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ABSTRACT
We present an improved version of the Lorén-Aguilar & Bate method to integrate the two-
fluid dust/gas equations that correctly captures the limiting velocity of small grains in the
presence of net differences (excluding the drag force) between the accelerations of the dust
and the gas. A series of accelerated DUSTYBOX tests and a simulation of dust-settling in a
protoplanetary disc are performed comparing the performance of the new and old methods.
The modified method can accurately capture the correct limiting velocity while preserving all
the conservation properties of the original method.

Key words: hydrodynamics – methods: numerical – planets and satellites: formation –
protoplanetary discs – dust, extinction.

1 IN T RO D U C T I O N

A correct description of the evolution of dust and gas mixtures
is essential to model many interesting astrophysical phenomena.
One difficulty in modelling such mixtures numerically is the time-
integration of the drag force between the gas and small dust grains
(see e.g. Lorén-Aguilar & Bate 2014, and references therein). The
dust stopping time, ts, gives a measure of the time needed for the
relative velocity of the dust with respect to the gas to reduce by
a significant fraction. If the dust grain is very small, this time-
scale may become exceedingly small in comparison with the gas
evolutionary time-scale. As a consequence, a very large number of
explicit time-steps need to be computed (or iterations in the case of
implicit integration systems), making such simulations prohibitively
expensive.

To tackle this problem, a semi-implicit time integration method
was proposed by Lorén-Aguilar & Bate (2014) in the framework of
the smoothed particle hydrodynamics (SPH) (Gingold & Monaghan
1977; Lucy 1977) two-fluid scheme. Drag was implemented using
an approximate solution of Euler’s equations for the relative velocity
of dust and gas

vDG(t + δt) = vDG(t)e−δt/ts , (1)

where vD and vG correspond to dust and gas velocities, respec-
tively, vDG ≡ vD − vG, and δt corresponds to the integration time-
step. The scheme was implemented using an operator splitting tech-
nique. First, intermediate velocities were predicted for dust and gas
components, excluding drag forces

ṽD(t + δt) = vD(t) + aD(t)δt, (2)
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ṽG(t + δt) = vG(t) + aG(t)δt, (3)

where aD and aG are the accelerations of the dust and gas, re-
spectively, excluding drag forces. Subsequently, drag forces were
applied using a time-discretized version of equation 1

vD(t + δt) = ṽD(t + δt) − ξ ṽDG(t + δt), (4)

vG(t + δt) = ṽG(t + δt) + εξ ṽDG(t + δt), (5)

where ε ≡ ρD/ρG is the dust-to-gas ratio, and

ξ ≡ 1 − e−δt/ts

1 + ε
. (6)

The method performed well in a variety of test cases. However,
Booth, Sijacki & Clarke (2015) recently pointed out a severe lim-
itation of the method, namely that it does not produce the correct
relative velocity between dust and gas for small grains in the pres-
ence of a net difference in the (non-drag) accelerations of the dust
and the gas. This occurs because the method is based on equation 1,
which is the solution of Euler’s equations in the presence of drag
without any additional acceleration terms. Then, in the limit δt/ts

→ ∞, ξ → 1/(1 + ε) and the application of equations 4 and 5
leads to vDG → 0. However, consider, for example, dust falling in a
hydrostatic atmosphere. In this case, both the dust and gas experi-
ence a gravitational acceleration, but for the gas this is balanced by
the pressure gradient so that the net acceleration of the gas is zero,
and aD − aG = ∇PG/ρG, where PG is the gas pressure, and ρG the
gas density. In this case, the correct limiting velocity of the dust is
vDG → ts∇PG/ρG, not zero.

In order to quantify the impact of the excessive drag produced by
the use of equation 1, one can explore a simple experiment. Con-
sider a one-dimensional dust and gas mixture with initial velocities
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Figure 1. The evolution of the fractional change of the dust velocity after an integration time-step δt, for different values of the parameter α ≡ aDts/v(t). The
old method (left-hand panel) produces excess drag in all cases, as can be seen when compared with the exact solution of the problem (right-hand panel). For
α � 1, the solution from the old method is relatively close to the analytical solution. But for α � 1, one needs to enforce δt/ts � 0.1 in order to obtain close
agreement with the analytical solution. This is contrary to the original purpose of the method, which was to allow time-steps δt � ts to be taken.

vD = 1, vG = 0, a constant acceleration aD (affecting only the dust
component) and an arbitrary dust stopping time ts. For simplicity,
we take the dust-to-gas ratio ε � 1. Using equations 2 to 5, the
velocity of the dust component can be evolved by a time-step δt as

vD(t + δt) = vD(t) + aDδt − (1 − e−δt/ts ) (vD(t) + aDδt)

= (vD(t) + aDδt) e−δt/ts . (7)

Thus, one can estimate the fractional change in the dust velocity
after an integration time-step as

vD(t + δt)

vD(t)
= (1 + αδt) e−δt/ts , (8)

where α ≡ aDts/vD(t). In Fig. 1, the fractional change in velocity as a
function of δt/ts is shown for various values of parameter α, both for
equation 8 (left-hand panel), and for the correct analytical solution
(right-hand panel, see Section 2 for a derivation). In the left-hand
panel, the velocity at t + δt always suffers an excess of drag with
respect to the analytical solution. For α � 1, equation 8 produces
only a very small fractional error. The problem occurs for values
α � 1, when the predicted value for the velocity completely diverges
from the analytical solution if δt > 0.1ts. Physically this can only
occur if the change of the velocity produced by the acceleration
is large enough, i.e. ats � 0.1vD. Such a circumstance should not
normally occur if the non-drag accelerations are shared by both
dust and gas components, since the gas time-step condition should
automatically restrict δt. However, such a restriction will not occur,
for example, if an acceleration is only felt by the dust component.
Then, depending on the specific values of the dust acceleration,
stopping time and velocity, the result may be completely wrong.

In the case of dust falling in a hydrostatic atmosphere, because
the total acceleration of the gas component is close to zero, the
time-step δt may have little to do with the gravitational acceleration
or the velocity of the settling dust grains. The error for weakly
coupled dust grains will be very small, since δt/ts � 1. Similarly,
the error for strongly coupled grains will be very small, since the
relative velocity will be very small, leading to a small absolute
error despite the very big fractional error. However, intermediately
coupled grains may simultaneously generate sizeable fractional and
absolute errors. Hence, the only way to recover the correct evolution,
independently of ts, is to force δt/ts � 0.1 by reducing the integration
time-step δt. This restriction is clearly in conflict with the purpose
of the originally designed algorithm, i.e. avoiding the time-stepping

restriction of the dust force. Hence, a modification of the method to
recover the proper limits when δt/ts → ∞ is mandatory.

In this paper, we present an improved version of the method that
produces the appropriate limiting velocities of the small grains in
the presence of accelerations. In Section 2, the modified numerical
method is presented, in Section 3 we present the results of numerical
tests and, finally, in Section 4 we draw our conclusions.

2 N U M E R I C A L M E T H O D

Euler’s equations can be expressed as a function of the relative and
barocentric velocities as (e.g Youdin & Goodman 2005; Laibe &
Price 2014)

DtvDG = aDG − vDG

ts
− (vDG · ∇) v − G(v2

DG), (9)

Dtv = a − F(v2
DG), (10)

where we emphasize that aG includes accelerations due to gas
pressure gradients, and we define the total density ρ = ρD +
ρG, which includes the dust density ρD, v ≡ (ρDvD + ρGvG) /ρ,
vDG ≡ vD − vG, a ≡ (ρDaD + ρGaG) /ρ, aDG ≡ aD − aG, and

F(v2
DG) ≡ 1

ρ
∇ ·

(
ρDρG

ρ
v2

DG

)
, (11)

G(v2
DG) ≡ ρG

ρ
vDG · ∇

(
ρG

ρ
vDG

)
− ρD

ρ
vDG · ∇

(
ρD

ρ
vDG

)
.

(12)

The stopping time can be expressed as ts ≡ ρGm̂D/(Ksρ), where
m̂D is the mass of a single dust grain, and Ks is its drag coefficient.

If, (i) densities and accelerations can be considered approximately
constant during the integration time-step, and (ii) the relative ad-
vection terms, F and G, can be neglected due to the smallness of
vDG (see Youdin & Goodman (2005) and Booth et al. (2015) for a
discussion), the solution of equations 9 and 10 can be written as

vDG(t + δt) = vDG(t)e−δt/ts + aDG

(
1 − e−δt/ts

)
ts, (13)

v(t + δt) = v(t) + aδt. (14)
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Using

vD = v + ρG

ρ
vDG, (15)

vG = v − ρD

ρ
vDG, (16)

equations 13 and 14 can be implemented using again a two-step
method. As in the original method we perform a standard explicit
integration to apply non-drag forces (equations 2 and 3), but subse-
quently we apply the drag forces using

vD(t + δt) = ṽD(t + δt) − ξ ṽDG(t + δt) + �aDG(t), (17)

vG(t + δt) = ṽG(t + δt) + εξ ṽDG(t + δt) − ε�aDG(t), (18)

where

� ≡ (δt + ts)ξ − δt

1 + ε
. (19)

To calculate the time-evolution of the internal energy of the gas
uG, one can make use of energy conservation. The total change in
kinetic energy per unit volume of the mixture will be given by

	EK = 1

2
ρDv2

D(t + δt) + 1

2
ρGv2

G(t + δt)

− 1

2
ρDv2

D(t) − 1

2
ρGv2

G(t)

= 1

2
ρD

(
ṽ2

D(t + δt) − v2
D(t)

) + 1

2
ρG

(
ṽ2

G(t + δt)

− v2
G(t)

) − ρD

(
ṽDG(t + δt) − 1

2
(1 + ε) SDG

)
· SDG

= 	ẼK − ρD

(
ṽDG(t + δt) − 1

2
(1 + ε) SDG

)
· SDG, (20)

where

SDG ≡ ξ ṽDG(t + δt) − �aDG(t), (21)

and 	ẼK is the total change in kinetic energy per unit volume due
to non-drag forces. So, assuming that the total change in thermal
energy is given by the total lost kinetic energy

uG(t + δt) = ũG(t + δt)

+ ρD

ρG

(
ṽDG(t + δt) − 1

2
(1 + ε) SDG

)
· SDG. (22)

We can check our equations produce the expected behaviour in
the limits of small and large time-steps. If δt/ts � 1, ξ → δt/ts(1
+ ε), � → δt2/ts(1 + ε), so equations 17 and 18 become

vD(t + δt) = vD(t) − vDG(t)

ts
δt + aD(t)δt, (23)

vG(t + δt) = vG(t) + ε
vDG(t)

ts
δt + aG(t)δt, (24)

recovering the low-drag explicit integration regime. On the other
hand, if δt/ts � 1, ξ → 1/(1 + ε), � → ts/(1 + ε), and equations 17
and 18 become

vD(t + δt, rD) = v(t, rD) + a(t, rD)δt + ts

1 + ε
aDG(t, rD), (25)

vG(t + δt, rG) = v(t, rG) + a(t, rG)δt − ε

1 + ε
tsaDG(t, rG),

(26)

recovering the appropriate strong drag limit, in which vDG = tsaDG.
Equations 17, 18 and 22 can be implemented in the SPH method
using the discretization procedure discussed in Lorén-Aguilar &
Bate (2014). This gives

vi
D(t + δt, r i) = ṽi

D(t + δt, r i)

− ν

Ni

Gas∑
k

mk

ρk

(Sik · r̂ ik) r̂ ikW (|r ik|, hk), (27)

v
j
G(t + δt, rj ) = ṽ

j
G(t + δt, rj )

+ ν

Dust∑
k

mk

Nkρj

(Skj · r̂kj )r̂kjW (|rkj |, hj ), (28)

u
j
G(t + δt, rj ) = ũ

j
G(t + δt, rj )

+
Dust∑

k

mk

Nkρk

[ (
Skj · r̂kj

) (
vkj · r̂kj

)
W (|rkj |, hj )

− 1

2

(
1 + ρk/ρj

) (
Skj · r̂kj

)2
W (|rkj |, hj )

]
, (29)

where ν is the number of spatial dimensions, r i is the position of the
ith particle, r ik ≡ r i − rk , mk and hk are the mass and smoothing
lengths of the kth particle, respectively, and W is the interpolating
function, known as the SPH kernel (see for example Monaghan
1992). We have also included a normalization factor for the dust

Ni ≡
Gas∑
k

mk

ρk

W (|r ik|, hk). (30)

Equation 29 assumes that all the kinetic energy dissipated by drag
is transformed into thermal energy of the gas (see Lorén-Aguilar &
Bate (2014) for a detailed explanation of the procedure).

3 R ESULTS AND DI SCUSSI ON

To test the accuracy of the improved algorithm, a series of DUSTYBOX

experiments were performed. A set of 128 particles per phase in
one dimension and 203 particles per phase in three dimensions with
homogeneous densities ρG and ρD were placed in a periodic box
with an initial velocity vD = (1, 0, 0) and vG = (0, 0, 0). A constant
acceleration aD = (0.1, 0, 0) was applied exclusively to the dust
particles. To construct the initial 3D model, particles were evenly
distributed in a cubic lattice with −2 ≤ x, y, z ≤ 2. The dust lattice
was shifted, with respect to the gas, by half of the gas particles
separation in each direction. The mass of each SPH particle was
equal to mG = VρG/N and mD = εmG, where V is the volume of
the computational domain, and N is the number of particles in each
phase.

The time evolution of the velocity of an arbitrary dust particle
should be given by

vD(t) = vD(0)(1 − ξ (t)) +
(

ε

1 + ε
t + ξ (t)ts

)
aD, (31)

where

ξ (t) ≡ 1 − e−t/ts

1 + ε
. (32)

In the test particle limit (i.e. ε � 1), dust particles should reach
a constant limiting velocity given by vD(t → ∞) = tsaD. In the
right-hand panel of Fig. 2, the time evolution of the velocity for
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Improved dust and gas mixtures in SPH 4117

Figure 2. The time evolution of the velocity of a dust particle experiencing a constant acceleration and gas drag, in the test particle limit (ρD/ρG � 1), for
different values of the drag strength coefficient m̂D/Ks in one-dimensional calculations. The new method (right-hand panel) predicts the terminal velocity with
a very high degree of accuracy, whereas the old method (left-hand panel) produces the expected excess of drag. The label above each solution indicates the
relative error of the numerical solution compared to the analytical solution.

Figure 3. The time evolution of the velocity of a dust particle experiencing a constant acceleration and gas drag, in the test particle limit (ρD/ρG � 1), for
different values of the drag strength coefficient m̂D/Ks in three-dimensional calculations. The old method (upper panels) produces excess drag, whereas the
new method (lower panels) achieves the correct terminal velocity to a good degree of accuracy. The label close to each solution in the left-hand panels indicates
the relative error of the numerical solution compared to the analytical solution. As explained in the main text, fluctuations in the terminal velocity (lower-right
panel) arise as consequence of the underlying grid structure of the gaseous component, due to the finite resolution.

an arbitrary dust grain is shown for various stopping times in a
one-dimensional case. In the left-hand panel of Fig. 2, the results
obtained with the original Lorén-Aguilar & Bate (2014) method are
shown. In each of these calculations the densities have been taken as
constants (rather than using SPH summations). As expected, using
the old method, the terminal velocity is incorrectly predicted due
to the expected drag excess caused by ξ (δt/ts → ∞) → 1/(1 + ε).

Using the new method, the limiting velocity is correctly predicted
within high accuracy.

In Fig. 3, the results obtained using the original and improved
methods are shown for a three-dimensional case. This time, densities
are self-consistently calculated using SPH summations as dust and
gas particles evolve in time. In the upper panels, the obtained result
using the improved method is shown. Again, the correct terminal
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Figure 4. Azimuthally-averaged density rendering of the dust (colour scale) and gas (grey-scale, ranging over log10(ρG) = [− 17, −12] in g cm−3) components
of a protoplanetary disc. Vectors represent the velocity field of the fluid. The dust component of the disc is comprised of 1 mm dust grains with an initial
dust-to-gas ratio of ε = 0.01. After the dust grains settle, a compositional baroclinic instability develops creating toroidal vortices. The left-hand panel is taken
from Lorén-Aguilar & Bate (2015), who used the original semi-implicit integration method of (Lorén-Aguilar & Bate 2014) which produces excess drag and
a relatively thick dust layer. Using the improved integration method (right-hand panel) the instability is qualitatively the same, but the dust layer is somewhat
thinner.

velocities are obtained with a good degree of accuracy. As shown
in the right-hand panels, small fluctuations (of order 1 per cent) are
observed in the limiting velocity of the dust particles. Booth et al.
(2015) speculated that similar fluctuations in Lorén-Aguilar & Bate
(2014) may be due to the original method’s inability to model the
correct limiting velocity, but this is not the case. The fluctuations
occur as a result of the motion of the dust particles relative to the
grid of gas particles, which are essentially motionless (as ε � 1).
Consequently, the acceleration of the dust particle undergoes small
periodic changes as it travels through the box. The spacing between
the gas particles is 0.2 code units. Consequently, dust particles
travelling at limiting velocities of 0.01, 0.005 and 0.001 in code units
should expect to find along its way gas particles at time intervals
of the order of 20, 40 and 200 code units, respectively. This is
approximately the periodicity of the velocity fluctuations seen in
the right-hand panels of Fig. 3. We note that Booth et al. (2015)
propose using a method that does not use pair-wise forces between
dust and gas particles and because they only study dust/gas drag
in the test particle limit, they do not include the back reaction of
the dust drag on the gas. By contrast, our method includes the back
reaction and guarantees momentum conservation.

Finally, we applied the improved method to the simulation of a
realistic astrophysical problem. Lorén-Aguilar & Bate (2015) re-
ported results from simulations of dust settling in protoplanetary
discs, and discovered a new type of instability whereby vertical
gradients in the dust-to-gas ratio drive a baroclinic instability that
produces toroidal gas vortices. The instability manifests itself for in-
termediate size dust grains (∼1 mm in the reported calculations) that
can undergo vertical settling, but are nevertheless quite well coupled
to the gas. Since the onset of the instability critically depends on
the settling velocity of the grains and the associated gradients in the
dust-to-gas ratio, any inaccuracy in the calculation of the limiting
velocity of the grains could lead to differences in the evolution of
the instability. Therefore, we have repeated the main calculation
of Lorén-Aguilar & Bate (2015) (see their paper for further details
of the set up and initial conditions) using our improved method to
investigate the impact of the excess drag on the earlier results. In
Fig. 4, we compare the dust distribution and toroidal vortices from

original calculation (left-hand panel) with the result obtained using
our improved method (right-hand panel) at the same time. The orig-
inal method produces a thicker dust layer than the new method, as
expected for an overestimation of the drag force. With the improved
method, the dust grains undergo more settling before the onset of
the instability, but apart from the thickness of the dust layer, the
other features of the instability remain.

The dataset consisting of the output and analysis files from the
calculations presented in this paper have been placed in the Univer-
sity of Exeter’s Open Research Exeter (ORE) repository and can be
accessed via the handle: http://hdl.handle.net/10871/18407.

4 C O N C L U S I O N S

We have extended the semi-implicit time-integration method of
Lorén-Aguilar & Bate (2014) for two-fluid dust/gas mixtures to
account for net differences between the non-drag accelerations of
the gas and the dust. The improved method obtains the correct
limiting velocity difference between the dust and the gas in the
presence of differential accelerations even for time-steps that are
much longer than the dust stopping time (i.e. δt/ts → ∞). Due to the
application of pair-wise forces, exact linear and angular momentum
conservation are guaranteed.

We have successfully applied the method to an accelerated DUSTY-
BOX test, demonstrating the accuracy of the method. We have also
investigated the effect of the incorrect dust settling velocities pro-
duced by the earlier method in the generation of toroidal vortices
in protoplanetary discs. Due to overestimation of the drag force,
the earlier method produces slower settling of the dust particles,
which gives rise to a somewhat thicker convective dust layer than
that obtained with the new method. However, the onset of the in-
stability and the character of the toroidal vortices are qualitatively
unchanged.

AC K N OW L E D G E M E N T S

Fig. 4 was created using SPLASH (Price 2007), a SPH
visualization tool publicly available at http://users.monash.
edu.au/∼dprice/splash.
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