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SUMMARY

A suspension footbridge located in a tourist attraction in Singapore has a suspelded
span of 35m and was designed for static pedestrian and wind loads. In common with
other bridges of this type it is a light, efficient structure and has a lively dynamic
performance.

Distributed parameter and finite element models were used to understand the vertical
plane behaviour of the bridge and a prototype dynamic test using impact excitation
was conducted to check the models and investigate the dynamic respons€.

This first two vertical vibration modes were found to occur at the same frequency,
2Hz, as the average pedestrian footfall. Response to pedestrians was simulated using
linear and nonlinear modeis of a moving excitation source.

INTRODUCTION

At the time ofwriting, the only conventional suspension bridge in service in Singapore
is a 35m span footbridge located in a tourist attraction. Because such a bridge is
unusual in Singapore the design was made to be conservative but the bridge has qulre
a lively dynamic response. This 'bouncy'bridge is seen as a positive asset, adding to
the attraction to visitors. The liveliness is tr?ical ofcable supponed footbridges [1,2].
Preliminary dynamic investigations from impact testing, heel drop and healywalking
ildicated that vertical vibrationswere readiiy excited, lateral vibrations could only be
excited with difficulty, and that torsional response was generated only by deliberate
effort and was heavily damped.

It was found that vertical plane vibrations at approximately 2Hz that could be excited
as an antrsymmetric mode or a symmet c mode depending on the poinl ofexcitation.
A single pe.son walking heavily across the bridge could excite noticeable vibrations
at this frequency before reaching midspan resulting in a 'floating' sensation while
walking across the remaining half span. The nature of the 2Hz vertical plane
performance was therefore of particurar interest due to its coincidence with natural
footfall frequency.

The aim of this research has been

a) to explore the liveliness ofthe bridge experimentally,
b) to set up simple mathematical models representing vertical plane performance,
c) to explore effects of varying structural parameters and tune the models to the
experimental results and
d) to compare measured response to a pedestrian with simulation from linear and
nonlinear models.
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STRUCTURAL ARRANGEMENT

Figure 1 shows the bridge features. The suspended deck has a 35m span and there are
no side spans. The deck comprises 3 grade 43 229xg9mm roled steel channel section
stringers with total second moment of area I = 1.02x 108mm4. Lateral braclng rs
provided by 152x76mm channel section transoms beams welded below the stringers
at 3m intervals. 7(h?0mm angles span diagonally between transoms. The walkway
comprises 25mm timber panels supported on the stringen. The handrail system is a
vertical unbraced steel frame with uprights welded to the transoms.

The towers comprise rolled steel square and rectangular hollow sections, Each tower
upright, 6m high, is braced by two diagonal and two horizontal members and is pjnned
about a lateral axis at the tower footing. Curved machined blocks form the saddtes.
Each main cable is a 26mm diameter fibre core wire rope with a sag of 5.5m and a
horizontal tension ofapproximately 30kN per cable. In the design for static loads the
effective cable area Ac and (static) modulus Ec were taken as 66o/a and 30Va
respectively ofvalues for solid steel material. The straight backstays are 9.4m long, at
30' to the horizontal. Vertical hangers, at 3m intervals, are 16mm diameter steel rods,
effectively pinned at each end.

The fixity at the end of the deck is uncertain; the deck stringers end at the rower
footings, without specific restraint. The handrails continue beyond the towers and
offer some restraint to rotation.

The design of the structure, for static loading, was for 31n/sec wind speed, unfactored
dead load of 2.14kN/m and unfacrored live load 5.58kN/m.

MATHEMATICAL MODELLING

From preliminary experimental investigations of the behaviour of the bridge, which
included excitation by heel-drop, walking and bouncing it was observed that the
vertical plane vibrations were the strongest, most interesting and important aspect of
the dynamic behaviour. From the experience of analysing and testing several other
suspension bridgesl2-s] it is clear that the behaviour in the vertical plane is usually
modelled with acceptable accurary using two-dimensional models taking rhe deck as
a beam. This particular bridge has manysimilarities with rhe previously tested bridges;
it is symmetric, with cables and hangers in parallel vertical planes. The torsional and
Iateral resistance ofthe deck in the other bridges has little ifany elfect on the vertical
plane behaviour.

Since the design of the bridge for static loads is conservative, the deck is likety to
contribute significantly to the dynamic stiffness. In the complete suspension bridge,
since the hangers are stiff, the d€ck and cable are forced to vibrate toqether in the
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vertical plane. As separate components the deck and cable woukj adopt their own
vibmtion patterns so it is interesting to see to what extent the marriage of the deck
and cable modifies the natural behaviour ofeach sub-structur€. To this end the bridse
was represented as

r) a catenary (i.e. zero deck rigidity)
ii) a beam (i.e. zero cable tension)
iiO bridge; a combination ofbeam (girder) suspended from the carenary.

Each ofthese was modelled as a distributed parameter (Dp) system using conlinuum
equations and the bridge was also modelled using discrete coordinate or tjnite
eiements (FEs).Ineach case the total massand stiffness characteristics were collapsed
to a single vertical plane representation, ignoring lateral and torsional behaviour.

CONTINUUM EQUATIONS FOR DISTRJBUTED PARAMETER SYSTEM

For the catenary, the ends are assumed to be fixed and the mass of the deck to be
directly transmitted to the cable by inextensible connections. The total load per unlt
length is p. In the static configuration the horizontal component of cable tension is
H; the time varyingpart in dynamic response is h(t). The vertical positionwirh respecr
to an origin (x,y =0) at the lowest (midspan) point in the cable is y(x) and the time
varying part v(x,t).

Under static loads, equilibrium is given by

Hy" =p
1)

and for dynamic response in free vibration by

(H+ h)(y+v)"  =p +pi lg

Combining equations (1) and (2), ignoring second order terms, using the midspan sag
computed from equation (1) d = pPl8H and using a term -Elvi'for girder rigidity
leads to:

v" io
Hg Htz
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3b)
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Assuming a

[t' = pr'Ing
solution of the form v(x,t ) = rQx;d.t, tlty
with a = 2Jrf, the general solution for equation

= F-t and defining

(3c) is
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v(x) = Acosh(prx) + Bsinh(prx)+ Ccos(pr) + Dsinfpx) _Sd?(plfH . . q)

where pl, p2 are

,, = 
l@t!]-,,, 

= 
l@*=1)",

a = EI,/H and e = 4ap'. Natural frequencies are then

6)
,  =L(aE\h'  

2 n \ P  )

For the catenary of equation (3a), hyperbolic terms in equation (4) vanish and
equation (5) becomes pu =p. Standard solutions for the catenary, equation (34) and
beam, equation (3b), and are readily available [6,7].

Solutions for natural frequencies are obtained by applying appropriate boundary
conditions on (4), to determine the constants A-D in terms ofp and solving the
resulting frequency equations for roots Bt. For beam and bddge the boundary
conditions ofend curvature ald/or slope are applied. For bridge symmetric modes ii
is also necessary to consider the effect of the tower and backstay via a boundary
condition linking longitudinal motion ofthe cable and oscillating main cable tensron.
Mode shap€s for mode i pi(x) are particular forms of equation (4) obtained by
substituting forpi.

The solutions for frequency and mode shape are given in Appendix 1 and the
particular values of frequency obtained with designvalues are given in Table 1 for the
first antisymmetric mode (denoted as VA1 with natural frequency fvAl) and the first
symmetric mode (denoted as VS1 with natual ftequency fvsr),
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Table 1 Natural frequencies according to structure and end fixity

clamped: v' = 0

lvsl
Hz

cabl€ 06n

boam 0.3!)6 0.898

bridge (DP) 1.Q2 1.?50 r.'771

bridse (2D-FE) 1.687 7.755 1.7't2

bridse (3D-FE) 1634 1.726

fvAl
Hz

cable 0.4'72

1.585 2.476

bridge (DP) 1.654 2.313 2.524

bridge (2D-FE) 1.64'�1 Da2 2.4q

bridse (3D-FE) .654 2.491

Columns labelled v" : krv' are where the uncertain fixity at each deck end is
represented by a variable rotational restraint kr corresponding to a rotational spring
ko = krEI. A value kr = 1.0 was assumed initially, there being no direct way to measure
its value. The pinned and clamped conditions correspond to k1=0 and kr= co.

Antisymmetic modes

Figure 2 shows mode shapes corresponding to the frequencies given inTable 1; modes
for pinned bea4 bridge or catenary are indistinguishable from each other, as are the
two clamped modes. For the same end fixity the b dge natural frequencies are only
slightly higher than for beam alone, The cable makes little contribution to the bridge
dynamic stiffness as it is relativety flexible for the antisymmet c modes; which are
essentially beam vibration modes. The antisymmetry implies zero variation of cable
tension and hence no deflection of the tower, so (to first order) the backstay IS nor a
factor in these modes.

Symmetric modes

The symmetric modes have more complex solutions since, unlike antisymmetnc
modes, there will be significant cable stretching and oscillating tension h.

Figure 3 shows the mode shapes corresponding to the frequencies given in Thble 1.
The much increased stiffness ol the combination (the top three values and shapes in
Figure 3) as compared to either beam orcatenaryon theirown (the lower threevalues
and shapes in Figure 3) is because the cable is forced into a zero_node pattem which
requires significant cable stretching over the natural double_node pattern for cable
alone.
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DISCRETIZED (FINITE ELEMENT) MODEL

Tle same parameters were used in a two-dimensional (2D) FE model developed [g]
to explore nonlinear effects in suspension bridges. Frequencies for VS1 and VA1 for
the same end conditions used inthe DPmodel(kr = 0, kr = 1 and kr = co) are given
in Table 1.

ln the FEmodel the mass is lumped at the nodes, which are at the connections behveen
hangers and the deck or cables, together with tower base and tip and the bacl$tay
anchorage. The stiffness matrix K comprises an elastic component Ke and a
geometrically non-linear gravity stiffness Kg due to the axial loads in cables and
hangers. Although for this bridge the hangers are stiff, the model allows for hangers
that do not take axial compressive loads. As in the Dp model, the FE representation
collapses the two cable planes into one. The model has only 33 degrees offreedom.

As a check on the accuracy of the 2D model in representing a three dimensional
structure, a lull three dimensional (3D) model was ser up using SApIV and ANSYS
codes. Figure 4 shows the 3D mesh and the equivalent 2D mesh, Figure 5 shows some
mode shapes generated by the 3D solution for the pinned deck condition (ky = 0):
Modes VSI and VAI together with the fundamental lateral and torsional modes I_S1
and TS1 are shown. As there is minimal difference between vertical modes from 3D
and 2D solutions (even for more complex multi-noded mode shapes) the simple 2D
model is used in the correlation.

The 2D- FE frequencies are close enough to the Dp frequencies that the models can
be used in parallel. While values ofeither fval or fvsl are almost the same between
DP and FE model, both are far too low compared with experimental esumares,
showing the need to modifu the parameters in the models. The effects o[ varunp
structural parameters were explored using both models.

The parameters length (/), sag (d), horizontal tension (H),load (p)and backstayrengrn
(/5) are known accurately leaving the following uncertainties.

1) I for the deck, since no account is made for handrail or other steelwork.
2) Ec for the main cable and backstay, since the design value is rather conservative.
3) the rotational constraint kr at the deck end.

These are seen as independent parameters in the frequency equations (Appendix 1).

Updating of three parameters in a model via system identification requrres
experimental measurement of at least three values. A prototype test was conducted
to d€termine a set of at least three natural frequencies and mode shaoes.
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PROTOTYPE TESTING

The preliminary testing which highlit the peculiar response at 2Hz also showed the
need for a form of protorype testing able to define clearly the modal characrensncs
of the bridge, Hammer testing [9] was used, being an ideal method for a structure ol
this size and having several advantages over other possible methods; the equipment
is simple and portable, requiring no mains power supply and each impact provides
wideband load with good signal to noise ratio in the response so that the frequency
response function (FRF) between excitation and response points can be determined
with just a few hammer blows.

Some factors that improve the quality of data obtained from protot'?e testing are;

1) High quality accelerorneters should be used, having response signal well above
lnstrument loise.
2) Low pass filters should be used toremove unwanted high amplitude high frequency
transients, to obtaio maximum benefit from recorder/analyser dynamic range.
3) The Force (transient)/Response (exponential) windows should be used carefullyto
minimise ambient noise effects.

In this test, a 16 pound (7.25 kg) instrumented hammer, amplifier and low pass filter
(Dytran), a pair of accelerometers (Allied Signal QA-700) with home-built signal
conditioning, a DAT tape recorder (TEAC RD120) and dual channel signal analyser
(Briiel and Kjar 2148) were used.

Although lateral and torsional modes were measured, the main concern was verucal
modes, measured on the deck, bymailtaining one accelerometer at the same position
and moving the hammer to each of the 11 locations corresponding to hanger
terminations and transom beams.

The FRE as a function of frequency o measured between acceleration response at
position b (it) and force at position a (pa) is the inertance function

I(@) --

inwhich mi, oi,6i are respectively modal mass, frequency and damping ratio for mode
i .

Because of reciprocity, in theory there is no difference between moving the hammer
(vary a) and moving the accelerometer (vary b). In practice, the moving mass of the
tester may result in slight modifications to the modal parameters.

& : )
P a :

I
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Data were analysed on a 0-25H2 base-band, with 801 tines and 0.0312H2 resolution.
Force (0.2 second duration TF) and response (4 second time constant TR) windows
were used. taking an average of four hammer impacts.

As well as hammer testing, modes VS1 and VA1 were excited byjumping followed by
free decay in order to provide damping estimates directly from the logarithmic
decrement, Finally the response due to a single pedestrian crossing the bridge was
recorded.

EXPERIMENTAL MODAL CHAMCTERISTICS

A set of 11 FRFS, corresponding to each of the measurement locations, were analysed
using both ICATSI1O] and MDOF[IU modal analysis software. The imaginary
component of I(@) (Figure 6) clearly shows the presence ol two very close modes, in
antiphase for this particular combination of posirions a and b.

Figure 7 shows measured mode shapes (pia) for the lowest five measured modes
(i = 1-5) and eleven excitation positions (a) togetherwith frequencies and damping
ratios. Figure 6 indicates a sixth mode at approximately 11.1H2 which has a mode
shape almost indistinguishable from that of mode VS3 and which was not senerated
in any of the models.

Damping ntio estimates qesr for the 3 higher modes were obtained from ICAIS with
a correction for the effect of the response window: 6esr : (tcaTs - 1/2jrffR. Values

tesr for the fundamental symmetric and antisymmetric modes were obtained ftom the
tail ends ofthe free decay response from large oscillations induced byjurnping.

Figure 8 shows values of ( obtained for mode VAI via logarithmic decrement. The
values decrease from 7.8o/o for a peak to peak 1/4 span amplitud e of 3imm to 1Eo at
low amplitude. Likewise for VS1 the lowest value obtainedwas lVo.

TORSIONAL AND LATERAL RESPONSE

Measurements of lateral and torsional response were made for reference, but as
mentioned previously the modes were not so easily excited and therefore not the
critical concern.

Two torsional modes were identified; an antisymmetric mode (TA1) at 1.g4Hz with
approximately 2.4/o damping and a symmetric mode (TSl) at 2.52H2 with
approximately 7.4Va damping. The fundamental lateral mode (L-s1) at l.25Hz was
tbund to be symmerric and very heavily damped.

Comparison with the 3D solution (Figure 5) show reasonable agreement for l-S1. In
fact, assuming no restraint on rotation about a vertical axis at the deck ends. mode
l^S1 frequency depends heavily on the effectiveness of rhe diagonal bracing.
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The 3D model collapses the stringers, transoms, diagonal bracing and handrail into a
horizontal plane which under-values the rotational inertia and overemphasises the
stiffness of the steel frame and its connections in torsion so the predicted TA1 and
TS1 frequencies are bound to be too high. Even so it is surprising that the
antisynmetric modes TA1 appean at the lower frequency.

SYSTEM IDENTIFICATION

Based on the initial theoretical estimates and the measured natural frequencies, the
parametem I, Ec and kr were adjusted to obtain a good fit between the expe mental
values for the first five vertical mode natural frequencies and those obtained from the
2D FE model.

The least squares procedure [12] was used:

Ifthe prior estimates ofstructuml parameters (I, Ec, kr) are assembled into a column
vector ro, th€ FE values of natural frequencies obtained using ro are written as a
column v€ctor y0 and th€ expe mental (exact) values of natural frequency are written
as ye, then for small differences between experimental and FE values the ,correct'

values of the parameters r are found using

r o - r e = T ( r o - r )

or Y = TR, where T is a sensitivity matrix with terms ayk/ari, i : 1-3 , k : 1,5.

The iterarion scheme to find r via R = T-lY becomes

r,11 : ", - r-r (r. - v")

Since T is a 5x3 matrix the pseudoinverse (rtt ) 

- trt 
*r, ur.d, which is equivalent

to a least squares minimisation.

The effective cable areawas maintained at 66% ofsolid value i.e.70{lmm2 while better
starting values of Ec and kr were used in the DP model based on the observa[ons,
fromThble I andAppendix 1, that lvst is too lowand increaseswith Ec, while kr, which
affects fvnr, lies somewhere between 0.0 and 1.0. Initial values in r0 were thus:

Ec=100kN/mm1 kr=0.3, I:1.020x108mm4.

After three iterations with equation (9), each requiring four eigensolutrons (to
determine T and the updated y), r converged to:

Ec = 100.43kN/mm2, kr =0.24'74, I=1.1336x108mma.

8)

e)
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Table 2 compares natural frequencies (y) using these values with the experimental
frequencies and values obtained with equations (A7) and (Al4).

lhe lasl rhree columns show the el, - r; alk
rments ol I as l00]i 

Ari. 
representing the

percentage change in mode frequenry per 100Vo change in parameter. Clearly Ec is
the dominant parameter in mode VS1, for which kr has litrle effecr. Ec has a much
smaller influence on other symmetric modes. Girder rigidity I is the dominant
parameter for all other modes, and to a lesser extent kr.

Table 2 Adjusted theoretical natural irequencies (f) and sensitivities (T)

Mode Experimental
value,lHz

FE value,/Hz DP value /Hz d 

 

aF4
(E \

dflar(v.) dvdkr
(E")

2.072 2.t10 2.t42 0.00 4)4 11.39

vsr 2.r5r 2.749 2.146 39.1 7.58 0.60

VS2 4.288 4.300 4.412 2.49 44.18 8.07

v,\2 1.136 7.059 7.29a 0.01 4732 6.22

VS3 10.631 10.672 l l . l15 0.09 4t�25 5.08

Mode shapes obtained from equation (.46) and equation (A14) usingvalues incolumn
4 of Thble 2 are shown as the smooth curves in Figure 7. The Modal Assurance
Criterion (MAC) values in FigureTrelate tothe closeness of fit between experimental
mode shape values and the corresponding mode shapes values from equation (,46)
and equation (A14) for the exact measurement points.

SIMULATION OF PEDESTRIAN FESPONSE TIME HISTORIES

ln its context as part of a tourist attraction, the bridge exhibits acceptable behaviour
for its users. Its liveliness is not a problem, it is a feature. Where liveliness ts not
desirable, particularly in a more conventional footbridge having a low fundamental
natural frequency (fo), consideration is usually given to vibration serviceabiliry
defined in terms ofobjective criteria [13-15] for pedestrian comfort.

If pedestrian comfort is an issue, the applicable code in Singapore, 855400 [13]
specifies a vibrarion limit 0.5 (fo) 

tm.sec-2 
for a single pedestrian, but apparenly

[15] this is only a recommendation. BS5400 also provides a method of calculating
response by approximating a pedestrian as a pulsating dynamic load

TT
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F ( t )  =  1 8 0 s i n ( 2 z i o r ) N  . . . . . . . . 1 0 )

moving across the bridge at a speed of 0.9 fo m/sec, using the appropriate specified
logarithmic decrement d which is 0.03 (for steel with asphalt or epoxy surfacing).

The forces generated during walking (running and jumping) are not pure sinusoids
and can be modelled as Fourier series ofthe form [15].

N
F ( t )  = P ( 1  + )  a n s i n ( 2 z n f t  +  p n ) )  . . . . . . . 1 1 )

\  n = ]

in which the fundamental (n = 1) is the strongest with n1 = 0.35 for f :ZHz giving a
pulsating force of 294N for a 75kg person (P =736N). Equation (10) is equivalent to
equation (11) if only the first term is taken, with al : 0.24.

Probably dr would be higher if the subject was deliberately walking heavily to excite
the bridge; for jurnping, dr can be as high as 1.75. Also the value d = 0.03
(6 = 0.5%) is too low, since from measurements l>7Vo.

For the DP model, the response is obtained by normal mode analysis, writing

v ( x , t ) = )  p i ( x ) Y ( | .  . . . . . . . . . 1 2 )

Using (3c), withp' = p/g and constant member properties,

ip '  -  IJv"  + Etv i "  -  UhlP = Fd(x-v t )s in2af t .  . . . . . .13)

The modal response (mode i) is ther obtained from:

. . h  ^  Y 2 -
ii Ip'91 a" + \i !rl-Hei',li + st,pi;",pi - Bdhtt2,pifdt = F,/,i(vt )sin(ft). 14)

Tbe first integral is the modal mass mi, the second is the modal stiffness ti ( = rniro?),
for mode i. Adding a damping term,

m i ( i ;  +  4 ; t t i i i +  o ? y i )  =  F e i ( v t ) s i n 2 n f t  . . . . .  . . .  . . . 1 5 )

For the first pinned antisymmetric mode (h = 0, pr(x) : sin2nx/l),

^ ' I

T l y  + A o y  +  u z y )  =  F s i n f i s i n z z f t .  . . . . . . . . . . 1 o ,
Z I

Variations of equation (16) with different modal mass and more complex functtons
p(x) (as in Appendix 1) to replace sin(zwVl) will apply for other end condirions and
symmetric modes and the response for two modes together can be obtained by
superposition.

Response to a moving pedestrian was simulated first using VS1 and VA1 mode shapes
from Appendix 1 in a Duhammel integral with equation (16) and second usrng the
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non-linear FE model with a r : 9.35, 1 = 1%. The following peak acceleration values
(m/sec2) results were obtained:

1/4 span midspan 3/4 span
DP 3.34 3.09 3.34
FE 2.71 2.55 2.28
FE + mr 2.42 2.28 2.19

Measure tl mtr-ximum value {aL J/4 span): 2.l8m,tsec2

The last row is for a non-linear simulation in which the mass mr of the pedestrian
accelerating at vt is added in as a forcing term -mrvr. For the FE simulations the
walking frequency is taken as the average of fvlr and fvsr.

It is worth noting that for all but the largest amplitudes oscillations[8] the vertical
plane vibrations of a suspension bridge with invadant mass are well represenled by
models linearised about the dead load condition. The most significant nonlineariries
are l i lely to come from the various mechanisms that constitute ,structural

dalnping'[16].

Figure 9showsactual acceleration response measuredwith apedestrian (T5kgstudent
tester) walking briskly and heavily across the bridge in the direction from 1/4 span to
3/4 span and Figure 10 shows the acceleration time histories generated in the
nonlinear simulation (FE + rn1). Figure 9a, 10a are 1/4 span response, 9b, 10b are 3/4
span response. Figure 9c, 10c and Figure 9d, 10d are respectively the half-sum and
half-difference of the 1/4 span and 3/4 span, intended to repr€sent response in mode
VS1 and mode VA1 respectively. Comparison of Figure 9 and Figure 10 suggests an
underestimation of damping and walking speed (i.e. stride) in the simulation.

Note that since the response is almost entirely due to 2Hz modes, the acceleranons
can be converted approximately to displacemenrs (in mm) by multiplying by

98101rl�2 :62-

None of the simulations consider the variable damping (Figure 9) or the flexibility
and damping capacity of the pedestrian. In the Dp simulation fvAl and fvsl are
practically identical and the response is dominated by mode VS1 response.

DISCUSSION AND CONCLUSIONS

Simple two-dimensional finite elemenr (FE) and distributed parameter (Dp) models
can be used to study the dynamics of the critical vertical plane response ofthe bridge
and produce very similar estimates of bridge modes. Depending on computer
implementation (these models were run on a pC) the FE model has the slisht
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advantage in terms of ease of studying the effect of different parameters on several
modes at once,

The DP model is very useful for predicting fvsr and fvet alone. From studying these
results it is clear that the cable axial stiffness is most important for the first symmetric
mode (VS1), and apart from this the other modes are similar to those of a beam with
partially fixed ends. This is reflected in the FE system identification sensitivity matrix.

The coincidence of fvsr and fvAl at a t ?ical footfall frequency accounts fo. the
relatively high response of the bridge despite its conservative rigidity. In usual usage
passage ofseveral pedestrians would reduce the additive effect ofmodes and alter the
dynamic characteristics. When modelling the response to a pedestrian the response
depends very much on the closeness ofthe two modes and the walking characteristics.

The issue of serviceability is of course very imporrant for this type of bridge. Clearly
it is lively and since part of its function is to induce tourists to come and eniov its
bouncy behaviour it is definitely serviceable.

Were it desirable, tuning of the bridge to adjust vertical plane natural frequencies
upwards or downwards could be done via the girder rigidity and cable stiffness.
Another parameter is the length of backstay which would affect mode VS1 the most.
For an existing bridge, lrequencies could be altered by adjusting handrail continuity
at deck ends, or by adding rnass at strategic points. Use ofdiscrete dampers [15]would
probably be less viable for this t)?e ofbridge since they would require maintenance.
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APPENDIX 1 NATURAL FREOUENCIES AND MODE SHAPES FROM
CONTINUUM EQUATIONS

The startiog point in determining frequencies and mode shapes is the solution of
equation (3c):

riix; = 4.orh1pt", + Bsinh(plx)+ Ccos(pr) + Dsin(prx) -Sdfi@D2H . et;

ANTISYi\,TMETRJC MODES

For antisymmetric modes symmetry requires rhat A = C = ti=0leaving

v(x)  = Bs inh(prx)  +  Dsin(p2x)  . . . .  M)
Pinned girder

Bourdary corditions arc v(:12) = v" (tIQ) = 0leading to B=0 and a frequency
equation

si\(prltz) = 0

with mode shapes, for unit D and values ofpz satisfying equation A3

9(x) = sin(px) ,{4)
Clamped girder

Boundary conditions arc v(!ll2) = v'(+U2) = 0leading to a frequency equation

tantpi t2) = l$lta*1pl/z)
\ P r l  

" "  "  '  4 5 )

with mode shapes, for unit D andp satisfying equation (A5)

t in i /n . / / ) \

! r ( x )  =  s i n ( p r )  -  f f i i n h ( p r x )  . . .  .  .  . . . . . . . . A 6 )
r lur (Ptr l2 ,

Girder with rotational spings

Boundary conditions arc v(!llz) = 0, v"(-12) = k v'(-l/2), v" (12) = -y11,11p1,

with kr = kalEl leading to a frequency equation

( r  +  " ) w
prcor(prl /2\ - prcoth(pr//2) = . 

"k,

with mode shapes given by equation (.46) forp satisg,ing equation ( A7).

Equation (A3) and equation (A5) are special cases of equation (A7) when,
respectively, kr = 0 and kr = o.

7'�7

.A3)

A7)



suspcnsnin tootbridge 8/1996

SYMMETRJC MODES

For symmetry, B,D = 0 but the oscillating component of tension liis not required to
be zero i.e.

Qx)  =  Acosh(p1x )+  Ccos lp2 r ;  - f f i@f2H . . . . .  . . . .AE)

Solutions are more complex than for the antisymmetric modes since cable stretching
due to the non zero h has to be taken into account via the'cable equation' [6] which
in this case leads to:

a +t/z +t/2
F - ^ -  

:  l u l  -  J  y  v q x  . . . . . A 9 )Lcr1. _tn _n

where 'virtual cable length' fe=1 (l + s(d/02) , Ec, Ac are cable modulus and sectional
area, ard u(x) is the longitudinal deflection.

The frequency equations are obtained by determining A and C in equation (Ag) in
terms of h via the boundary conditions then substituting equation (A8) into equation
(A9). In addition the effect of the backtay length ls and inclination 0 can r,e
approximated by a spring ks : EcA6cos2d//s such that

u ( t l 2 )  -  u ( - t / 2 )  =  2 h l k s  . .  . . . . . A 1 0 )
Pinned girder

rft'. ht=' -(r') @1fiffi ^',,
where ).2 =

Clamped girder

@t'r '*-4-i='-/+)
cos'dl"' \ prtl

Girder with rotational spings

@tl,  *  - - , ,  t= r  -  I  
2. )  (s in(pj / /2)  + (p ' � lpr) i 's inh(pr/ /2))

)' ' cos'4. \prt I (cor1py72y + ycoshlpr//2))

, iprl (kain(prl/2) r pscoyp//2))
where v - 

l;;l 0,,,nh,p/r)., ft."rha,/a
Equation (A11) and equation (A12) are special cases of equation (,4137 wnen,
respectively, kr : 0 andkr = o.

- e" t  /ea\2*H r" l7J 
'

1r + (r,n,)'�)

[.orp.tlzr + (nzlpr)corrrrp,r lz r]
.A12)

.A13)
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Mode shapes for the symmetric modes are given by using appropriate values of/ and
p satisffing equations (A11-A13):

, r ' l=  4{  * i (H} l / * l !o '2 ; -1}  . . . .  . . . . . .Ar4)
6qzlcosQrl2) + ycosh(prl2) -J ""'

For a catenary with fixed end& rr = 0, ID =p, / = 0 and then equations (A11-A13)
lead to the frequency equation

lar\2 q lz\ lar\
l ; l  i =  r - l t l  t a n l ; | .  . . . . . . . . . . A 1 5 )
\ - I  ^  V " t  \ - l

Finally, in the symmetric mode, the tower tip displacement is related to the midspan
dis['la€ement by

fr-n\=r(ot w'h.
EcAP*ns'9

1 + y

(cos(pllz) + zcosn@rlz))
. . . . . . . . . . A 1 6 )
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Fig. 4 Imaginary part ofinenance function I(@)



Mode VSl: 1.634H2

Mode VA1: 1.655H2

Mode LS1: 1.644H2

Mode TSl: 2.753H2

Mode TA1: 4.477H2

Fig. 5 Modes predicred by 3D FE model (from design data with kr = 0)



Mode VS1: 1.634H2

Mode VAl: 1.655H2

Mode LS1: 1.644H2

Mode TSl: 2.753H2

Mode TA1: 4.477H2

Fig. 5 Modes predicted by 3D FE model (from design dara with kr =0)



Modo VAt:
fvx=2,072H2
lvx'1.0%
MAC=o.976

Mode VSI:
tuzF2.151Hz
qwl - 1.0%
MAc=o.955

Mode VS2:
lvst4.2aEH2"
lyg2= 2,V/c
MAC=o.976

Mode VAz:
fvrz'7 .136H2'
qv^1= 1.39.
MAC=o.92E

Mode VS3:
fv$=10.631H2,
(vrl = 1.56%
MAC=o.964

r;e le Comparison ofrheoretical mode shapes from Dp model with experimental values (circles)
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