.

Hanger Response Measurements.

Apiezoelectricaccelerometerwasused to measure the longitudinal and lateral
acceleration response of two of the inclined hangers close to the measurement
reference station. Examination of the auto power spectra of tbese measurements
showed clear acceleration peak at integer rnultiples ofa base frequencf (3-4Hz). The
base frequency (and its harmonics) vaded by as m:uch as 1Vo over a period of 15
minutes, and within the ranges ofvariation of these frequencies, the coherence of the
transfer functionbetween the hanger and deck motionswas close to zero, showing the
independence of the hanger vibrations.
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calculated using the formula:

viblate as taut stdlgs, the hanger

where fn= frequency ofnth harmonic
L= length of hanger (m)
s = rension in hanger (N)
q: mass per unit length (kgm)

For the two hangers measured the calolated tensions were
'?'?OkJ.I +'7 -5/o
1070kNN r14.2Va.

Conclusions.

1) Within the range 0-1.1H2 the measurements identified 18 vertical modes
and 20lateral modes in the main span. Five ofthe lateral modes and five ofthe vertical
modes were believed to be (the same) torsional modes. Similarly, 12 modes in the
verticaVlongitudinal plane and 12 lateral modes were identified in the Asian tower.

2) The experimental frequencies and mode shapes were compared to those
obtainedbytwo- and three-dimeruional finite element aralyses.In general computed
and measured natural frequencies and mode shapes were in close agreement, and it
was possible to establish direct compadson between the experimental results and the
theoretical predictions for 13 vertical modes, 9 lateral modes and 5 torsional modes
in the main span.

3) The very good agreement obtained between the measurements and
predictions for ve ical modes indicates that for these modes a mathematical model
based on the dead load state with superimposition of elastic and geometric stiffness
matrices is valid.

4) In thispaperthe measurements havebeen comparedwith predictions made
usingthe three-dimensional model, since thiswas able topredict tolsional modes and
also gave a better description of the complex nature of the lateral cable and,/or deck
modes. The equivalent plate elementused was thus proved to be useful in predicting
torsional response.

5) The measured values of vertical natural frequencies were generally lower
thanthose measured independentlyin 1973 (with the Bridge lightlyloaded) and those
predicted in the finite element analyses. This may suggest that the mass has increased

n
.>\



(haffic loading), that the Bridge has been 'run in' and had become slightly less stiff,
or that there were consistent erlo$ in one or other of the experimental techniques;
the mass increase is the most likely cause. This suggestion is supported by the observed
variation of vertical frequencies between times of heavy and ligbt trafric loading.

Q The comparisoru of rneasured and predicted characteristics suggest that in
spite of the age of the Bridge and its high loading, the Bridge is behaving as it was
intended and there appears to be no loss of integrity with respect to the structure as
designed.

7) The impression ftom the results is that the first mode is antislmmet c,which
would suggest that the structure is behaving as designed, with longitudinal movemeDt
being accommodated at both of the main span bearings. The appeannce of an almost
identical (but slighdy$,eaker) antisymmetric mode at a higher frequenc? than the first
symmetric mode suggests that sometimes one or other of the bearings becomes
tempomrily 'seized'.

8) The observed hanger vibrations are consistent with the behaviour of a cable
in tension, and based on this modelvalues ofcable tension havebeenestimated.These
figures show considerable variations with time and betweeo different hangers.
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Figures.

Fig. 1. Bosporus bridge; general arangement.

Fig, 2. Two dimensional finite element mesh and measurement stations.

Fig. 3. Measuring recording and analysing equipment.

Fig. 4. Main span vertical acceleration response.

Fig. 5. Main span acceleration respolse;
(a) venical (sum of accelerometer signals),
(b) torsional (difference of accelerometer signals).

Fig. 6. Vertical plane mode shapes for the main span and Asiao tower obtained
from vertical measurements,

Fig. 7, Main span lateral accelemtion response.

Fig. 8. hteral mode shapes for the main span and Asian tower, obtained from
lateral measurements.

Fig. 9. Asian tower longitudinal acceleration response

Fig.10 Asian tower longitudinal modes

Fig.11 Asian tower lateral acceleration response

Fig 12 Asian tower tateral modes

Fig 13 Compadson of the first fiye measured and predicted vertical deck modes

Fig.14 Comparison of the first five measured and predicted lateral deck modes.

Fig.15 Comparison of measured and predicted torsional modes.



Table 1.

Table 2.

Table 3.

Tables.

Vertical modes; comparison ofmeasured and calculated frequencies.

l:teral modes; comparison of measured and calculated frequencies.

Torsional modes; comparison of measured and calculated frequencies.
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